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ABSTRACT

We propose a novel approach to compute the MAXCUT in attributed graphs, i.e.,
graphs with features associated with nodes and edges. Our approach works well
on any kind of graph topology and can find solutions that jointly optimize the
MAXCUT along with other objectives. Based on the obtained MAXCUT partition, we
implement a hierarchical graph pooling layer for Graph Neural Networks, which
is sparse, trainable end-to-end, and particularly suitable for downstream tasks on
heterophilic graphs.

1 INTRODUCTION

The MAXCUT is the problem of partitioning the nodes of a graph such that as many edges as possible
connect nodes from different sides of the partition. The MAXCUT is orthogonal to the more commonly
encountered minCUT, which aims at partitioning the nodes into strongly connected groups. While
minCUT is closely related to clustering, MAXCUT relates to the concept of downsampling, e.g., keeping
one-every-K, under the assumption that there is a redundancy among the K samples. Like the
minCUT, the MAXCUT is a combinatorial optimization problem that, in practice, is approximated by
approaches that find suboptimal or unstable solutions for a large class of graphs (Makarychev et al.,
2014).

Pooling is ubiquitously used in deep learning for gradually reducing the size of the data while retaining
important information. In Convolutional Neural Networks (CNNs), pooling is typically implemented
by selecting the maximum within a contiguous patch (max-pool) or by computing an average (avg-
pool). These strategies are naturally related to MAXCUT and minCUT problems, respectively. Similarly
to CNNs, Graph Neural Networks (GNNs), which can be seen as a generalization to irregular data,
can be built by alternating Message Passing (MP) and graph pooling layers (Zhou et al., 2020a).
A hierarchy of pooling layers gradually extracts global graph properties through the computation
of local summaries and is key to building deep GNNs for graph classification (Khasahmadi et al.,
2020), node classification (Gao & Ji, 2019; Ma et al., 2020), graph matching (Liu et al., 2021), and
spatio-temporal forcasting (Cini et al., 2024; Marisca et al., 2024).

Two important approaches are followed when implementing hierarchical graph pooling. One is to
account for the node features with trainable functions that are adapted to a downstream task at hand.
The other is to optimize graph theoretical objectives, such as the minCUT or the MAXCUT, to guide
the computation of the coarsened graph. Combining the first approach with minCUT objectives is
relatively straightforward, as they complement the smoothing effect of MP layers (Hansen & Bianchi,
2023). Conversely, objectives such as MAXCUT that select sparse and uniformly distributed subsamples
of nodes have been implemented so far only within non-differentiable frameworks, which account
neither for node features nor for task objectives (Luzhnica et al., 2019).

1.1 CONTRIBUTIONS

MAXCUT for attributed graphs. Our first contribution is graph theoretical and consists of a novel
GNN-based approach to compute a MAXCUT partition in attributed graphs. Being differentiable, our
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method can be seamlessly integrated into a deep-learning framework where other loss functions
can influence the MAXCUT solution. Remarkably, our method is also more robust than traditional
approaches in computing the MAXCUT on non-attributed graphs, as it finds a better cut on most graph
topologies. This makes our contribution relevant to every application of the MAXCUT problem, such as
quantum computing (Zhou et al., 2020b), circuit design (Bashar et al., 2020), statistical physics (Borgs
et al., 2012), material science (Liers et al., 2004), computer vision (Abbas & Swoboda, 2022), and
quantitative finance (Lee & Constantinides, 2023).

Graph pooling and coarsening. The MAXCUT application we focus on is the problem of learning
a coarsened graph within a GNN. In particular, we design a new hierarchical pooling layer that
reduces the graph by keeping the nodes from one side of the MAXCUT partition. Our layer is the first
to combine a graph theoretical MAXCUT objective with a pooling approach that is features-aware and
trainable end-to-end. When we include the newly proposed pooling layer in GNNs for graph and
node classification, we achieve similar or superior performances compared to state-of-the-art pooling
techniques.

Improved scoring-based pooling framework. We propose a simple and efficient scheme to assign
nodes to supernodes when computing the pooled graph. Our scheme can be applied not only to
our method but to the whole family of sparse scoring-based graph pooling operators enhancing, in
principle, their representational power. Importantly, we bridge the gap between scoring-based and
dense pooling methods by using the same operations to compute the features and the topology of the
pooled graph.

Heterophilic graph classification dataset. Differently from the existing differentiable pooling
operators, the nature of the MAXCUT solution makes our graph pooling operator particularly suitable
for heterophilic graphs. While there are benchmark datasets for node classification on heterophilic
graphs, there is a lack of such datasets for graph classification. To fill this gap, we introduce a novel
synthetic dataset that, to our knowledge, is the first of its kind.

2 BACKGROUND

2.1 THE MAXCUT PROBLEM AND THE CONTINUOUS RELAXATIONS

Let G = (V, E) be an undirected graph with non-negative weights on the edges, and let N be the
number of nodes in G. A cut in G is a partition (S,V \ S) where S ⊂ V . The MAXCUT problem
consists of finding a cut that maximizes the total volume of edges connecting nodes in S with those
in V \ S. The MAXCUT objective can be expressed as the integer quadratic problem

max
z

∑
i,j∈V

wij(1− zizj) s.t. zi ∈ {−1, 1}, (1)

where z ∈ {−1, 1}N is an assignment vector indicating to which side of the partition each node is
assigned to and wij is the weight of the edge connecting nodes i and j.

Like other discrete optimization problems of this kind, MAXCUT is NP-hard. The Goeman-Williamson
(GW) algorithm (Goemans & Williamson, 1995) provides a semidefinite relaxation of the integer
quadratic problem, which makes it tractable:

max
X

∑
i,j∈V

wij(1− xi · xj) s.t. ∥xi∥ = 1, (2)

where X ∈ RN×D is a matrix whose rows are the continuous embeddings of the nodes in G. The
vectors X are projected on a random hyperplane to split the nodes and assign them to the two sides
of the partition. This algorithm guarantees an expected cut size of .868 of the maximum cut.

Another simple yet effective continuous relaxation is the largest eigenvector vertex selection (LEVS)
method (Shuman et al., 2015). Let L be the Laplacian matrix associated to the graph G and let umax

be the eigenvector of L associated to the largest eigenvalue λmax. A cut in G can be found based on
the polarity of the components of umax, for instance by letting S = {i : umax[i] ≥ 0}. In the field of
graph signal processing, the eigenvectors related to the largest eigenvalues of L are closely related to

2



Published as a conference paper at ICLR 2025

the operation of high-pass filtering of a graph signal (Tremblay et al., 2018). Specifically, they are
used to design graph filters that amplify high-frequency components of a signal, i.e., the components
that vary the most across adjacent nodes (Shuman et al., 2013).

The MAXCUT problem is closely related to graph coloring, which aims at assigning different colors
to adjacent nodes. In particular, the 2-colors approximate coloring (Aspvall & Gilbert, 1984) is the
problem of identifying subsets of nodes such that the connections within each subset are minimized.
Such coloring is a high-frequency graph signal and induces a partition that is orthogonal to spectral
clustering (von Luxburg, 2007).
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Figure 1: Top row: Partitions induced by the sign of the elements in umax. The nodes are colored
based on the partition, and the red edges are those not cut (the fewer, the better). Middle row:
histograms of umax inducing the partitions above. While in bipartite graphs the separation is sharp,
the more a graph is irregular and dense, the more the values are clustered around zero, making it
difficult to find the optimal MAXCUT. Bottom row: histograms of the score vectors generated by our
model, which always produce a clear and sharp partition.

A MAXCUT partition that cuts every edge exists only for bipartite graphs. Conversely, in fully connected
graphs, no more than half of the edges can be cut. Algorithms relying on continuous relaxations to
find the MAXCUT partition tend to be unstable and perform poorly, especially when the graph topology
departs from the bipartite case (Trevisan, 2009). Fig. 1(a-h) shows the performance of the LEVS
method on bipartite and non-bipartite graphs: numerical issues typically occur in more dense and less
regular graphs, making it difficult to identify the optimal MAXCUT solution.

2.2 MESSAGE PASSING IN GNNS

Let us consider a graph G =
(
X ∈ RN×F ,A ∈ RN×N

)
. A basic MP operator can be described as

X ′ = σ (PXΘ) (3)

where σ is a non linear activation function, Θ are trainable parameters, and P is a propagation
operator matching the sparsity pattern of A. Each MP layer relies on a specific propagation operator.
For instance, in Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), the propagation
operator is defined as P = D̂− 1

2 ÂD̂− 1
2 , where Â = A+ I and D̂ii =

∑
j=0 Âij .

Due to the fixed, non-negative smoothing nature of common propagation operators, the repeated
application of P can lead to over-smoothing. If that happens, the feature representations of nodes
become increasingly similar, hindering the function approximation capabilities of a GNN, which
can only learn smooth graph signals (Wu et al., 2019; Wang et al., 2019). In contrast, by combining
smoothing propagation operators with sharpening ones, any kind of gradients can be learned (Eliasof
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et al., 2023; Bianchi et al., 2021). Since there is no universal definition for such an operator, we rely
on the formulation introduced by Bianchi (2022):

P = I − δ
(
I −D

1
2AD

1
2

)
= I − δLsym (4)

where δ is a smoothness hyperparameter and Lsym is the symmetrically normalized Laplacian of G.
As observed by Bianchi (2022), when δ = 0 the MP behaves like a simple Multilayer Perceptron
(MLP). Instead, when δ = 1, the behavior is close to that of a GCN. Finally, as noted by Eliasof et al.
(2023), when δ > 1 the propagation operator favors the realization of non-smooth signals on the
graph, and we refer to this variant as a Heterophilic Message Passing (HetMP) operator. We note that
this can be seen as the graph counterpart of the Laplacian sharpening kernels for images, mapping
connected nodes to different values (Mather & Koch, 2022).

2.3 GRAPH POOLING

While there are profound differences between existing graph pooling approaches, most of them
can be expressed through the Select-Reduce-Connect (SRC) framework (Grattarola et al., 2022).
Specifically, a pooling operator POOL : (A,X) 7→ (A′,X ′) can be expressed as the combination of
three sub-operators:

• SEL : (A,X) 7→ S ∈ RN×K , is a selection operator that defines how the N original nodes are
mapped to the K pooled nodes, called supernodes, being S the selection matrix.

• RED : (X,S) 7→X ′ ∈ RK×F , is a reduction operator that yields the features of the supernodes.
A common way to implement RED is X ′ = S⊤X .

• CON : (A,S) 7→ A′ ∈ RK×K
≥ 0 , is a connection operator that generates the new adjacency matrix

and, potentially, edge features. Typically, CON is implemented as A′ = S⊤AS or A′ = S+AS.

Different design choices for SEL, RED, and CON induce a taxonomy of the operators. For example,
if any of SEL, RED, and CON is learned end-to-end, the pooling operators are called trainable,
non-trainable otherwise. Relevant to this work are the families of pooling methods described below.

Soft-clustering methods, sometimes referred to as dense (Grattarola et al., 2022), assign each node to
more than one supernode through a soft membership. Representatives methods such as DiffPool (Ying
et al., 2018), MinCutPool (Bianchi et al., 2020a), StructPool (Yuan & Ji, 2020), HoscPool (Duval
& Malliaros, 2022), and Deep Modularity Networks (DMoN) (Tsitsulin et al., 2023), compute a
soft cluster assignment matrix S ∈ RN×K either with an MLP or an MP-layer operating on the
node features and followed by a softmax. Most of these methods are trainable and leverage
unsupervised auxiliary loss functions to guide the formation of the clusters. Soft-clustering methods
usually perform well on downstream tasks due to their flexibility and expressive power, which is the
capability of retaining all the information from the original graph (Bianchi & Lachi, 2023). However,
storing the soft assignments S is a memory bottleneck for large graphs (see, e.g., the analysis of
memory usage in Appendix F.3), and soft memberships make pooled graphs very dense and not
interpretable. Additionally, each graph is mapped to the same fixed number of supernodes K, which
can hinder the generalization capabilities in datasets where the size of each graph varies significantly.

Scoring-based methods select supernodes from the original nodes based on a node scoring vector
s. The chosen nodes correspond to the top K elements of s, where K can be a ratio of the nodes in
each graph, making these methods adaptive to the graph size. Representatives such as Top-k Pooling
(Top-k) (Gao & Ji, 2019; Knyazev et al., 2019), ASAPool (Ranjan et al., 2020), SAGPool (Lee
et al., 2019), PanPool (Ma et al., 2020), TAPool (Gao et al., 2021), CGIPool (Pang et al., 2021), and
IPool (Gao et al., 2022) primarily differ in how they compute the scores or in the auxiliary tasks they
optimize to improve the quality of the pooled graph. Despite a few attempts to encourage diversity
among the selected nodes (Zhang et al., 2019; Noutahi et al., 2019), scoring-based methods derive
the scores from node features that tend to be locally similar, especially after being transformed by
MP operations. As such, the pooled graph often consists of a chunk of strongly connected nodes with
similar characteristics. Consequently, entire sections of the graph are not represented, reducing the
expressiveness and lowering performance in downstream tasks (Wang et al., 2024).

One-every-K methods leverage graph-theoretical properties to select supernodes by subsampling
the graph uniformly. For instance, k Maximal Independent Sets Pooling (k-MIS) (Bacciu et al., 2023)
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identifies as supernodes the members of a maximal K-independent set, i.e., nodes separated by at
least K-hops on the graph. Graclus (Dhillon et al., 2007; Defferrard et al., 2016) creates supernodes
by merging the pairs of most connected nodes in the graph. SEP (Wu et al., 2022) partitions the node
hierarchically according to a precomputed tree that minimizes the structural entropy of the graph.
Node Decimation Pooling (NDP) (Bianchi et al., 2020b) divides the graph into two sets, V+ and V−,
according to the partition induced by the components of umax (see Section 2.1). One of the two sides
of the partition is dropped (V−), while the other (V+) becomes the set of supernodes. While both
Graclus and NDP can only reduce the number of nodes by approximately half, higher pooling ratios
(one-every-2K ) are achieved by applying them recursively K times. Nevertheless, they lack the same
control of soft-clustering and scoring-based methods in fixing the size of the pooled graphs. Like the
scoring-based methods, one-every-K methods are adaptive and produce crisp cluster assignments.
However, they are not trainable and precompute the pooled graph based on the topology without
accounting for the node features or the downstream task. Tab. 1 summarizes the drawbacks of the
existing families of pooling methods.

Table 1: Drawbacks of different types of pooling operators.

Soft-clustering Score-based One-every-K
✗ Not adaptive to graph size ✗ Pooling not uniform ✗ Limited flexibility
✗ Dense and not interpretable pooled graphs ✗ Not expressive ✗ Features agnostic
✗ High memory cost ✗ Worse performance ✗ Task agnostic

3 METHOD

We leverage a GNN to generate a MAXCUT partition while accounting for node features and additional
objectives from a downstream task. In particular, we let node features and task-specific losses
influence the MAXCUT solution, creating partitions that not only maximize the number of cut edges but
also prioritize the selection of nodes that are optimal for the downstream task at hand. To reach this
goal, it is necessary to overcome a tension between the effect of a standard MP layer and the MAXCUT:
the former applies a smoothing operation that makes adjacent nodes similar, which is orthogonal
to the objective of the latter. Therefore, to implement MAXCUT with a GNN we rely on HetMP,
implemented by setting δ > 1 in the MP operation in Eq. 4. As discussed in Sec. 2.1, solving the
MAXCUT problem is equivalent to coloring adjacent nodes differently. Notably, this is an intrinsic
effect of HetMP that makes features of adjacent nodes as different as possible, effectively acting as a
high-pass graph filter. Therefore, optimizing a MAXCUT loss on features generated by HetMP layers
overcomes the limitation of traditional scoring-based methods that compute the scores from features
produced by homogeneous MP operators.

The layer we propose is called MaxCutPool and we present it through the SRC framework. The
SEL operation in MaxCutPool identifies as supernodes a subset S of the nodes in the original graph.
An auxiliary GNN, called ScoreNet, consists of a stack of HetMP layers that map the node features
into a vector s = ScoreNet(X,A) ∈ [−1, 1]N , which assigns a score to each node. The indices
i = topK(s) associated with the highest scores identify the K supernodes. Additional details about
the ScoreNet are in Appendix C.1. Fig. 1(i-l) shows the histograms of the score vectors s generated
by the ScoreNet for the 4 example graphs. Compared to the histograms of umax in Fig. 1(e-h), the
values in s always produce a distribution with two sharp and well-separated modes, yielding a clear
node partition.

After the K supernodes are selected, the remaining N−K nodes are assigned to one of the supernodes
via the nearest neighbor aggregation. An assignment matrix S is built by performing a breadth-first
visit of the graph where, starting from the supernodes, all the remaining nodes are assigned to their
nearest supernode (see Fig. 2). More formally, the assignment matrix S is defined as

SEL : [S]ij = 1 ⇐⇒ j = ϕ(S,A, i),

where ϕ(S,A, i) returns the closest supernode to node i. The visit of the graph is iterated until
all nodes are assigned to a supernode or until a maximum number of iterations is reached. In the
latter case, nodes that are still unassigned are assigned at random to ensure that the pooled graph
is always connected. Keeping the maximum number of iterations small (e.g., 2 or 3) prevents
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Figure 2: (a) The nodes with the K = 9 highest scores are selected. (b-c) Their ID is propagated to
the unselected nodes until all are covered or until a maximum number of iterations (2 here) is reached.
(d) The 4 remaining nodes are assigned randomly. (e) The pooled graph is obtained by aggregating
the nodes with the same ID and coalescing the edges connecting nodes from different groups.

pointless attempts to reach a supernode, e.g., when there are no supernodes within a disconnected
graph component, and also injects randomness acting as a regularizer that helps to move away from
suboptimal configurations often encountered at the beginning of the training stage. The pseudo-code
for a GPU-parallel implementation of the proposed assignment scheme is deferred to Appendix A.

The RED operation for computing the features of the supernodes can be implemented in two ways:

RED: X ′ = si ⊙ [X]i or RED: X ′ = si ⊙ S⊤X .

The Hadamard product ⊙ enables gradients flowing through the ScoreNet during back-propagation,
making it possible for the gradients of the task loss to reach every component of our model, despite
the non-differentiable topK operation. When the first or the second variant is used to implement RED,
we refer to the pooling operator as MaxCutPool and MaxCutPool-E, respectively. The suffix “-E”
indicates that the pooling operator satisfies the sufficient conditions for expressiveness defined by
Bianchi & Lachi (2023).

Finally, the CON operation can be implemented as

CON : A′ = S⊤AS.

3.1 AUXILIARY LOSS

Each MaxCutPool layer is associated with an auxiliary loss that encourages the top-K selected nodes
to belong to the same side of the MAXCUT partition. The loss is defined as:

Lcut =
s⊤As

|E|
(5)

where |E| =
∑

ij wij is the total edge weight of the graph. Since −1 ≤ si ≤ 1, we have −|E| ≤
s⊤As ≤ |E|, hence −1 ≤ Lcut ≤ 1. This loss evaluates the ratio between the volume of the cut
and the total volume of the edges. Minimizing Lcut encourages the nodes to be assigned to different
partitions if and only if they are connected. The loss reaches its minimum −1 when all connected
nodes are assigned to opposite sides of the partition, i.e., when all the edges are cut. Clearly, this can
happen only in bipartite graphs. The details about the derivation of the loss are in Appendix B.

A GNN model consisting of MP layers interleaved with MaxCutPool layers can be trained end-to-end
to jointly minimize a task loss Ltask and the auxiliary loss Lcut. The total loss is then defined as

L = Ltask +
∑
l

βL(l)
cut (6)

where β is a scalar weighting each auxiliary loss L(l)
cut associated with the l-th MaxCutPool layer.

3.2 HOMOPHILIC AND HETEROPHILIC OPERATIONS

Despite the presence of HetMP layers and the heterophilic loss, MaxCutPool can be inserted into
GNNs equipped with traditional MP layers. In fact, our method leverages the homophilic nature of
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the latter. After a standard homophilic MP, the stronger the association between a pair of nodes, the
more similar their features will be. Keeping them both will, thus, be redundant, and one of them can
be dropped. This is precisely what is done by SEL that, thanks to its heterophilic design, samples
nodes that share as few connections as possible and are uniformly distributed over the graph.

MaxCutPool contains an additional homophilic operation: the computation of the assignments S
through the nearest-neighbor aggregation, which synergizes with the repulsiveness in the supernodes’
sampling. The assignments are used by CON to produce a connectivity matrix that is connected yet
sparse, and they can also be leveraged by RED to ensure the expressiveness of the pooling layer.
However, in heterophilic datasets where such a homophilic assignment is not ideal, the non-expressive
variant of MaxCutPool offers a more suitable alternative.

Overall, rather than creating tension, combining homophilic and heterophilic components provides a
GNN with MaxCutPool the flexibility for handling different scenarios. As we show in the experimen-
tal evaluation, our model can even switch to a completely homophilic setting by adjusting the values
of δ and β or by ignoring the auxiliary loss Lcut.

3.3 RELATION WITH OTHER POOLING METHODS

MaxCutPool belongs to the scoring-based pooling family from which it inherits the possibility of
specifying any desired pooling ratio adaptable to the size Ni of the i-th graph, i.e., Ki = ⌊Ni ∗ 0.5⌋,
while achieving node selection patterns similar to one-every-K methods. In methods like k-MIS, the
flexibility provided by trainable functions is only used to choose between a small set of maximal
solutions that do not break the hard constraint of the supernodes to be K-independent. On the other
hand, in MaxCutPool any set of supernodes can be chosen in principle, making MaxCutPool more
flexible and able to adapt to the requirements of the downstream task. Finally, MaxCutPool is the
only scoring-based pooler with a graph-theoretical auxiliary regularization loss.

The proposed method for constructing the cluster assignment matrix S from the selected supernodes
can be applied to other scoring-based pooling methods. This naturally enhances their expressiveness
by enabling the use of the same CON and RED operations adopted by soft-clustering approaches,
which retain all the information from the original graph. By addressing the key limitation in the
expressiveness of scoring-based pooling methods, our approach retains the benefits of sparsity and
interpretability of scoring-based poolers while narrowing the gap with soft-clustering methods.

4 EXPERIMENTAL EVALUATION

We consider three different tasks to demonstrate the effectiveness of MaxCutPool. The code to
reproduce the reported results is publicly available1. The details of the architectures used in each
experiment and the hyperparameter selection procedure are described in Appendix C.

4.1 COMPUTATION OF THE MAXCUT PARTITION

The main focus of this experiment is to evaluate the capability of the proposed loss Lcut to optimize the
MAXCUT objective, despite the potential risks of getting stuck in local minima due to its gradient-based
nature. We compute a MAXCUT partition with a simple GNN consisting of a MP layer followed by
MaxCutPool, which is trained by minimizing only the loss in Eq. 5 (details in Appendix C.2). We
compare our model against the LEVS approach based on umax, the GW algorithm, and a GNN with
GCN layers that minimize a MAXCUT loss, as proposed by Schuetz et al. (2022). For a fair comparison,
ours and the latter GNN architecture have a comparable number of learnable parameters.

We considered 9 graphs generated via the PyGSP library (Defferrard et al., 2017), including bipartite
graphs such as the Grid2D and Ring, and 7 graphs from the GSet dataset (Ye, 2003), including
random, planar, and toroidal graphs, typically used as benchmarks for evaluating MAXCUT algorithms
(details in App. D.1). Results are shown in Tab. 2. Performance is computed in terms of the percentage
of cut edges: the higher, the better. With one exception, MaxCutPool always finds the best cut.

1https://github.com/NGMLGroup/MaxCutPool
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Table 2: Size of the graph cuts obtained with MaxCutPool, a GNN with GCN layers, and two common
algorithms to compute the MAXCUT. GW results are absent for some entries of the PyGSP datasets
and for GSet because the solver failed to converge.

(a) PyGSP datasets

Dataset GW NDP GCN MaxCutPool

BarabasiAlbert 0.6875 0.6589 0.7240 0.7292
Community 0.6767 0.6429 0.6805 0.6814
ErdősRenyi 0.6920 0.6858 0.6797 0.7105
Grid (10×10) 1.0000 1.0000 0.9222 1.0000
Grid (60×40) - 0.9787 0.1862 0.9815
Minnesota - 0.9104 0.8904 0.9130
RandRegular 0.4827 0.8760 0.8733 0.9040
Ring 1.0000 1.0000 0.4200 1.0000
Sensor 0.6000 0.5719 0.6281 0.6406

(b) GSet datasets

Dataset NDP GCN MaxCutPool

G14 0.6155 0.6323 0.6412
G15 0.5945 0.6288 0.6424
G22 0.6441 0.6409 0.6577
G49 1.0000 0.9683 1.0000
G50 0.9800 0.9610 0.9750
G55 0.7568 0.7865 0.8068
G70 0.8803 0.8945 0.9086

4.2 GRAPH CLASSIFICATION

For this task, we evaluate the classification accuracy of a GNN classifier with the following structure:
MP(32)-Pool-MP(32)-Readout, using Graph Isomorphism Network (GIN) (Xu et al., 2019) as the
MP layer. The Pool operation is implemented either by MaxCutPool or by the following competing
methods: Diffpool (Ying et al., 2018), DMoN (Tsitsulin et al., 2023), MinCutPool (Bianchi et al.,
2020a), Top-k (Gao & Ji, 2019), Graclus (Dhillon et al., 2007), k-MIS (Bacciu et al., 2023). We also
consider Edge-Contraction Pooling (ECPool) (Diehl, 2019) that pools the graph by contracting the
edge connecting similar nodes. For MaxCutPool, we evaluate three variants: (i) MaxCutPool, the
standard version; (ii) MaxCutPool-E, the variant with expressive CON; (iii) MaxCutPool-NL, where
“NL” stands for “no loss”, meaning we do not optimize the auxiliary loss in the GNN. This serves
as an ablation study to assess the importance of the auxiliary loss. Whenever edge attributes are
available, the first GIN layer is replaced by a GINE layer (Hu et al., 2020), which takes into account
edge attributes. Further implementation details are in Appendix C.3.

As graph classification datasets we consider 8 TUD datasets (COLLAB, DD, NCI1, ENZYMES,
MUTAG, Mutagenicity, PROTEINS, and REDDIT-BINARY) (Morris et al., 2020), the Graph Classi-
fication Benchmark Hard (GCB-H) (Bianchi et al., 2022), and EXPWL1 (Bianchi & Lachi, 2023),
which is a recent dataset for testing the expressive power of GNNs. In addition, we introduce a
novel dataset consisting of 5, 000 multipartite graphs: each graph is complete 10-partite, meaning
that the nodes can be partitioned into 10 groups so that the nodes in each group are disconnected,
but are connected to all the nodes of the other groups. To the best of our knowledge, this is the
first benchmark dataset for graph classification with heterophilic graphs. While the Multipartite
dataset consists of complex graph structures, the classification label is determined solely by the node
features, allowing us to assess whether the GNN can effectively isolate relevant information despite
the presence of misleading topological information. The construction of the Multipartite dataset and
a further discussion about its properties are reported in Appendix D.2.

Whenever the node features were not available, we used node labels. If node labels were also
unavailable, we used a constant as a surrogate node feature. Further details about the remaining
datasets can be found in Appendix D.3. The datasets were split via a 10-fold cross-validation
procedure. The training dataset was further partitioned into a 90-10% train-validation random split.
This approach is similar to the procedure described by Errica et al. (2020). Each model was trained
for 1, 000 epochs with early stopping, keeping the checkpoint with the best validation accuracy.

The results are reported in Tab. 3. For completeness, we also reported the performance of the same
GNN model without pooling layers (“No pool”). We conducted a preliminary ANOVA test (p-value
0.05) for each dataset followed by a pairwise Tukey-HSD test (p-value 0.05) to group models whose
performance is not significantly different. Those belonging to the top-performing group are colored
green. The ANOVA test failed on ENZYMES, PROTEINS, MUTAG, and DD, meaning that the
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Table 3: Mean and standard deviations of the graph classification accuracy. For each dataset the best
performing method and those that are not significantly different from it are colored in green. If a
method is in the top-performing group is assigned with a score of 1, 0 otherwise.

Pooler GCB-H COLLAB EXPWL1 Mult. Mutag. NCI1 REDDIT-B Score

No pool 74±4 74±2 87±2 14±12 79±2 78±3 90±2 -

DiffPool 51±8 70±2 69±3 9±1 78±2 75±2 90±2 1
DMoN 74±3 68±2 73±3 52±2 80±2 77±2 88±2 3
EdgePool 75±4 72±3 90±2 55±3 80±2 77±3 91±2 4
Graclus 75±3 72±3 90±2 25±18 80±2 77±2 90±3 4
k-MIS 75±4 71±2 99±1 58±2 79±2 75±3 90±2 4
MinCutPool 75±5 70±2 71±3 56±3 78±3 73±3 87±2 1
Top-k 56±5 72±2 73±2 43±3 75±3 73±2 77±2 0

MaxCutPool 73±3 77±2 100±0 90±2 77±2 75±2 89±3 5
MaxCutPool-E 74±3 77±2 100±0 87±5 79±1 76±2 89±2 7

MaxCutPool-NL 61±6 77±3 100±0 91±1 76±3 74±2 86±3 3

difference in the performance of the GNNs equipped with different poolers is not significant. For this
reason, the results on these datasets are omitted from Tab. 3 and reported in Appendix E.1.

MaxCutPool consistently ranks among the top-performing methods across all evaluated datasets.
Notably, on the EXPWL1 even the non-expressive variant of MaxCutPool achieves a perfect accuracy
(100%), outperforming the competitors. This is the first known example of a non-expressive pooler
passing the expressiveness test provided by this dataset. On the Multipartite dataset, MaxCutPool
performs significantly better than every pooling method. When compared to the “No pool” baseline,
on most datasets MaxCutPool improves the classification performance by increasing the receptive
field of the MP layers while retaining only the necessary information and enhancing the overall
expressive power of the GNN model. It is worth noting that the EXPWL1 and Multipartite are the
least homophilic datasets (see Appendix D.3), indicating that MaxCutPool is particularly effective for
heterophilic graphs. On the COLLAB dataset, all MaxCutPool variants achieve the top accuracy of
77%, showing a statistically significant improvement over other methods. Notably, in the MaxCutPool
and MaxCutPool-E variants the auxiliary loss term plateaued around 0, making them equivalent
to the MaxCutPool-NL variant that, in this case, achieves the same performance. This indicates
that our method remains robust even when the auxiliary loss is not needed for the downstream task.
Overall, the MaxCutPool-E variant, which satisfies expressiveness conditions, exhibits similar or
better performance compared to MaxCutPool across most datasets. In contrast, the performance
decline observed in the MaxCutPool-NL variant demonstrates the importance of the auxiliary loss.

4.3 NODE CLASSIFICATION

For this task, we adopted a simple auto-encoder architecture for node classification: MP(32)-Pool-
MP(32)-Unpool-MP(32)-Readout, with GIN as MP. The Unpool operation (also referred to as
lifting (Jin et al., 2020)) is implemented by copying into each node i the value of the supernode
j to which node i was assigned by the SEL operation in the pooling phase. Zero-padding is used
when lifting nodes not assigned to any supernode, like in the case of Top-k. Further details about the
architecture for node classification and the unpooling procedure are deferred to Appendix C.4.

For this experiment, we considered the 5 heterophilic datasets presented in Platonov et al. (2023)
(details in Appendix D.4). As pooling methods we considered Top-k (Gao & Ji, 2019), k-MIS (Bacciu
et al., 2023), NDP (Bianchi et al., 2020b), and MaxCutPool. We did not consider Graclus or any
soft-clustering poolers, as they were exhausting the RAM and GPU VRAM, respectively, given
the large size of the graphs. On the other hand, MaxCutPool is very parsimonious in terms of
computational resources and scales very well with the graph size. To systematically estimate the
space complexity of the different pooling methods, we performed an experimental evaluation of the
GPU VRAM usage, which can be found in Appendix F.3.
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Table 4: Node classification accuracy (Roman-empire, Amazon-ratings) and AUROC (Minesweeper,
Tolokers, Questions). The best performing models in each dataset are in green and get 1 score point,
0 otherwise.

Pooler Roman-e. Amazon-r. Minesw. Tolokers Questions Score

No pool 59±0 46±1 86±2 86±4 71±2 -
Top-k 26±7 46±4 94±1 89±5 64±3 1
k-MIS 23±3 48±2 75±2 84±2 83±1 1
NDP 22±5 53±2 98±0 88±6 68±4 3
MaxCutPool 56±3 53±1 96±1 87±3 82±4 4
MaxCutPool-E 60±4 53±2 97±1 91±2 85±5 5

Following Platonov et al. (2023), in Tab. 4 we report the means and standard deviations of the
accuracy for Roman-empire and Amazon-ratings, and of the ROC AUC for Tolokers, Minesweeper,
and Questions. The results are computed on the 10 public folds of these datasets. When configured
with MaxCutPool and MaxCutPool-E, the node classification architecture achieves significantly
superior performance on the Roman-Empire dataset, which is notably the most heterophilic among
all the datasets (see Tab. 11). Also on the remaining datasets, our method performs well: unlike the
other pooling methods that achieve top performance only on a subset of the datasets, MaxCutPool-E
is consistently in the top tier.

5 CONCLUSION

This work contributes significantly to both the MAXCUT optimization and the development of special-
ized GNN architectures to solve combinatorial optimization problems. Our proposed GNN-based
MAXCUT algorithm not only extends the MAXCUT optimization to attributed graphs and combines it
with task-specific losses but also surpasses the performances of traditional methods on non-attributed
graphs. While a conventional GNN with a huge capacity manages to optimize a MAXCUT loss (Schuetz
et al., 2022), our model is much more efficient thanks to the Heterophilic Message Passing layers.
These results highlight the importance of aligning the GNN architecture with the problem’s inherent
structure: in this case, leveraging heterophilic propagation to solve problems that seek dissimilarity
between neighboring nodes.

Our second contribution is to utilize the proposed MAXCUT optimizer to implement a graph pooling
method that combines the flexibility of soft-clustering approaches with the efficiency of scoring-based
methods and with the theoretically-inspired design of one-every-K strategies. GNNs for graph
and node classification equipped with our proposed pooling layer consistently achieves superior
performance across diverse downstream tasks. Unlike existing graph pooling and graph coarsening
approaches that aim at preserving low-frequencies on the graph (Loukas, 2019), our method performs
exceptionally well also on heterophilic datasets.

While our pooling layer can implement any pooling ratio, the auxiliary loss is optimized for the
node partition induced by the MAXCUT, whose size might not be aligned with the specified pooling
ratio. When the distribution of the nodes’ degree is approximately uniform, the MAXCUT induces an
approximately balanced partition corresponding to a pooling ratio of ≈ 0.5, which is, thus, generally
a good choice.

Looking forward, we see great potential in pretraining GNNs with auxiliary losses. This aligns with
the principles of foundational models (Bommasani et al., 2021) and could facilitate the development
of more effective and general-purpose graph pooling techniques.
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APPENDIX

A NEAREST NEIGHBOR ASSOCIATION ALGORITHM

As discussed in Sec. 3, each node is associated with one of the supernodes (preferably the closest
in terms of path-distance on the graph). Naively searching for each node the closest supernode is
computationally demanding and becomes intractable for large graphs. Therefore, we propose an
implementation of the assignment scheme that is efficient and can be easily parallelized on a GPU.
The proposed algorithm is based on a Breadth First Search (BFS) of the graph and is detailed in the
pseudo-code in Algorithm 1.

Algorithm 1 Pseudo-code for the assignment scheme to the supernodes

1: procedure ASSIGNNODESTOSUPERNODES(G,S,MaxIter)
2: E ← InitializeEncodings(G,S) ▷ One-hot encoding
3: m← InitializeMask(G,S)
4: Assignments← InitializeEmptyList()
5: for i = 1 to MaxIter do
6: if AllNodesAssigned(m) then
7: break
8: end if
9: E′ ← ParallelMessagePassing(G,E) ▷ E′ = AE

10: Assignments← ParallelAssignment(E′,S,m)
11: m← UpdateMask(m, Assignments)
12: E ← E′

13: end for
14: if not AllNodesAssigned(m) then
15: RndAssignments← ParallelRandomAssignment(UnassignedNodes,S)
16: end if
17: FinalAssignments← GetFinalAssignments(Assignments,RndAssignments)
18: return FinalAssignments
19: end procedure

The algorithm takes as input the graph G (in particular, its topology described by the adjacency matrix
A), the set of K supernodes S identified by the SEL operation, and a maximum number of iterations
(MaxIter), which represent the maximum number of steps a node can traverse the graph to reach its
closest supernode before being assigned at random.

In line 2, an encoding matrix E of size N ×K + 1 is initialized so that row i is a one-hot vector
with the non-zero entry in position k + 1, if the node i of the original graph is the k-th supernode.
Otherwise, row i in a zero-vector of size K + 1. This matrix will be gradually populated when
supernodes are encountered during the BFS. It’s important to note that the 0-th column in matrix E
(and subsequently in E′) serves a special purpose. This column represents a “fake” supernode, which
plays a crucial role in the assignment process.

A Boolean mask m ∈ {0, 1}N indicating whether a node has already encountered the closest
supernode is initialized in line 3 with 1 in position i if node i is a supernode and 0 otherwise. Finally,
an empty list indicating to which supernode each node is assigned is initialized (line 4).

Until the maximum number of iterations is reached or until all nodes are assigned (line 6), the
encoding matrix E is propagated with an efficient message passing operation (line 9) that can be
parallelized on a GPU. As soon as a 1 appears in position k within a line i of E previously full of
zeros, node i is assigned to supernode k and the assignments and mask m are updated accordingly
(lines 10 and 11). The ParallelAssignment function (line 10), in particular, takes the rows of the
newly generated embeddings E′ that have not yet been assigned and performs an argmax operation
on the last dimension. If the argmax doesn’t find any valid supernode for a node (i.e., all values in
the row are zero), it returns 0, effectively assigning the node to the “fake” supernode represented by
the 0-th column. This allows to filter out the unassigned nodes in line 11.

15



Published as a conference paper at ICLR 2025

If there are still unassigned nodes at the end of the iterations, the remaining nodes are randomly
assigned to one of the K supernodes (line 15). Finally, all the assignments are merged (line 17).

B DERIVATION OF THE AUXILIARY LOSS

Let us consider the MAXCUT objective in Equation 1. It can be rewritten as

max
z

( ∑
i,j∈V

wij −
∑
i,j∈V

zizjwij

)
= max

z

(
|E| −

∑
i,j∈V

zizjwij

)
,

which is equivalent to

max
z

(
1−

∑
i,j∈V

zizjwij

|E|

)
.

The solution z∗ for the original objective is thus the solution for

min
z

z⊤Az

|E|
.

C IMPLEMENTATION DETAILS

C.1 MAXCUTPOOL LAYER AND SCORENET

A schematic depiction of the MaxCutPool layer is illustrated in Fig. 3, where the SEL, RED, and CON
operations are highlighted.
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Figure 3: Scheme of the MaxCutPool layer.

SEL first computes a score vector s using the auxiliary GNN, ScoreNet, based on the node features X
and the connectivity matrix A. A top-K operation is used to find the indices i of the K nodes with the
highest scores that become the supernodes, i.e., the nodes of the pooled graph. The remaining N −K
nodes are assigned to the nearest supernode through a nearest-neighbor (NN) aggregation procedure
that yields an assignment matrix S, whose jk-th element is 1 if node j is assigned to supernode k,
and zero otherwise. The score vector s is used to compute the loss Lcut, which is associated with
each MaxCutPool layer.

The RED operation computes the node features of the pooled graph X ′ by multiplying the features of
the selected nodes Xi with the scores s. This operation is necessary to let the gradients flow past the
top-K operation, which is not differentiable. In the expressive variant, MaxCutPool-E, RED computes
the new node features by combining those from all the nodes in the graph through the multiplication
with matrix S. We combine the features by summing them instead of taking the average since the
sum enhances the expressiveness of the pooling layer (Bianchi & Lachi, 2023).
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The CON operations always leverage the assignment matrix to compute the adjacency matrix of the
pooled graph. In particular, the edge connecting two supernodes i and j is obtained by coalescing all
the edges connecting the nodes assigned to supernode i with those assigned to supernode j. Also in
this case, we take the sum as the operation to coalesce the edges. The resulting edges in the pooled
graph are associated with a weight wij that counts the number of combined edges.

The details of the ScoreNet used in the MaxCutPool layer are depicted in Fig. 4. The ScoreNet
consists of a linear layer that maps the features X to a desired hidden dimension. Afterward, a
stack of HetMP layers gradually transforms the node features by amplifying their high-frequency
components with heterogeneous MP operations. Finally, an MLP transforms the node features of the
last HetMP layer into a score vector s, which is a high-frequency graph signal. We note that while
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Figure 4: Scheme of the ScoreNet.

the simple HetMP we adopted works well in our case, different heterophilic MP operators could have
been considered (Chien et al., 2021; Dong et al., 2021; Fu et al., 2022).

The ScoreNet is configured with the following hyperparameters:

• Number of HetMP layers and number of features in each layer. We use the notation [32, 16, 8]
to indicate a ScoreNet with three HetMP layers with hidden sizes 32, 16, and 8, respectively.
We also use the notation [32] × 4 to indicate 4 layers with 32 units each. As default, we use
[32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• Activation function of the HetMP layers. As the default, we use TanH.

• Number of layers and features in the MLP. As default, we use [16, 16].

• Activation function of the MLP. As the default, we use ReLU.

• Smoothness hyperparameter δ. As default, we use 2.

• Auxiliary loss weight β. As default, we use 1.

The optimal configuration has been identified with the cross-validation procedure described in Sec. 4.
Depending on the experiment and the GNN architecture, some parameters in the ScoreNet are kept
fixed at their default value while others are optimized.

C.2 CUT MODEL

The model used to compute the MAXCUT is depicted in Fig. 5. The model consists of a single MP
layer followed by the ScoreNet, which returns the score vector s. The MAXCUT partition is obtained
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Figure 5: Scheme of the model used for computing the MAXCUT.
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by rounding the values in the score vector as follows

yi =

{
1 if si > 0,

−1 otherwise.

The model is trained in a completely unsupervised fashion only by minimizing the auxiliary loss Lcut.

As MP layers, we used a GIN (Xu et al., 2019) layer with 32 units and ELU activation function.
The model was trained for 2000 epochs with Adam optimizer (Kingma & Ba, 2015), with the initial
learning rate set to 8e−4. We used a learning rate scheduler that reduces by 0.8 the learning rate when
the auxiliary loss does not improve for 100 epochs. For testing, we restored the model checkpoint
that achieved the lowest auxiliary loss.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:
– [32]× 4,
– [4]× 32,
– [8]× 16,
– [16]× 8,
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• HetMP activations:
– ReLU,
– TanH.

• Smoothness hyperparameter δ:
– 2,
– 3,
– 5.

In Tab. 5 we report the configurations of the ScoreNet used for the different graphs in the MAXCUT
experiment.

Table 5: Hyperparameters configurations of the ScoreNet for the MAXCUT task.

Dataset MP units MP Act δ

G14 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G15 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G22 [4]× 32 TanH 2.0
G49 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] TanH 2.0
G50 [8]× 16 ReLU 2.0
G55 [4]× 32 ReLU 2.0
G70 [8]× 16 ReLU 2.0
BarabasiAlbert [4]× 32 TanH 2.0
Community [4]× 32 TanH 2.0
ErdősRenyi [4]× 32 TanH 2.0
Grid2d (10×10) [4]× 32 TanH 2.0
Grid2d (60×40) [4]× 32 ReLU 2.0
Minnesota [4]× 32 TanH 2.0
RandRegular [4]× 32 TanH 2.0
Ring [4]× 32 ReLU 2.0
Sensor [4]× 32 TanH 2.0

C.3 GRAPH CLASSIFICATION MODEL

The model used to perform graph classification is depicted in Fig. 6. The model consists of an MP
layer, followed by a pooling layer, an MP acting on the pooled graph, a global pooling layer that sums
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Figure 6: Scheme of the graph classification model.

the features of all the nodes in the pooled graph, and an MLP that produces the label y associated
with the input graph. The model is trained by jointly minimizing the cross-entropy loss between the
predicted graph labels and the true ones and the auxiliary losses associated with the different pooling
layers. The models are trained using a batch size of 32 for 1000 epochs, using the Adam optimizer
with an initial learning rate of 1e− 4. We used an early stopping that monitors the validation loss
with a patience of 300 epochs. For testing, we restored the model checkpoint that achieved the lowest
validation loss during training.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:
– [32]× 8,
– [32]× 4,
– [8]× 16, [16]× 8,
– [32, 32, 16, 16, 8, 8],
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• Auxiliary loss weight β:
– 1,
– 2,
– 5.

Table 6: Hyperparameters configurations of the ScoreNet for the graph classification task.

MaxCutPool MaxCutPool-E

Dataset MP units β MP units β

GCB-H [8]× 16 3.0 [32]× 8 5.0
COLLAB [32]× 8 1.0 [32]× 8 1.0
DD [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0 [8]× 16 5.0
ENZYMES [8]× 16 3.0 [16]× 8 3.0
EXPWL1 [32, 32, 16, 16, 8, 8] 1.0 [16]× 8 1.0
MUTAG [8]× 16 1.0 [16]× 8 3.0
Multipartite [32]× 8 3.0 [32]× 8 1.0
Mutagenicity [32, 32, 16, 16, 8, 8] 1.0 [32]× 8 5.0
NCI1 [32, 32, 16, 16, 8, 8] 1.0 [8]× 16 3.0
PROTEINS [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 3.0 [32, 32, 16, 16, 8, 8] 5.0
REDDIT-B [32]× 8 1.0 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0

In Tab. 6 we report the configurations of the ScoreNet used in the graph classification architecture for
the different datasets in the expressive and non-expressive variant of MaxCutPool.

C.4 NODE CLASSIFICATION MODEL

The model used to perform node classification is depicted in Fig. 7. The model consists of an MP
layer, followed by a pooling layer, an MP acting on the pooled graph, an unpooling (lifting) layer, an
MP on the unpooled graph, and an MLP that produces the final node labels y.

The entry yi represents the predicted label for node i. The model is trained by jointly minimizing the
cross-entropy loss between the predicted node labels and the true ones and the auxiliary loss of the
pooling layer.
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Figure 7: Scheme of the node classification model.
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Figure 8: The two possible strategies for performing unpooling (lifting).

When using MaxCutPool, the unpooling/lifting procedure can be implemented in two different ways,
illustrated in Fig. 8. The first strategy, broadcast unpooling, copies the values X ′ of the nodes of the
pooled graph to both the corresponding supernodes and to the nodes associated with the supernodes
according to the assignment matrix S, obtained as described in Sec. 3 and Appendix A. Formally, the
unpooled node features X̃ are:

X̃ = SX ′.

We note that this is the commonly used approach to perform unpooling in cluster-based poolers.

In the second strategy, padding unpooling, the values X ′ are copied back only to the supernodes,
while the remaining nodes are padded with a zero-valued vector:

[X̃]i =

{
[X ′]i if i is a supernode
0 otherwise.

This is the approach to perform unpooling used by scoring-based approaches such as Top-k and by
one-over-K approaches such as NDP that only select the supernodes and leave the remaining nodes
unassigned.

For the node classification task presented in Sec. 4.3, as MP layers we used a GIN (Xu et al., 2019)
layer with 32 units and ReLU activation function. The MLP has a single hidden layer with 32 units, a
ReLU activation function, and a dropout layer between the hidden and output layers with a dropout
probability of 0.1. The unpooling strategy used in this architecture is the broadcast one for k-MIS
and MaxCutPool and the padding one for Top-k and NDP.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:
– [32]× 4,
– [4]× 32,
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• MLP activations:
– ReLU,
– TanH.

The configuration of the ScoreNet for the MaxCutPool pooler used in the different datasets is reported
in Tab. 7.

The node classifier was trained for 20, 000 epochs, using the Adam optimizer with an initial learning
rate of 5e − 4. We used a learning rate scheduler that reduces by 0.5 the learning rate when the

20



Published as a conference paper at ICLR 2025

Table 7: Hyperparameter configurations of the ScoreNet in the node classification task.

Dataset MP units MLP Act.

Roman-Empire [32, 32, 32, 32] ReLU
Amazon-Ratings [32, 32, 32, 32] ReLU
Minesweeper [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Tolokers [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Questions [32, 32, 32, 32] ReLU

validation loss does not improve for 500 epochs. We used an early stopping that monitors the
validation loss with a patience of 2, 000 epochs. For testing, we restored the model checkpoint that
achieved the lowest validation loss during training.

We also considered an additional architecture for node classification with skip (residual) connections,
depicted in Fig. 9. This architecture is similar to the Graph U-Net proposed by Gao & Ji (2019). The

Pool

M
P

M
P

Unpool

M
P

M
LP

Skip

Figure 9: Scheme of the node classification model with skip connections.

node features obtained after the first MP layer are concatenated to the node features generated by
the unpooling step. In this architecture, we used the broadcast unpooling for k-MIS and padding
unpooling for MaxCutPool, Top-k, and NDP. The results obtained with this architecture are reported
in App. E. In Tab. 8 we report the configurations of the ScoreNet used in the architecture with skip
connection in the different datasets.

Table 8: Hyperparameter configurations for the node classification task based on the architecture with
skip connections.

Dataset MP units MLP Act.
Roman-Empire [32, 32, 32, 32] ReLU
Amazon-Ratings [32, 32, 32, 32] ReLU
Minesweeper [32, 32, 32, 32] TanH
Tolokers [32, 32, 32, 32] ReLU
Questions [32, 32, 32, 32] ReLU

C.5 IMPLEMENTATION OF OTHER POOLING LAYERS

The pooling methods Top-k, Diffpool, DMoN, Graclus, and MinCutPool are taken from PyTorch
Geometric (Fey & Lenssen, 2019). For k-MIS we used the official implementation 2. For ECPool,
we used the efficient parallel implementation 3 proposed by Landolfi (2022). For NDP we adapted

2https://github.com/flandolfi/k-mis-pool
3https://github.com/flandolfi/edge-pool
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to PyTorch the original Tensorflow implementation 4. All pooling layers were used with the default
hyperparameters. Since k-MIS does not allow for direct specification of the pooling ratio, we set
k = ⌊1/k⌋.

D DATASETS DETAILS

D.1 CUT DATASETS

The statistics of the PyGSP and the Gset datasets used to compute the MAXCUT partition in Sec. 4.1
are reported in Tab. 9. While the PyGSP graphs are built from the library (Defferrard et al., 2017),
the Gset dataset is downloaded from the original source 5.

Table 9: Statistics of the PyGSP datasets used to compute the MAXCUT.

(a) PyGSP datasets

Dataset # Nodes # Edges Vertex attr.
Barabasi-Albert 100 768 2
Community 90 532 2
Erdős-Renyi 100 974 2
Grid2d (10×10) 100 360 2
Grid2d (60×40) 2,400 9400 2
Minnesota 2642 6608 2
RandRegular 500 1500 2
Ring 100 200 2
Sensor 64 640 2

(b) Gset

Dataset # Nodes # Edges Vertex attr.
G14 800 4, 694 –
G15 800 4, 661 –
G22 2, 000 19, 990 –
G49 3, 000 6, 000 –
G50 3, 000 6, 000 –
G55 5, 000 12, 468 –
G70 10, 000 9, 999 –

D.2 MULTIPARTITE DATASET DESCRIPTION

The Multipartite graph dataset is a synthetic dataset consisting of complete multipartite graphs. The
nodes of each graph can be partitioned into C clusters of independent nodes, such that every node is
connected to every node belonging to every other cluster. The generation of the graphs and the class
labels is formally described by the pseudo-code in Algorithm 2 and is discussed in the following:

1. A set of C cluster centers with 2D coordinates (x, y) is initially arranged in a polygon shape.
Each center is associated with a label, i.e., a color.

2. The graph class is determined by the position and the color of the cluster centers. Specifically,
the graph class is given by the color of the cluster whose center is on the positive x-axis.

3. For each class, we generate multiple graphs using these cluster centers. A graph is created
by drawing at random the position of the nodes around each cluster center. The number of
nodes per cluster varies randomly up to a maximum. Nodes within a cluster share the same
color, which is determined by the cluster center.

4. The topology of each graph is obtained by connecting nodes from one cluster to the nodes of
all the other clusters, but not to the nodes of the same cluster. Therefore, a node is connected
only to nodes with different colors, making the graphs highly heterophilic.

5. After generating graphs for one class, the cluster centers are rotated, and this rotated
configuration is used for the next class. Indeed, each rotation brings a different cluster to the
positive x-axis.

6. The rotation process continues until the graphs for all the C different classes, whose number
is equal to the number of clusters, are generated.

Examples of multipartite graphs obtained for C = 3 are shown in Figure 10.

The process depends on a few parameters that determine the number of clusters, the maximum nodes
per cluster, and the number of graphs per class, providing control over the dataset size and complexity.

4https://github.com/danielegrattarola/decimation-pooling
5http://web.stanford.edu/˜yyye/yyye/Gset/
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Algorithm 2 Multipartite graph dataset generation
Input: num clusters, max nodes per cluster, graphs per class
Output: dataset
1: cluster centers← GeneratePolygonVertices(num clusters) ▷ Initial arrangement of centers
2: dataset← {}
3: for class label← 0 to num clusters - 1 do
4: for 1 to graphs per class do
5: graph← GenerateMultipartiteGraph(cluster centers, max nodes per cluster)
6: graph.label← class label ▷ Label based on current rotation
7: Add graph to dataset
8: end for
9: cluster centers← RotateClockwise(cluster centers) ▷ Rotate for next class

10: end for
11: return dataset

12: function GENERATEMULTIPARTITEGRAPH(cluster centers, max nodes per cluster)
13: for each center in cluster centers do
14: num nodes← RandomInt(1, max nodes per cluster)
15: node positions← GenerateNodesAroundCenter(center, num nodes)
16: node color← GetColorForCluster(center) ▷ Each cluster has a unique color
17: AddNodesToGraph(node positions, node color)
18: end for
19: ConnectNodesAcrossClusters() ▷ Create complete multipartite graph
20: return graph
21: end function

22: function ROTATECLOCKWISE(centers)
23: return [centers[-1]] + centers[:-1] ▷ Move last center to front
24: end function

The specific instance of the dataset used in our experiments has 10 centers, 500 graphs per center,
and a maximum of 20 nodes per cluster, and is available online 6.

The Multipartite dataset is intentionally designed so that the class label is determined solely by
node features: specifically, the color and one of the 2D coordinates (the node’s position along the
x-axis). Although the graph’s topology is structured to ensure that each graph is multipartite, this
structure is independent of the class label. This creates an intriguing dichotomy between the graph’s
topology and its classification labels. In theory, a simple MLP focusing exclusively on node features
could accurately solve the classification task, as the graph’s topology is essentially irrelevant for
determining the correct labels. However, when processed by GNNs, this dataset allows us to explore
whether the model can correctly identify and utilize the relevant node features for classification,
despite the presence of potentially misleading or noisy topological information. Through this

6https://zenodo.org/doi/10.5281/zenodo.11616515

Class 0 (red) Class 1 (blue) Class 2 (green)

Figure 10: Example of multipartite graphs with C = 3 cluster centers generated via our procedure. The graph
class corresponds to the color of the nodes from the group to the right.
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carefully constructed dataset, we aim to highlight the strengths and potential limitations of certain
GNNs architectures, particularly in scenarios where the relationship between graph structure and
classification labels is non-trivial, such as in heterophilic datasets.

D.3 GRAPH CLASSIFICATION DATASETS

In addition to the novel Multipartite dataset introduced in Sec. D.2, we consider 10 datasets for
graph classification in our experimental evaluation. The TU Datasets (Morris et al., 2020) (NCI,
PROTEINS, Mutagenicity, COLLAB, REDDIT-B, DD, MUTAG, and Enzymes) are obtained through
the loader of PyTorch Geometric 7. The EXPWL1 and GCB-H datasets, respectively introduced by
Bianchi & Lachi (2023) and by Bianchi et al. (2022), are taken from the official repositories 8 9. The
statistics of each dataset are reported in Tab. 10.

Table 10: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vert. Avg. #edg. V. attr. V. lab. h̄(D)

EXPWL1 3,000 2 76.96 186.46 – yes 0.2740
NCI1 4,110 2 29.87 64.60 – yes 0.6245
PROTEINS 1,113 2 39.06 72.82 1 yes 0.6582
Mutagenicity 4,337 2 30.32 61.54 – yes 0.3679
COLLAB 5,000 3 74.49 4,914.43 – no 1
REDDIT-B 2,000 2 429.63 497.75 – no 1
GCB-H 1,800 3 148.32 572.32 – yes 0.8440
DD 1,178 2 284.32 1,431.32 – yes 0.0688
MUTAG 188 2 17.93 19.79 – yes 0.7082
ENZYMES 600 6 32.63 62.14 18 yes 0.6687
Multipartite 5000 10 99.79 4,477.43 3 yes 0.1101

Since the node labels are not available in the graph classification setting, it is not possible to rely on
the homophily ratio h(G) (Lim et al., 2021) considered in the node classification setting. Therefore,
to quantify the degree of homophily in the graphs, we look at the node features instead and introduce
a surrogate homophily score h̄(D), where D denotes the whole dataset. The new score is defined as
the absolute value of the average cosine similarity between the node features of connected nodes in
each graph of the dataset:

h̄(D) =

∣∣∣∣∣ 1

|D|
∑
G∈D

1

|EG |
∑

(i,j)∈EG

xixj

∥xi∥∥xj∥

∣∣∣∣∣
where |D| is the number of graphs in the dataset, EG is the set of edges of the graph G and xi,xj are
the feature vectors of the i-th and j-th node respectively.

D.4 NODE CLASSIFICATION DATASETS

The datasets are the heterophilic graphs introduced by Platonov et al. (2023) and are loaded with the
API provided by PyTorch Geometric 10. The nodes of each graph are already split in train, validation,
and test across 10 different folds. The statistics of the five datasets are reported in Tab. 11. The
column h(G) is the class-insensitive edge homophily ratio as defined by Lim et al. (2021), which
represents a measure for the level of homophily in the graph.

7https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_
geometric.datasets.TUDataset.html

8https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs
9https://github.com/FilippoMB/Benchmark_dataset_for_graph_

classification
10https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_

geometric.datasets.HeterophilousGraphDataset.html
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Table 11: Statistics of node classification datasets.

Dataset # Nodes # Edges # Classes h(G)
Roman-Empire 22,662 32,927 18 0.021
Amazon-Ratings 24,492 93,050 5 0.127
Minesweeper 10,000 39,402 2 0.009
Tolokers 11,758 519,000 2 0.180
Questions 48,921 153,540 2 0.079

E ADDITIONAL RESULTS

E.1 GRAPH CLASSIFICATION

In Tab. 12 we report the additional graph classification results for the dataset where GNNs equipped
with different pooling operators did not achieve a significantly different performance from each other.

Table 12: Graph classification accuracy values (subset)

Pooler DD MUTAG ENZYMES PROTEINS

No pool 73±5 78±13 33±6 71±4

Diffpool 77±4 81±11 36±7 75±3

DMoN 78±5 82±11 37±7 76±4

ECPool 73±5 84±12 35±8 74±5

Graclus 73±4 82±12 33±7 73±4

k-MIS 75±3 83±10 33±8 73±5

MinCutPool 78±5 81±12 34±9 77±5

Top-k 72±5 82±10 29±7 74±5

MaxCutPool 77±4 84±10 31±6 74±4

MaxCutPool-E 77±3 85±9 34±5 74±4

MaxCutPool-NL 74±4 83±11 31±4 70±4

E.2 NODE CLASSIFICATION

Tab. 13 presents the results for node classification using the architecture with skip connections
described in Appendix C.4. For this architecture, we focused on the non-expressive variant of
MaxCutPool, which consistently delivered superior performance in this context. The improved results
can be attributed to the architecture’s ability to preserve the original node information through skip
connections. Additionally, by avoiding the combination of neighboring node features (as is done
in the expressive variant), the model is better equipped to learn high-frequency features, which is
particularly advantageous for heterophilic datasets. For the Minesweeper dataset, we chose to use
a GIN layer with 16 units as the MP layer, instead of the usual 32 units. This decision was made
because, regardless of the pooling method used, the architecture with skip connections consistently
achieved nearly 100% ROC AUC whenever configured with a higher capacity.

Table 13: Node classification accuracy (Roman-empire, Amazon-ratings) and AUROC (Minesweeper,
Tolokers, Questions) obtained when using the architecture with skip connections.

Pooler Roman-e. Amazon-r. Minesw.∗ Tolokers Questions Score
Top-k 20±11 49±7 91±1 96±0 70±3 1
k-MIS 19±2 53±3 90±0 91±2 82±4 2
NDP 19±4 56±5 94±0 90±8 69±7 2
MaxCutPool 67±2 53±1 92±1 96±1 82±2 3
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F COMPLEXITY

We first discuss the algorithmic complexities and then report empirical measurements about processing
time and memory usage. All measurements are done on an Nvidia RTX A6000.

F.1 ALGORITHMIC COMPLEXITY

The complexity of MaxCutPool depends on the complexities of the operations SEL, RED, and CON
and of the auxiliary loss Lcut.

SEL The complexity of the SEL operation depends on the ScoreNet, which consists of a stack of L
HetMP layers followed by an MLP, and on the topK selection.

• HetMP. Following the analysis in Blakely et al. (2021), for a graph with N nodes, E edges, and F
features, each HetMP layer has a time complexity of O(NF 2 +EF ) and a space complexity of
O(E +NF + F 2). This results in a space and time complexity of O(N + E) with respect to the
input.

• MLP. The MLP has a fixed structure with predetermined layer sizes. Since it operates independently
on each node’s feature vector and the number of operations per node is constant, processing each
node takes O(1) time. With N nodes to process, this results in a total time complexity of O(N)
with respect to the input. The space complexity is also O(N), as we need to store the MLP hidden
and output features for each node.

• topK The complexity of sorting an array of N elements is O(N log(N)). However, if we are
interested in finding only the top-K elements, the complexity can be lowered to O(N log(K))
or O(N +K), depending on the algorithm adopted. Therefore, we can assume an almost-linear
complexity in time and space with respect to the number of nodes N .

RED For the non-expressive variant, RED involves a Hadamard product between the scores and
features of the K selected nodes, giving a time complexity of O(K). The expressive variant requires
an additional multiplication with the assignment matrix S, increasing the complexity toO(K+NF ).
When K is a function of N (e.g., K = N/2), both variants have a time complexity of O(N) with
respect to the input.

The space complexity is O(N), representing the storage of input and output data.

CON Our efficient implementation of the nearest neighbor assignment follows the complexity of
BFS: O(N + E) time and O(N) space.

Auxiliary loss The auxiliary loss Lcut requires computing a quadratic form, with time complexity
O(E) and space complexity O(N + E).

Total complexity The overall complexity of MaxCutPool is:

Time complexity: O(E +N)

Space complexity: O(E +N)
(7)

These sub-quadratic complexities match those of the most efficient MP and trainable pooling opera-
tors.

F.2 EXECUTION TIMES

In Tab. 14 we report the number of seconds used by the architecture for node classification to process
a batch when configured with different pooling operators.

We note that one-over-K methods such as Graclus, NDP, and k-MIS perform a preprocessing step
on the CPU before the training starts. Such operations are not accounted for in the measurements in
Tab. 14, but they can take significant time and be a bottleneck in those cases that require operations
such as eigenvalue decomposition.
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Table 14: Execution times in terms of batches processed per second (b/s) by the architecture for node
classification configured with different pooling methods.

Pooler Roman-e. Amazon-r. Minesw. Tolokers Questions

Diffpool 0.72 b/s 0.93 b/s 0.05 b/s 0.11 b/s OOM
DMoN 0.66 b/s 0.83 b/s 0.06 b/s 0.11 b/s OOM
MinCutPool 1.32 b/s 1.63 b/s 0.14 b/s 0.23 b/s OOM
Top-k 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s 0.03 b/s
Graclus 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s
k-MIS 0.01 b/s 0.01 b/s 0.04 b/s 0.01 b/s 0.01 b/s
NDP 0.01 b/s 0.01 b/s 0.00 b/s 0.01 b/s 0.01 b/s
MaxCutPool 0.03 b/s 0.10 b/s 0.01 b/s 0.09 b/s 0.13 b/s

F.3 MEMORY USAGE

Table 15: Average and maximum GPU memory usage (in MB) by the architecture for node classifica-
tion when configured with different pooling methods.

Roman-e. Amazon-r. Minesw. Tolokers Questions
Pooler Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max
Diffpool 7167.3 11277.2 8367.8 13165.6 1397.4 2199.4 1931. 3039.7 OOM OOM
DMoN 5301.9 7359.5 6189.5 8591.2 1035.1 1438.2 1429. 1984.7 OOM OOM
MinCutPool 7167.8 11277.6 8367.9 13165.8 1398.0 2200.3 1932. 3040.0 OOM OOM
Top-k 2.8 3.9 3.4 4.9 1.4 1.8 3.4 6.0 5.1 8.9
Graclus 2.5 2.6 4.0 4.1 1.5 1.5 14.6 15.1 10.4 10.6
k-MIS 1.3 1.3 0.7 0.8 0.3 0.3 2.4 2.5 5.2 5.3
NDP 1.8 2.5 1.8 9.7 0.6 2.5 2.4 70.8 2.4 26.1
MaxCutPool 13.7 25.7 16.8 31.2 6.9 12.7 27.9 52.2 32.6 61.6

Figure 11: The GPU VRAM usage of the different poolers.
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In Tab. 15 we report the average and maximum GPU VRAM used by the architecture for node
classification on the different datasets. As for the time, the values reported for Graclus, NDP, and
k-MIS do not include the SEL and CON operations performed in preprocessing.

To give a more interpretable demonstration of how the space complexity scales for the different
pooling methods, in Fig. 11 we report the GPU VRAM usage of the different poolers when processing
a randomly generated Erdős-Renyi graph of increasing size. All the graphs are generated keeping
0.01 as the probability of having an edge between any pair of nodes.

The plot shows that in soft-clustering methods, the GPU VRAM usage grows exponentially with the
graph size. On the other hand, for scoring-based methods, including the proposed MaxCutPool, the
growth is sublinear, making these approaches extremely suitable for working with large graphs.
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