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A APPENDIX

B DATASET DISTILLATION WITH CRUCIAL SAMPLES

In this section, we add more experiments showing the influence of discarding easy or hard examples on
other datasets. The results are shown in Figure[5] There is a performance boost when easier samples
are discarded at a small rate (red) while dropping the hardest ones can hurt the performances (green).
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Figure 5: Accuracy performances on training networks under different situations. “Ori” indicates
the original results. We first discard the 10%, 20%, 30% samples with the largest MSE loss in each
batch to drop the hardest samples ( ). The performance gets dropped compared to the original
ones (blue). In contrast, when the easiest samples are discarded (red), the performances get a boost.

To investigate this phenomenon, we explore it from the perspective of data manifold and information.

Data Manifold: We show the distributions of synthetic images learned by the original baseline and
baseline with discarding easy samples in Figure[I|(Middle) in the main text. Here we show all the
distributions of baseline method, baseline with discarding hard samples, baseline with discarding
easy samples, and baseline with the proposed ISA method in Figure[6. When the hard samples are
discarded, it could be observed that the orange stars clusters together and the overlap with original
dataset decreases. In contrast, the overlap grows when drop some easy samples, thereby depicting a
better representation of the manifold. We also observe that compared to other cases, the application
of ISA can help to make the stars more evenly distributed. This may explain why the generalization
ability can be improved by ISA.

‘\\'k 1* \l\ **
gl g
o . \
i i
nt ) 1o 1
e Pl 4~ T
b ol R Rl
L : b, 1
: i i
: N
Baseline Discarding hard ones Discarding easy ones Discarding easy ones+ISA

Figure 6: Distributions of synthetic images learned by different methods. The , blue,
points are the real images of three classes while the stars are the corresponding learned synthetic
images. The orange stars clusters together and the overlap with original dataset decreases after
discarding hard samples. In contrast, the overlap grows after discarding some easy samples, thereby
depicting a better representation of the manifold. We also observe that compared to other cases, the
application of ISA can help to make the stars more evenly distributed.

Information: To find out whether the harder samples have contained information in easier samples,
we divide the target data into two splits: 80% samples that hold greater MSE loss in Eq. [4|and the left
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20% easier ones. By treating the former as X s and the latter as X, we use the harder ones to make
predictions for easier ones with Eq.[. The MSE loss is 0.0661, as shown in Figure [I(Right). This
loss indicates that the information in harder samples is enough for making precise predictions for
easier samples. In contrast, when we use the 80% samples with smallest MSE loss to predict the left
20% hard ones, the loss is 0.1430. Therefore, harder samples cannot be replaced by simple samples.

Diversity: We also step further to compare the diversity of synthetic images with the recall value,
which measures the expected likelihood of real samples against the synthetic manifold and is a
commonly used metric in generative tasks for evaluating the diversity of generative model
2018). To be specific, in the generative model field, recall measures how much of a reference
distribution can be generated by a part of a new distribution. Formally,

N
1
recall := N Z 1R, emanifold(F1 ..., Far) s (8)

i=1

where N and M are the number of real and fake samples. 1.y is the indicator function. F; is the i-th
fake sample while R; is the ¢-th real sample. Manifolds are usually defined as:

manifold(Ry, ..., Ry) := UN., B(R;, NND4(R;)), )

where B(xz,7) is the sphere in RP around x with radius 7. NNDy(R;) denotes the distance from R;
to the k-th nearest neighbour among { R; } excluding itself.

To this end, the recall counts how many real samples occurs in the k-nearest neighbors of fake
samples. We set k = 5. By treating the synthetic samples and original samples as fake and real
samples respectively, we can calculate how many original samples can be recalled by generated
images. A greater diversity in synthetic samples should recall more original samples. In other words,
higher recall indicates greater diversity. With Eq.[8] we find that after incorporating the process of
discarding easier samples in the outer loop, the recall value notably grows from 0.84 to 0.89. This
improvement suggests an enhanced diversity in the synthetic samples with discarding easy samples.

C ALGORITHM ILLUSTRATION.

i [ ] “

: ¢ o
: 9 Data manifold o
L TN ‘J :
: —> —_ ¥, :
3 { ] (4 6’3’;’1;(,”’,(22:}’2):
E ‘ //, 1 E

i I /’;/ ,' :

—— ’__—’ 1

(z1,¥1) :

v

1 € E/
- fo 1G24 26,)%50 = (7 + A8, |13/

Figure 7: Dataset distillation with the assistance of crucial samples.

This paper introduces a dataset distillation algorithm based on crucial samples, which aims to distill a
given labeled dataset into a smaller one so that a model trained on the small synthetic dataset can
have a similar performance to the one trained on the original dataset, as shown in the right part of
Figure[7} To achieve this goal, we first show that reducing redundancy in easy samples that are easy
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to be represented by the generated samples and taking more crucial samples into consideration can be
beneficial for improving the diversity of synthetic samples and better depicting the data manifold
in the dataset distillation tasks. Based on this observation, we further develop an infinite semantic
augmentation-based dataset distillation algorithm, which takes an infinite number of virtual crucial
samples into consideration in the semantic space. Through detailed mathematical analysis, the joint
contribution to training loss of all interpolated feature points is formed into an analytical closed-form
solution of an integral that can be optimized with almost no extra computational cost. As shown in
Figure[7, given two input samples (x;,y1) and (X2, y2), we first extract their features z;,z, and
then adopt the loss in this figure to take all the interpolated points between them into consideration.
0, =21 — 22,0y =y1 — Yo

The whole algorithm can also be found in Algorithm I. It is established based on a state-of-the-art
pipeline FRePo (Zhou et al.,2022), which implements the dataset distillation by: sampling a model
uniformly from a model pool M (Line 3) and a target batch (X7, Y7) uniformly from the labeled
dataset 7 (Line 4), then computing the meta-training loss £ (Line 5) to update the distilled data
S (Line 8) (outer loop) and training the model #; on S (Line 9) (inner loop). To conduct the crucial
samples based dataset distillation, we add the crucial sample exploring procedure by finding the top
p * 100% percent images with the greatest meta-training loss (Line 6). Based on these samples, we
further take more virtual samples into consideration via the new meta-learning loss (Line 7,8).

D INFINITE SEMANTIC AUGMENTATION

As the proposed Infinite Semantic Augmentation (ISA)
takes an infinite number of virtual samples into consid-
eration, one may be curious about whether the ISA will
require more training steps for convergence. Figure[8|gives
the answer. It suggests that there exists no big difference § 65.0

between the number of training steps for convergence of 3 625 W
the baseline with that of method with ISA. Besides, the & 60.0
proposed method can achieve a better performance at the 5575

very early stages of training, indicating that the proposed @ ss.0 __ Baseline
method requires less time for a comparable performance. E 52.5 +ISA

As for the training time cost, it is 2.5 hours (500,000 steps 50.0

in total) under CIFAR10, IPC=10 setting while it is 2.4 0 100000 200000 300000 400000 500000

. S Training steps
hours for our baseline, indicating that the proposed module

introduces negligible extra computational and time costs.

Figure 8: Validation accuracy during
each training steps. It can be observed
that adopting ISA will not require more
training time for convergence.

The “single-step semantic augmentation” in Figure 3(c)
indicates conducting a single-step mixup in feature space.
As our method enables the augmentation of an infinite
number of virtual samples in the semantic space by con-
tinuously interpolating between two target feature vectors,
one may be curious about whether it is necessary to take infinite number of virtual samples into
consideration. Therefore, in Figure[3(c), we conduct the single-step augmentation to take only one
virtual samples between two samples into consideration during each step ( mixup in feature-space).
It can be found that our ISA can hold a better performance against vanilla MixUp and single-step
semantic augmentation, indicating the superiority of the proposed ISA. We will update our paper to
improve the readability.

E IMPLEMENTATION DETAILS

All of our experiments are performed on a single NVIDIA A100 GPU with 80GB of GPU memory.
We implement our method in JAX and reproduce previous methods using their officially released
code. All the hyper-parameters are set following the released instructions. The training time for
experiments on ImageNet including ImageNet-64, ImageNette, ImageWoof is around a week on
a single A100, the same with the original ones. Other experiments only require several hours for
training.
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We also report the KRR predictors test accuracy using the feature extractor trained on the distilled data
following FRePo (Zhou et al.,2022), which means obtaining the prediction with K)Q(T Xs (K f(s xo T+
A )~1Ys in Eq. E With the KRR, we can achieve a higher test performance as shown in TableEz
The “ori” indicates training the neural networks with the distilled data and making predictions with
the trained network, which is the default setting. However, we find the KRR predictor may fail to
improve the performance when the distillation task is tough. For example, the test performance drops
from 8.0% to 6.7% on the ImageNet dataset, as shown in Table

Table 6: Distillation performance in term of KRR predicted test accuracy (%).

CIFAR10 CIFAR100 TinylmageNet
Method T 10 50 T 10 50 T 10
Repa O | 468207 65504 717%02 | 287201 425:02 443202 | 154203 254202

KRR | 47.940.6 68.040.2 744+0.1 | 323401 44.9402 43.0403 | 19.1403 26.5+0.1
Oueon | 484204 672804 738200 | 312802 46405 49.4%0.3 | 19820.1 27,0203
KRR | 50.5£0.7 69.040.4 75.6+0.1 | 38.020.1 48.420.4 48002 | 23.4+0.4 28.1+0.2

Table 7: Distillation performance in term of KRR predicted test accuracy (%) on ImageNet subsets.

ImageNette (128x128) | ImageWoof (128x128) | ImageNet (64x64)
Method
1 10 1 10 1 2
FRePo  ori | 48.1£0.7 66.5£0.8 | 26.7£0.6  42.2+0.9 | 7.5£0.3 9.7+0.2
KRR | 50.6£0.6 67.1+0.7 | 31.3t0.9 43.5+0.8 | 7.2+0.2 9.5+0.2
Ours ori | 49.6£0.6 67.8+0.3 | 30.8+0.5 43.8+0.6 | 8.0+0.2 10.7+0.1
KRR | 48.5+0.6  69.2+0.4 | 33.6+0.5 46.3+0.4 | 6.7£0.2 7.6x1.0

F EXPERIMENTS ON MATCHING-BASED METHODS

This paper mainly focuses on exploring what kind of target data is crucial for dataset distillation in
the outer loop of the meta-learning-based methods based on the analysis of both the matching-based
and meta-learning-based methods in the secondary paragraph in Introduction. With the exploration in
Section[2.2, we introduce a selection+augmentation method that can be adopted during the outer loop
of meta-learning-based methods. Therefore, apart from FRePo (Zhou et al.,[2022)(the base model by
default), we also combined the proposed modules with various state-of-the-art meta-learning-based
methods including RFAD (Loo et al.,[2022), FRePo (Zhou et al.,|[2022), RCIG (Loo et al.,2023) in
our ablation studies. The results in Table 4] validate the effectiveness of the proposed method.

To further explore whether the proposed module can benefit for matching-based methods, we conduct
experiments on classical DM (Zhao & Bilen, 2023) and MTT (Cazenavette et al., 2022) methods in
Table[§] The performances are improved in most cases, indicating the effectiveness of the proposed
approach.

Table 8: Test accuracies of applying our module to matching-based methods. * indicates the results
are reproduced with the officially released codes.

CIFAR10 CIFAR10
Methods i 10 0 Methods i 10 5
DM* 25.9+0.8 48.9+0.6 62.7+0.5 MTT* 46.3+0.8 65.2+0.5 71.6+0.2
+Ours 26.5£0.6 48.5+04 62.9+0.2 +Ours 57.9+0.6 65.4+0.6 72.9+0.2

G VISUALIZATION OF DISTILLED SAMPLES

In this section, we show our distilled samples of various datasets under different IPCs.
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