
Appendices
A Details of Models

In this section, we describe details in the linguistic encoder, variational generator, post-net and the
models we used in Section 4.2.

A.1 Linguistic Encoder
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(b) Phoneme/Word Encoder
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(c) Duration Predictor
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(d) Word-Level Pooling

Figure 4: The detailed architecture of linguistic encoder.

As shown in Figure 4, our linguistic encoder consists of a phoneme encoder, a word encoder, a duration
predictor and a word-to-phoneme attention module. The phoneme encoder and the word encoder
are both stacks of feed-forward Transformer layers with relative position encoding [28], as shown
in Figure 4b. The duration predictor, as shown in Figure 4c, consists of two 1D-convolutional
layers, each of which is followed by ReLU activation and layer normalization, and a linear layer
to project the hidden states in each timestep to a scalar, which is the predicted phoneme duration.
The word-level pooling averages the phoneme hidden states inside each word according to the
word boundary, as shown in Figure 4d. The word-to-phoneme attention module is a multi-head
attention [34] with 2 heads and we apply a word-to-phoneme mapping mask to the attention weight
to force each query (Q) to only attend to the phonemes belongs to the word corresponding to this
query. We also add a well-designed positional encoding to the inputs of word-to-phoneme attention
module: for K and V, the positional encoding is: i

Lw
Ekv , where i is the position of the corresponding

phoneme in the word w; Lw is the number of phonemes in word w; Ekv is a learnable embedding;
and i ∈ {0, 1, ..., Lw − 1}. For Q, the positional encoding becomes: j

Tw
Eq, where j is the position

of the corresponding frame in the word w; Tw is the number of frames in word w; Eq is another
learnable embedding; and j ∈ {0, 1, ..., Tw − 1}.

A.2 Variational Generator

As shown in Figure 5, our variational generator consists of an encoder, a decoder and a volume-
preserving (VP) flow-based prior model. The encoder, as shown in Figure 5a, is composed of
a 1D-convolution with stride 4 followed by ReLU activation and layer normalization, and a non-
causal WaveNet. The decoder, as shown in Figure 5b, consists of a non-causal WaveNet and a 1D
transposed convolution with stride 4, also followed by ReLU and layer normalization. The prior
model, as shown in Figure 5c, is a volume-preserving normalizing flow, which is composed of a
residual coupling layer (Figure 5d) and a channel-wise flip operation.
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Figure 5: The detailed architecture of variational generator.

A.3 Post-Net

We use non-causal WaveNet as the main architecture of NN in the affine coupling layer. We introduce
the number of shared groups Ng, for example, when Ng = 2, NNs in flow steps (f1, f2, ..., fK/2)
and (fK/2+1, fK/2+2, ..., fK) share the parameters separately. In inference, we can sample z from
N(0, T 2), where T is the temperature and use T = 0.8 by default.

A.4 Models Used in Section 4.2
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Figure 6: The detailed architecture of NAR-TTS models with VAE and flow-based decoders.

We use FastSpeech [25] as the backbone for preliminary analyses in Section 4.2. We replace the
decoder of FastSpeech with flow-based decoder and VAE-based decoder to explore the characteristics
of them. The flow-based decoder is mainly adopted from Glow [9] and WaveGlow [23], which uses
the expanded encoder outputs as the condition, as shown in Figure 6a. The VAE-based decoder
is similar to the variational generator in our proposed PortaSpeech, except that it does not use the
flow-based prior. The model hyperparameters of different model configurations are listed in Table 5.

B Detailed Experimental Settings

In this section, we describe more model configurations and details in subjective evaluation.
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Table 5: Hyperparameters of VAE and flow-based TTS models.

Hyperparameter Flow-based VAE-based

big middle small big middle small

Encoder

Phoneme Embedding 256 192 128 256 192 128
Layers 4 4 3 4 4 3
Hidden Size 256 192 128 256 192 128
Conv1D Kernel 9 5 3 9 5 3
Conv1D Filter Size 1024 768 512 1024 768 512

VAE Decoder

VAE Encoder Layers / 8
VAE Conv1D Kernel / 5
Latent Size / 16
WaveNet Channel Size / 300 128 128
VAE Decoder Layers / 16 12 12

Flow Decoder

WaveNet Layers 4 /
WaveNet Kernel 5 /
WaveNet Channel Size 128 112 112 /
Flow Steps 22 6 4 /

Total Number of Parameters 41.2M 10.2M 4.5M 43.2M 9.3M 4.4M

B.1 Model Configurations

We list the model hyper-parameters of PortaSpeech (normal) and PortaSpeech (small) in Table 6 and
total number of parameters of each module in Table 7.

Table 6: Hyperparameters of PortaSpeech (normal) and PortaSpeech (small) models.

Hyperparameter PortaSpeech (normal) PortaSpeech (small)

Linguistic Encoder

Phoneme Embedding 192 128
Word/Phoneme Encoder Layers 4 3
Hidden Size 192 128
Conv1D Kernel 5 3
Conv1D Filter Size 768 512

Varational Generator

Encoder Layers 8 8
Encoder Kernel 5 3
Decoder Layers 4 3
Encoder/Decoder Kernel 5 3
Encoder/Decoder Channel Size 192 128
Latent Size 16 16
VP-Flow Steps 4 3
VP-Flow Layers 4 4
VP-Flow Channel Size 64 32
VP-Flow Conv1D Kernel 3 3

Post-Net

WaveNet Layers 3 3
WaveNet Kernel 3 3
WaveNet Channel Size 192 128
Flow Steps 12 8
Shared Groups 3 2

Total Number of Parameters 21.8M 6.7M

B.2 Details in Subjective Evaluation

For MOS, each tester is asked to evaluate the subjective naturalness of a sentence on a 1-5 Likert
scale. For CMOS, listeners are asked to compare pairs of audio generated by systems A and B and
indicate which of the two audio they prefer and choose one of the following scores: 0 indicating
no difference, 1 indicating small difference, 2 indicating a large difference and 3 indicating a very
large difference. For audio quality evaluation (MOS-Q and CMOS-Q), we tell listeners to "focus
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Table 7: Total number of parameters of each module in PortaSpeech (normal) and PortaSpeech
(small).

Modules PortaSpeech (normal) PortaSpeech (small)

Linguistic Encoder 7.2M 2.0M
Duration predictor 0.3M 0.2M
Post-Net 10.8M 3.6M
Decoder in VG 2.5M 0.6M
VP-Flow in VG 1.0M 0.3M

Total 21.8M 6.7M

on examining the naturalness of prosody and rhythm, and ignore the differences of audio quality
(e.g., environmental noise, timbre)". For prosody evaluations (MOS-P and CMOS-P), we tell listeners
to "focus on examining the naturalness of prosody and rhythm, and ignore the differences of audio
quality (e.g., environmental noise, timbre)". The screenshots of instructions for testers are shown in
Figure 7. We paid $8 to participants hourly and totally spent about $750 on participant compensation.

C Results on Multi-Speaker Dataset

We conduct the MOS evaluation on the multi-speaker dataset: LibriTTS. The results are shown in
Table 8 (we use a pre-trained Parallel WaveGAN [36] for LibriTTS as the vocoder). We can draw
similar conclusions as that on LJSpeech that PortaSpeech can achieve good prosody and audio quality
in terms of MOS-P and MOS-Q, even in more complicated (multi-speaker) scenarios.

Table 8: The audio performance (MOS-Q and MOS-P) comparisons on LibriTTS dataset.

Method MOS-P MOS-Q

GT 4.24±0.08 4.36±0.09
GT (vocoder) 4.21±0.09 4.01±0.10
Tacotron 2 3.81±0.10 3.71±0.11
TransformerTTS 3.79±0.09 3.72±0.12
FastSpeech 3.59±0.11 3.61±0.14
FastSpeech 2 3.64±0.11 3.70±0.11
Glow-TTS 3.76±0.15 3.78±0.10

PortaSpeech (normal) 3.84±0.13 3.83±0.13
PortaSpeech (small) 3.80±0.12 3.81±0.11

D Robustness Evaluation

We conduct the robustness evaluation on LJSpeech and LibriTTS datasets. We select 50 sentences
that are particularly hard for TTS systems following FastSpeech [25]. The results are shown in
Tables 9 and 10. We can see that PortaSpeech achieves comparable robustness performance with
state-of-the-art non-autoregressive TTS models.

E Visualization of Attention Weights

We put some word-to-phoneme attention visualizations in Figure 8. We can see that PortaSpeech can
create reasonable phoneme-to-spectrogram alignments which are close to the diagonal, which helps
the end-to-end training.

F More Visualizations of Mel-Spectrograms

We put more visualizations of mel-spectrograms with different sampling temperatures of post-net
and different random seeds on PortaSpeech (normal) in Figure 9 and Figure 10. We have several
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(a) Screenshot of MOS-P testing.

(b) Screenshot of MOS-Q testing.

(c) Screenshot of CMOS-P testing.

(d) Screenshot of CMOS-Q testing.

Figure 7: Screenshots of subjective evaluations.

observations: 1) From Figure 9, we can see that when T = 0.8, our model can generate natural sound
perceptually with reasonable details in mel-spectrograms. 2) From Figure 10, we can see that with
different random seeds, PortaSpeech can generate diverse results, which have different prosody and
mel-spectrogram details.
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Table 9: The robustness evaluation on LJSpeech dataset.

Method Repeats Skips Error Sentences

Tacotron 2 4 5 7
TransformerTTS 7 7 9
FastSpeech 0 1 1
FastSpeech 2 0 1 1
Glow-TTS 0 2 2

PortaSpeech (normal) 1 0 1
PortaSpeech (small) 1 1 1

Table 10: The robustness evaluation on LibriTTS dataset.

Method Repeats Skips Error Sentences

Tacotron 2 6 7 12
TransformerTTS 10 12 15
FastSpeech 2 1 2
FastSpeech 2 2 1 2
Glow-TTS 5 4 8

PortaSpeech (normal) 1 2 2
PortaSpeech (small) 2 2 2

(a) LJ001-0002 (b) LJ001-0003 (c) LJ001-0004 (d) LJ001-0005

Figure 8: Visualizations of the attention weights.

(a) GT (b) T = 0.2 (c) T = 0.4

(d) T = 0.6 (e) T = 0.8 (f) T = 1.0

Figure 9: Visualizations of the ground-truth and generated mel-spectrograms generated with different
sampling temperature T of post-net.
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(a) GT (b) S = 1237 (c) S = 1239

(d) S = 3237 (e) S = 4237 (f) S = 9237

Figure 10: Visualizations of the ground-truth and generated mel-spectrograms generated with different
random seeds S.

G Analyses on the Grouped Parameter Sharing Mechanism

In this section, we conduct the subjective evaluation to compare the audio quality with different
numbers of shared groups (Ng) for PortaSpeech (normal) and PortaSpeech (small). The results are
shown in Table 11. It can be seen that the audio quality drops significantly when sharing parameters
among all flow steps, demonstrating the effectiveness of our grouped parameter sharing mechanism.

Table 11: The audio quality (MOS-Q) and number of model parameters (#Params.) comparisons with
different number of shared groups (Ng). The evaluation is conducted on a server with 1 NVIDIA
2080Ti GPU and batch size 1. The mel-spectrograms are converted to waveforms using Hifi-GAN
(V1) [11].

Method Ng MOS-Q #Params.

GT / 4.43 ± 0.06 /
GT (voc.) / 4.12 ± 0.07 /

PortaSpeech (normal)

1 3.86 ± 0.06 19.4M
3 3.91 ± 0.05 21.8M
6 3.93 ± 0.07 23.7M
12 3.92 ± 0.05 28.8M

PortaSpeech (small)

1 3.77 ± 0.06 6.4M
2 3.87 ± 0.08 6.7M
4 3.86 ± 0.05 7.5M
8 3.89 ± 0.06 9.0M

H Potential Negative Societal Impacts

PortaSpeech lowers the requirements for speech synthesis service deployment (memory and CPU
performance) and synthesizes high-quality speech voice, which may cause unemployment for people
with related occupations such as broadcaster and radio host. In addition, there is the potential for harm
from non-consensual voice cloning or the generation of fake media and the voices of the speakers in
the recordings might be overused than they expect.
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