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The supplementary material contains all technical details regarding the proofs of the main results in
Sections 2 and 3, further numerical details of Section 4 and additional simulation results.

A Additional concepts

We use the two-sided Hausdorff distance to measure the distance between the estimated change points
and the true change points.
Definition A.1 (Hausdorff distance). For any subset S1, S2 ⊂ Z, the Hausdorff distance dH(S1,S2)
between S1 and S2 is defined to be

max

{
max
s1∈S1

min
s2∈S2

|s1 − s2|, max
s2∈S2

min
s1∈S1

|s1 − s2|
}
,

with the convention that

dH(S1,S2) =

{
∞, S1 = ∅ 6= S2 or S2 = ∅ 6= S1,

0, S1 = S2 = ∅.

To compare the performance of our method to a range of other methods studied in [1], we consider
the following covering metric in Section E.
Definition A.2 (Covering metric). For any two partitions G and G′ of the set {1, . . . ,n}, the covering
metric of partition G by partition G′ is defined as

C(G′,G) =
1

n

∑
A∈G
|A| max

A′∈G′
J(A,A′),

where |A| denotes the cardinality of the set A and J(A,A′) is the Jaccard index defined as

J(A,A′) =
|A ∩A′|
|A ∪A′|

.

B Technical details regarding the Robust Univarite Mean Estimator
(RUME)

The RUME is proposed and studied in [2], which is an optimal one-sample robust mean estimator,
without contamination. Our ARC algorithm relies on the analysis of RUME, with adaptations to allow
for different Hi’s at each observation. For completeness, we include all the detailed analysis of RUME
in this section, with adaptations to the dynamic Huber contamination model studied in this paper.

Proposition B.1 relies largely on Lemma 3 in [3], except that we consider model (1), which allows
the contamination distributions to be different for each Zi. The proof is a minor adaptation from that
of Lemma 3 in [3].
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Algorithm B.1 Robust Univariate Mean Estimation (RUME)

Input: {Zi}2hi=1 ⊂ R, 0 < ε < 1, 0 < δ < 1
Randomly split {Zi}2hi=1 into Z and Z ′ each containing h points;

ε← max

{
ε,

log(1/δ)

h

}
;

D ←

⌊
h

(
1− 2ε− 2

√
ε

log(1/δ)

h
− log(1/δ)

h

)⌋
;

I ← ∅;
for j ∈ {1, . . . , h−D} do

Ij ← Z(j+D) − Z(j) . Z(i) denotes the i-th smallest value in Z
I ← I ∪ Ij

end for
j∗ ← the index of the smallest value in I;
Î ← [Z(j∗), Z(j∗+D)];

RUME← 1∑h
i=1 1{Z ′i ∈ Î}

h∑
i=1

Z ′i1{Z ′i ∈ Î}.

Output: RUME

Proposition B.1 (Lemma 3 in [3]). Suppose Z1, . . . ,Z2h are independent random variables with Zi
generated from the distribution

(1− εi)F0 + εiHi, , i ∈ {1, . . . , 2h}, (1)

where εi ≤ ε, F0 is any distribution in R with mean µ and variance upper bounded by σ2 and Hi’s
are any distributions. Let

ε′ = max

{
ε,

log(1/δ)

h

}
.

Then, if

2ε′ + 2

√
ε′

log(1/δ)

h
+

log(1/δ)

h
<

1

2
and δ ≤ C ′1/h, (2)

where C ′ > 0 is an absolute constant, then it holds that with probability at least 1− 5δ,

|RUME({Zi}2hi=1)− µ| ≤ C1σ
√
ε′, (3)

for some absolute positive constant C1.

Proof. Without loss of generality, we can take µ = 0. Let I∗ be the interval (−σ/
√
ε, σ/

√
ε) and

F0(I∗) denotes the probability that one sample drawn from (1) is distributed according to F0 and lies
in I∗. If X ∼ F0, then by Chebyshev’s inequality we have

P(|X| > σ/
√
ε) ≤ ε.

Therefore we have F0(I∗) = P(Zi ∈ I∗ andZi ∼ F0) = P(Zi ∈ I∗|Zi ∼ F0)P(Zi ∼ F0) ≥
(1− ε)(1− ε) ≥ 1− 2ε.

Now let Xi = 1{Zi ∼ F0 and Zi ∈ I∗} and Fh0 (I∗) =

h∑
i=1

Xi/h. Note that Xi is a Bernoulli

random variable with success probability F0(I∗). Therefore, using the Bernstein inequality for
bounded random variables (e.g. Theorem 2.8.4 in [4]), we have with probability at least 1− δ

Fh0 (I∗)− F0(I∗) ≥ −
√
F0(I∗)(1− F0(I∗))

√
2 log(1/δ)

h
− 2 log(1/δ)

3h
(4)

Fh0 (I∗) ≥ 1− 2ε−
√

2ε(1− 2ε)
2 log(1/δ)

h
− 2 log(1/δ)

3h
, (5)
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since F0(I∗)(1− F0(I∗)) is a decreasing function of F0(I∗) when F0(I∗) > 1/2. Also, note that
the Bernstein bound is used here since it improves the Hoeffding bound when the variance of Xi is
small.

Let gh(2ε,δ) = 2ε +

√
2ε(1− 2ε)

2 log(1/δ)

h
+

2 log(1/δ)

3h
and Î = [a,b] be the shortest interval

containing h(1− gh(2ε,δ)) points in Z . Since I∗ also contains at least h(1− gh(2ε,δ)) points due
to (5), we must have

length(Î) ≤ length(I∗) = 2σ/
√
ε.

Further, if gh(2ε,δ) < 1/2, then both Î and I∗ contain more than half of the data in Z . As a result,
these two intervals must intersect and we have

|z − µ| ≤ 4σ/
√
ε ∀z ∈ Î . (6)

Next, we control the error of the final estimator. Let |Î| =
∑
Zi∈Z′

1{Zi ∈ Î} be the number of points

from the second sample and lie in Î . Similarly, let |ÎH | and |ÎF0
| denote the number of points that lie

in Î and are not distributed according to F0 (i.e. adversarial point) and according to F0 respectively.
Note that ∣∣∣∣∣∣ 1

|Î|

∑
Zi∈Î

Zi

∣∣∣∣∣∣ ≤ T1 + T2

where

T1 =

∣∣∣∣∣∣∣∣
1

|Î|

∑
Zi∈Î
Zi 6∼F0

Zi

∣∣∣∣∣∣∣∣ and T2 =

∣∣∣∣∣∣∣∣
1

|Î|

∑
Zi∈Î
Zi∼F0

Zi

∣∣∣∣∣∣∣∣ .
Control of T1: To control T1, we use (6) to get

T1 ≤
|ÎH |
|Î|

max
Zi∈Î
Zi 6∼F0

|Zi| ≤
|ÎH |
|Î|

4σ√
ε
.

To bound the ratio |ÎH |/|Î|, notice that the total number of points that are drawn from the adversarial
distributions can be controlled by the Bernstein inequality. Therefore, we have with probability 1− δ∣∣∣∣∣ ÎHh

∣∣∣∣∣ ≤ ε+
√
ε(1− ε)

√
2 log(1/δ)

h
+

2 log(1/δ)

3h
= gh(ε,δ), (7)

since |ÎH | is less than the total number of points that are drawn from the adversarial distributions.
Together, we have with probability at least 1− 2δ

T1 ≤
gh(ε,δ)

1− gh(2ε,δ)

4σ√
ε

= C1σ
√
ε (8)

for some absolute constant C1, where we require ε & log(1/δ)/h.

Control of T2: To control T2, we write it as

T2 =

∣∣∣∣∣∣∣∣
|ÎF0
|

|Î|

 1

|ÎF0 |

∑
Zi∈Î
Zi∼F0

Zi


∣∣∣∣∣∣∣∣ ≤ T2a + T2b

where

T2a =
|ÎF0 |
|Î|

 1

|ÎF0
|

∑
Zi∈Î
Zi∼F0

Zi − E[Z|Z ∈ Î , Z ∼ F0]

 and T2b =
|ÎF0
|

|Î|

∣∣∣E[Z|Z ∈ Î , Z ∼ F0]
∣∣∣ .
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In T2a, since conditional on Zi ∈ Î , each Zi is a bounded random variable with |Zi − E(Zi)| ≤
length(Î) = 2σ/

√
ε and they are independent of each other, we can again use Bernstein inequality.

Using Lemma 15 in [2], which says for any event E that occurs with probability at least P (E),

EZ∼F0

[
(Z − E[Z|Z ∈ E])

2 |Z ∈ E
]
≤ σ2

P(E)
,

we can obtain an upper bound for the conditional variance of Zi. Denote F0(Î) to be the probability
that Zi is distributed according to F0 and lies in Î . Then, we have with probability at least 1− δ

T2a ≤

√
2σ2 log(2/δ)

F0(Î)|ÎF0 |
+

4σ√
ε

log(2/δ)

3|ÎF0 |
, (9)

by the Bernstein inequality.

For T2b, we first notice ∣∣∣EZ∼F0 [Z|Z 6∈ Î]
∣∣∣ =

EZ∼F0
[Z1Z 6∈Î ]

F0(Îc)

≤

√
EZ∼F0 [Z2]F0(Îc)

F0(Îc)

=
σ√
F0(Îc)

,

where F0(Îc) is the probability that Z is distributed according to F0 but does not lie in Î and we use
the Cauchy-Schwarz inequality in the second line. Combining with fact that∣∣∣E [Z|Z ∈ Î]∣∣∣F0(Î) = F0(Îc)

∣∣∣E [Z|Z 6∈ Î]∣∣∣ ,
and assuming F0(Î) ≥ 1/2, we have

T2b ≤ 2σ

√
F0(Îc). (10)

Combining (8), (9), and (10), we get with probability at least 1− 3δ

|RUME− µ| ≤ C1σ
√
ε+

√
2σ2 log(2/δ)

F0(Î)|ÎF0
|

+
4σ√
ε

log(2/δ)

3|ÎF0
|

+ 2σ

√
F0(Îc). (11)

To get the claimed bound, we need to study F0(Î) and Fh0 (Îc) =
|ÎF0 |∑

Zi∈Z′ 1Zi∼F0

. Note that Fh0 (Î)

is a sample version of F0(Î). Let |ĥH | denotes the number of points in Z which are not drawn from
F0 and lie in Î , and |ĥF0 | denotes the number of points in Z which are drawn from F0 and lie in Î .
Note that |ĥH | and |ÎH | have the same distribution, therefore using (7), we have with probability at
least 1− δ

|ĥH |
h
≤ gh(ε,δ).

Since |ĥH |+ |ĥF0
| = h(1− gh(2ε,δ)), we have with probability at least 1− δ

|ĥF0
| ≥ h (1− gh(2ε,δ)− gh(ε,δ)) . (12)

Note that |ÎF0
| and |ĥF0

| also have the same distribution. Therefore, with probability 1− δ,

|ÎF0
| ≥ h(1− gh(2ε,δ)− gh(ε,δ)) = C2h (13)
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for some constant C2, where we require ε & log(1/δ)/h. Equation (12) implies that

Fh0 (Îc) =
|ÎF0 |∑

Zi∈Z′ 1Zi∼F0

≥ 1− gh(2ε,δ)− gh(ε,δ).

Consequently, we have

Fh0 (Îc) ≤ gh(2ε,δ) + gh(ε,δ) = 3ε+ (
√
ε(1− ε) +

√
2ε(1− 2ε))

√
2 log(1/δ)

h
+

4 log(1/δ)

3h
.

(14)
Provided that ε . log(1/δ)/h, we have

Fh0 (Îc) ≤ 3ε+ C3
log(1/δ)

h
. (15)

Using the relative deviation lemma from empirical process theory [e.g. Theorem 7 in 5], we can
finally bound F0(Îc) as

F0(Îc) ≤ Fh0 (Îc) + 2

√
Fh0 (Îc)

log(SF (2h)) + log(4/δ)

h
+ 4

log(SF (2h)) + log(4/δ)

h
, (16)

with probability at least 1− δ. Since the VC dimension for intervals in R is 2, we have SF (2h) ≤
(2h+ 1)2 by the Sauer-Shelah Lemma (e.g. Theorem 8.3.16 in [4]). Substituting the upper bound of
SF (2h) and Fh0 (Îc) into equation (16) and using the fact that

√
ab ≤ a+ b for any a,b ≥ 0, we get

with probability at least 1− 2δ

F0(Îc) ≤ 9ε+ C6
log(1/δ)

h
+ 12

log(2h+ 1)

h
= 9ε+ C6

log(1/δ)

h
+ C7

log(h)

h
. (17)

Combining (11), (13), and (17), we have that with probability at least 1− 5δ

|RUME− µ| ≤ C1σ
√
ε+ C2σ

√
log(h)

h
+ C3

√
log(1/δ)

h
+ C4σ

log(1/δ)√
εh

.

The claimed bound follows by letting

ε′ = max

{
ε,

log(1/δ)

h

}
and choosing δ . 1/h.

C Proofs of the results in Section 2

In this section, we prove Lemmas 1 and 2. Throughout this section, we use δ(x) to denote the Dirac
measure at point x and consider ε1 = . . . = εn = ε in Assumption 1. We prove Lemma 1 by consid-
ering three sub-problems in Lemmas C.1, C.2 and C.3, respectively. Note that Lemma C.1 is from [6]
and it quantifies the difficulty of the change point detection problem without any contamination. The
construction in the proof of Lemma C.3 also appears in [7], but we formulate it here formally in Le
Cam’s framework. Lemma 2 is proved by considering two sub-problems in Lemmas C.4 and C.5.

Proof of Lemma 1. Let s = max {8ε, log(n)(1− 2ε), 4ε(1− 2ε)L}. To prove Lemma 1, it is suffi-
cient to prove that the claim

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ n

8
(18)

holds in three cases. First, note that when s = log(n)(1− 2ε), the claim (18) follows from Lemma
C.1 below. Next, we show that the claim (18) holds when s = 8ε in Lemma C.2 below. To conclude
the proof, we show that the claim (18) holds when s = 4ε(1− 2ε)L in Lemma C.3 below.
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Lemma C.1 (Lemma 1 in [6]). Let {Yi}ni=1 satisfy Assumption 1 with ε = 0 and F1, . . . ,Fn being
sub-Gaussian random variables. Let Pnκ,σ,L denote the corresponding joint distribution. For any
0 < c < 1, consider the class of distributions

Pnc =

{
Pnκ,σ,L : L = min

{
c
log(n)

κ2/σ2
,
n

4

}}
.

Then, there exists a n(c), which depends on c, such that, for all n larger than n(c), it holds that

inf
η̂

sup
P∈Pn

EP (dH(η̂,η(P ))) ≥ n

8

where the infimum is over all estimators η̂ of the change point locations and η(P ) denotes the change
point location of P ∈ P .

Lemma C.2. Let Y1 . . . ,Yn be a time series satisfying Assumption 1 with only one change point and
let Pnκ,L,σ,ε denote the corresponding joint distribution. Consider the class of distribution

P =

{
Pnκ,L,σ,ε :

κ2L

σ2
<

8ε

1− 2ε
, L ≤

⌊n
4

⌋}
,

then
inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ n

4

where the infimum is over all estimators η̂ of the change point locations and η(P ) is the true change
point of P ∈ P .

Proof of Lemma C.2. Without loss of generality, suppose n/L = c(n), where c(n) is an integer that
is allowed to depend on n. Denote the density of N (u0, σ

2I) by φ0 and the density of N (uk, σ
2I)

by φκ, where u0 ∈ RL is a vector with all entries being 0, uκ ∈ RL is a vector with all entries
being κ, and I is the identity matrix of dimension L× L. Let 1φκ>φ0 be the indicator function, i.e.
1φκ>φ0(x) = 1 if φκ(x) > φ0(x) and 1φ2>φ1(x) = 0 otherwise. Let P̃ denote the joint distribution
of {Yi}ni=1 with one change point at L ≤ n/4 such that

Yi ∼ (1− ε)Fi + εHi

where F1 = F2 = . . . = FL = N (0, σ2) and FL+1 = . . . = Fn = N (κ, σ2). For the contamination
distributions, we choose the joint distribution of {Hi}Li=1 in P̃ to have the density

1− ε
ε

(φκ − φ0)1φκ>φ0
,

and {Hi}(j+1)L
i=jL+1, in P̃ to have joint distribution with density

1− ε
ε

(φ0 − φκ)1φ0>φκ ,

for j = 1, . . . , c(n)− 1.

Similarly, let Q̃ denote the joint distribution of {Y ′i }ni=1 with one change point at L′ = n− L such
that

Yi ∼ (1− ε)F ′i + εH ′i

where F ′1 = F ′2 = . . . = F ′L′ = N (0, σ2) and F ′L′+1 = . . . = F ′n = N (κ, σ2). For contamination
distributions, we choose {H ′i}L

′

i=1 in the same way as {Hi}ni=L+1, and {H ′i}ni=L′+1 in the same way
as {Hi}Li=1

Finally, choose the contamination proportion ε such that

TV
(
N (u0, σ

2I),N (uκ, σ
2I)
)

=
ε

1− ε
.
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The described joint distributions P̃ and Q̃ are indeed belong to P . This can be checked by using the
Hellinger distance H(·, ·), as a lower bound for the total variation distance

TV
(
N (u0, σ

2I),N (uk, σ
2I)
)
≥ H2

(
N (u0, σ

2I),N (uk, σ
2I)
)

= 1−
∫
RL

√
φ0(x)φk(x) dx

= 1− exp

(
− 1

8σ2
(uκ − u0)T (uκ − u0)

)
= 1− exp

(
−1

8

κ2L

σ2

)
Therefore, we have

1− exp

(
−1

8

κ2L

σ2

)
≤ ε

1− ε
,

which is equivalent to
κ2L

σ2
≤ 8 log

(
1 +

ε

1− 2ε

)
≤ 8ε

1− 2ε
. (19)

Finally, we check that under the construction of P̃ and Q̃ we have Q̃ = P̃ . Notice the identity that

φ0 + (φκ − φ0)1φκ>φ0
= φκ + (φ0 − φκ)1φ0>φκ . (20)

The joint distribution of Y1, . . . ,YL has density

(1− ε)φ0 + (1− ε)(φκ − φ0)1φκ>φ0
, (21)

while the joint distribution of Y ′1 , . . . ,Y
′
L has density

(1− ε)φκ + (1− ε)(φ0 − φκ)1φ0>φκ . (22)

Therefore, the two joint distributions agree as a result of equation (20). Similarly, the joint distribution
of YjL+1, . . . , Y(j+1)L has density as in equation (22), for j = 1, . . . ,c(n) − 1, and the joint
distribution of Y ′jL+1, . . . , Y

′
(j+1)L has density as in equation (21), for j = 1, . . . ,c(n) − 1. As a

result, we can conclude Q̃ = P̃ ∈ P .

Note that dH(η(P̃ ),η(Q̃)) ≥ n/2 by construction, therefore by the Le Cam Lemma [e.g. 8], we
have

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ n

4
{1− TV(P̃ ,Q̃)} =

n

4
.

Lemma C.3. Let Y1 . . . ,Yn be a time series satisfying Assumption 1 with only one change point and
let Pnκ,L,σ,ε denote the corresponding joint distribution. Consider the class of distribution

P =
{
Pnκ,L,σ,ε :

κ

σ
< 2
√
ε, L ≤

⌊n
4

⌋}
,

then
inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ n

4

where the infimum is over all estimators η̂ of the change point locations and η(P ) is the true change
point of P ∈ P .

Proof of Lemma C.3. Let P̃ denote the joint distribution of {Yi}ni=1 with one change point at L ≤
n/4 such that

Yi ∼ (1− ε)Fi + εHi

where F1 = F2 = . . . = FL = δ(0) and FL+1 = . . . = Fn have the following distribution

7



{
Fi = δ(0) with probability 1− ε
Fi = δ(κ/ε) with probability ε

for i = L+1, . . . ,n. Under this setting, we have f1 = f2 = . . . = fL = 0 and fL+1 = . . . = fn = κ.
For the outlier distributions, we chooseH1 = . . . = HL = δ(κ/ε) whileHL+1 = . . . = Hn have the
same distribution as Fn. Note that by this construction, we have {Yi}ni=1 are independent identically
distributed.

Similarly, let Q̃ denote the joint distribution of {Y ′i }ni=1 with one change point at L′ ≥ 3n/4 such
that

Y ′i ∼ (1− ε)F ′i + εH ′i
where we choose F ′1 = . . . = F ′L to be the same as F1 and F ′L+1 = . . . = F ′n to be the same
as Fn. For the outlier distributions, we choose H ′1 = . . . = H ′L′ to be the same as H1 while
H ′L′+1 = . . . , H ′n to be the same as Hn.

Note that under this construction, we have P̃ = Q̃ ∈ P , since {Fi}Li=1 have variance 0, and
{Fi}ni=L+1 have variance

κ2(1/ε− 1),

which is less equal to σ2 under
κ

σ
≤
√

2ε

1− ε
< 2
√
ε

Since dH(η(P̃ ),η(Q̃)) ≥ n/2 by construction, therefore by the Le Cam lemma [e.g. 8], we have

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ n

4
{1− TV(P̃ ,Q̃)} =

n

4
.

Proof of Lemma 2. To prove Lemma 2, we consider two classes of distributions

P1 =

{
Pnκ,L,σ,ε :

κ2L

σ2
≥ ζn, L <

n

2

}
,

P2 =

{
Pnκ,L,σ,ε : (1− 2ε) log

(
1− ε
ε

)
L ≥ ζn, L <

n

2

}
Notice that P = P1 ∩ P2. Therefore, the proof can be completed in two steps. First, we show in
Lemma C.4 below that

inf
η̂

sup
P∈P1

EP (dH(η̂,η(P ))) ≥ σ2

κ2

e−1

1− ε
for all n large enough. Then, we show in Lemma C.5 below that

inf
η̂

sup
P∈P2

EP (dH(η̂,η(P ))) ≥ 1

2(1− 2ε)

e−1

log((1− ε)/ε)
.

for all n large enough. Thus, the claim follows.

Lemma C.4. Let Y1 . . . ,Yn be a time series satisfying Assumption 1 with only one change point and
let Pnκ,L,σ,ε denote the corresponding joint distribution. Consider the class of distribution

P =

{
Pnκ,L,σ,ε :

κ2L

σ2
≥ ζn, L <

n

2

}
,

for any sequence {ζn} such that lim
n→∞

ζn =∞. Then for all n large enough, it holds that

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ σ2

κ2

e−1

1− ε

where the infimum is over all estimators η̂ of the change point locations and η(P ) is the true change
point of P ∈ P .
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Proof of Lemma C.4. Let P0 denote the joint distribution of independent random variables {Yi}ni=1
where each Yi has distribution

(1− ε)F 0
i + εH0

i .

Let

F 0
1 = F 0

2 = . . . = F 0
L = N (0, σ2) and F 0

L+1 = F 0
L+2 = . . . = F 0

n = N (κ, σ2).

Similarly, let P1 be the joint distribution of independent random variables {Zi}ni=1 where Zi has
distribution

(1− ε)F 1
i + εH1

i .

Let

F 1
1 = F 1

2 = . . . = F 1
L+∆ = N (0,σ2) and F 1

L+∆+1 = F 1
L+2 = . . . = F 1

n = N (κ,σ2),

where ∆ is an integer no larger than n − 1 − L. For the adversarial noise distribution, we choose
H0

1 = . . . = H0
n = H1

1 = . . . = H1
n, i.e. the contamination distribution is the same across time and

is the same for P0 and P1.

By the Le Cam Lemma [e.g. 8] and Lemma 2.6 in [9], we have

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ ∆(1− TV(P0,P1)) ≥ ∆

2
exp(−KL(P0||P1)).

Since both P0 and P1 are product measures, it holds that

KL(P0||P1) =

L+∆∑
i=L+1

KL((1− ε)F 0
i + εH0

i ||(1− ε)F 1
i + εH1

i ).

Using convexity of the KL divergence (e.g. Lemma 1 in [10]), we have

KL(P0||P1) ≤
L+∆∑
i=L+1

(
(1− ε)KL

(
N (κ,σ2)||N (0,σ2)

)
+ εKL

(
H0
i ||H1

i

))
= ∆(1− ε) κ

2

2σ2
+ ε

L+∆∑
i=L+1

KL
(
H0
i ||H1

i

)
= ∆(1− ε) κ

2

2σ2
.

since H0
i = H1

i , for i = L+ 1, . . . ,L+ ∆. Hence, we have

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ ∆

2
exp

(
−∆(1− ε) κ

2

2σ2

)
. (23)

Next, set ∆ = min{2σ2/(1− ε)κ2, n− 1− L}. Using the assumption that

κ2L

σ2
≥ ζn.

where ζn is a diverging sequence, and

ζn >
n/2

n− 1− L
≥ L

n− 1− L
,

for all n large enough, we have

(1− ε)κ2L

2σ2
>
κ2L

4σ2
>

L

n− 1− L
,

for all n large enough. Therefore, it must hold that ∆ = 2σ2/(1− ε)κ2 for n large enough and the
claimed bound follows from (23).
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Lemma C.5. Let Y1 . . . ,Yn be a time series satisfying Assumption 1 with only one change point and
let Pnκ,L,σ,ε denote the corresponding joint distribution. Consider the class of distribution

P =

{
Pnκ,δ,σ,ε : (1− 2ε) log

(
1− ε
ε

)
L ≥ ζn, L <

n

2

}
,

for any sequence {ζn} such that lim
n→∞

ζn =∞. Then for all n large enough, it holds that

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ 1

2(1− 2ε)

e−1

log((1− ε)/ε)

where the infimum is over all estimators η̂ of the change point locations and η(P ) is the true change
point of P ∈ P .

Proof of Lemma C.5. Let P0 denote the joint distribution of {Yi}ni=1 where each Yi has distribution

(1− ε)F 0
i + εH0

i .

Let
F 0

1 = F 0
2 = . . . = F 0

L = δ(0) and F 0
L+1 = F 0

L+2 = . . . = F 0
n = δ(κ).

The outlier distributions are chosen as

H0
1 = H0

2 = . . . = H0
L = δ(κ) and H0

L+1 = H0
L+2 = . . . = H0

n = δ(0)

Similarly, let P1 be the joint distribution of random variables {Zi}ni=1 where each Zi has distribution

(1− ε)F 1
i + εH1

i .

Let
F 1

1 = F 1
2 = . . . = F 1

L+∆ = δ(0) and F 1
L+∆+1 = F 1

L+2 = . . . = F 1
n = δ(κ),

where ∆ is an integer no larger than n− 1− L. The outlier distributions are chosen as

H0
1 = H0

2 = . . . = H0
L+∆ = δ(κ) and H0

L+∆+1 = H0
L+2 = . . . = H0

n = δ(0)

By the Le Cam Lemma [e.g. 8] and Lemma 2.6 in [9], we have

inf
η̂

sup
P∈P

EP (|η̂ − η(P )|) ≥ ∆

2
(1− TV(P0,P1)) ≥ ∆

2
exp(−KL(P0,P1)).

Note that, for i = L+ 1, . . . ,L+ ∆, we have

KL
(
(1− ε)F 0

i + εH0
i , (1− ε)F 1

i + εH1
i

)
= (1− ε) log

(
1− ε
ε

)
+ ε log

(
ε

1− ε

)
= (1− 2ε) log

(
1− ε
ε

)
.

Since both P0 and P1 are product measures, it holds that

KL(P0||P1) =

L+∆∑
i=L+1

KL((1− ε)F 0
i + εH0

i ||(1− ε)F 1
i + εH1

i ).

= ∆(1− 2ε) log

(
1− ε
ε

)
Hence, we have

inf
η̂

sup
P∈P

EP (dH(η̂,η(P ))) ≥ ∆

2
exp

(
−∆(1− 2ε) log

(
1− ε
ε

))
. (24)

Next, set ∆ = min

{
1

(1− 2ε) log
(

1−ε
ε

) , n− 1− L

}
. Using our assumption that

(1− 2ε) log

(
1− ε
ε

)
L ≥ ζn.

10



where ζn is a diverging sequence, and

ζn >
n/2

n− 1− L
≥ L

n− 1− L
.

for n large enough, we must have

(1− 2ε) log

(
1− ε
ε

)
L >

L

n− 1− L

for n large enough. Therefore, we have ∆ =
1

(1− 2ε) log
(

1−ε
ε

) for n large enough, and the claimed

bound follows from (24).

D Proofs of the results in Section 3

In this section, we prove Theorem 1, utilising Proposition B.1 and ideas in [11]. Corollary 1 follows
straightforwardly from the proof of Theorem 1. Lastly, Proposition D.1 considers the range of h that
satisfies the assumptions in Theorem 1.

Proof of Theorem 1. Denote all points that are more than 2h away from any true change point by F ,
i.e. F = {x : |x − ηk| > 2h, ∀k = 1, . . . ,K}. In the first step, we show that under assumptions
(i)-(iii), it holds that for ∀x ∈ F ,∣∣(RUME

(
{Yi}x+2h

i=x+1

)
− E[Fx]

)
−
(
RUME

(
{Yi}xi=x−2h+1

)
− E[Fx]

)∣∣ ≤ λ (25)

with probability at least 1− 10δ. Note that x ∈ F is equivalent to say there is no change point in the
interval [x−2h, x+ 2h]. Therefore, we have Yx−2h+1, . . . ,Yx+2h are independent random variables
with distribution

(1− εi)Fx + εiHi,

for i = x − 2h + 1, . . . ,x + 2h. Without loss of generality, we can assume ηk < x < ηk+1, then
E[Fx] = fηk+1

. Under the assumption (ii), we can apply Proposition B.1 and a union bound to get
for sufficiently large Cλ and the choice of λ = Cλσ

√
ε′∣∣(RUME

(
{Yi}x+2h

i=x+1

)
− fηk+1

)∣∣ ≤ λ

2
and

∣∣(RUME
(
{Yi}xi=x−2h+1

)
− fηk+1

)∣∣ ≤ λ

2

with probability at least 1− 10δ. Consequently, equation (25) follows from the triangle inequality.

Next, we use similar arguments to show that with probability at least 1− 10δ∣∣∣(RUME
(
{Yi}ηk+2h

i=ηk+1

))
−
(

RUME
(
{Yi}ηki=ηk−2h+1

))∣∣∣ > λ. (26)

for ∀k = 1,2, . . . ,K. Note that the assumption L > 8h > 4h guarantees that Yηk+1, . . . , Yηk+2h are
independent random variables with distribution (1 − ε)Fηk+1

+ εHi for i = ηk + 1, . . . , ηk + 2h
where E[Fηk+1

] = fηk+1
and Yηk−2h+1, . . . ,Yηk are independent random variables with distribution

(1− εj)Fηk + εjHj for j = ηk − 2h+ 1, . . . , ηk, where E[Fηk ] = fηk . We take square of the left
hand side of equation (26) and rewrite it as∣∣∣(RUME

(
{Yi}ηk+2h

i=ηk+1

)
− fηk+1

)
−
(

RUME
(
{Yi}ηki=ηk−2h+1

)
− fηk

)
+ (fηk+1 − fηk)

∣∣∣2
≥ κ2/2−

∣∣∣(RUME
(
{Yi}ηk+2h

i=ηk+1

)
− fηk+1

)
−
(

RUME
(
{Yi}ηki=ηk−2h+1

)
− fηk

)∣∣∣2 ,
where the inequality follows from the observation that (x+ y)2 ≥ x2/2− y2 for any x,y ∈ R. Using
Proposition B.1 and triangle inequality, we have∣∣∣(RUME

(
{Yi}ηk+2h

i=ηk+1

)
− fηk+1

)
−
(

RUME
(
{Yi}ηki=ηk−2h+1

)
− fηk

)∣∣∣2 ≤ λ2

with probability at least 1− 10δ. Together with the assumption that κ > 2λ, we have∣∣∣(RUME
(
{Yi}ηk+2h

i=ηk+1

))
−
(

RUME
(
{Yi}ηki=ηk−2h+1

))∣∣∣2 ≥ κ2/2− λ2 > λ2.

11



In the second step, we consider the following events

Bx = {|Dh(x)| < λ}
Aηk = {|Dh(ηk)| > λ}
En =

(
∩Kk=1Aηk

)
∩ (∩x∈FBx)

and argue that on the event En, we have

K̂ = K and max
k=1,...,K̂

|η̂k − ηk| ≤ 2h.

Note that it is sufficient to show that on the event En it holds that i) for any estimated change point
η̂k, k = 1,2 . . . , K̂, there is a unique true change point ηk lying in the interval (η̂k − 2h, η̂k + 2h)
and ii) for each true change point ηk, k = 1,2, . . . ,K, there is a unique estimated change point
located in the interval (ηk − 2h, ηk + 2h).

For i), we notice that η̂k ∈ Fc for all k = 1,2, . . . ,K̂, according to the definition of event En.
Therefore, there is at least one true change point in the interval (η̂k − 2h, η̂k + 2h). Using the
assumption L > 8h > 4h, we see there is at most one true change point in (η̂k − 2h, η̂k + 2h).
Therefore i) holds. For ii), using the assumption L > 8h, we know every point in the intervals
(ηk + 2h,ηk + 6h) and (ηk − 2h,ηk − 6h) belong to F . This means |Dh(x)| < λ for all x in the
aforementioned two intervals. Therefore the 4h local maximizers of |Dh(x)| for x ∈ (ηk−2h,ηk+2h)
correspond to the unique local maximizer η∗ of |Dh(x)| for x ∈ (ηk − 2h,ηk + 2h), and we have
|Dh(η∗)| ≥ |Dh(ηk)| > λ.

In the last step, we show that P(Ecn) → 0 using (25) and (26) from step 1. Note that using union
bound, we have

P(Ecn) ≤ P(∪Kk=1A
c
ηk

) + P(∪x∈FBcx) ≤ nmax
k

P(Acηk) + nmax
x∈F

P(Bcx). (27)

Using (26), we have

max
k

P(Acηk) = max
k

P
(∣∣∣(RUME

(
{Yi}ηk+2h

i=ηk+1

))
−
(

RUME
(
{Yi}ηki=ηk−2h+1

))∣∣∣ < λ.
)
≤ 10δ

Using (25), we have

max
x∈F

P(Bcx) = P
(∣∣(RUME

(
{Yi}x+2h

i=x+1

)
− E[Yx+1]

)
−
(
RUME

(
{Yi}xi=x−2h+1

)
− E[Yx]

)∣∣ > λ
)

≤ 10δ.

Combining the upper bounds for P(Acηk) and P(Bcx), we can conclude that

P(Ecn) ≤ 20nδ = 20n1−C′ → 0

under the choice that δ = n−C
′

for some constant C ′ > 1.

Proof of Corollary 1. Since κ = 0, we have Y1, . . . , Yn are independent random variables with
distribution

(1− εi)Fi + εiHi

for i = 1, . . . ,n, where E[Fi] = f1. Using (25) from the Proof of Theorem 1, we have for
x = 2h, . . . , n− 2h, it holds that Dh(x) < λ with probability at least 1− 10δ. Using the notation
from the Proof of Theorem 1, we have on the event ∩n−2h

x=2hBx, it holds that K̂ = 0. It follows from a
union bound that

P

(
n−2h⋃
x=2h

Bcx

)
≤ 10nδ,

Therefore, the claim follows by choosing δ = n−C
′

for some constant C ′ > 1.
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Proposition D.1. Under the same notation as in Theorem 1, the following choices of h can guarantee
that assumptions (i)-(iii) holds

h > max

{
10, 4C2

λ

σ2

κ2

}
C ′ log(n), if ε < 0.1,

h > h(ε)C ′ log(n) if 0.1 < ε <
1

4
min

{
1,

κ2

σ2C2
λ

}
,

where

h(θ) =
1

0.5−
√

2θ(1− 2θ)
.

Proof of Proposition D.1. We consider two separate cases:

1. When ε′ = ε, which is equivalent to

h >
C ′ log(n)

ε
,

assumption (ii) can be simplified as

2ε+ 2

√
ε
C ′ log(n)

h
+
C ′ log(n)

h
<

1

2
,

√
ε+

√
C ′ log(n)

h
<

√
1

2
− ε

and h >

( √
C ′ log(n)√

1/2− ε−
√
ε

)2

= h(ε)C ′ log(n).

Note that h(ε) ≥ 1/ε for 0.1 < ε < 0.25. Combining with assumption (i), we have

if 0.1 < ε <
1

4
min

{
1,

κ2

σ2C2
λ

}
, then h > h(ε) log(n) can satisfy the assumptions for

Theorem 1.

2. When ε′ = C ′ log(n)/h, which is equivalent to

h <
C ′ log(n)

ε
,

the assumption (i) requires

h > 4C2
λC
′σ

2

κ2
log(n),

and assumption (ii) requires

h > 10C ′ log(n).

Combining these three conditions, we have if h satisfies

max

{
10, 4C2

λ

σ2

κ2

}
C ′ log(n) < h <

C ′ log(n)

ε
, (28)

then assumptions in Theorem 1 are satisfied. To ensure that (28) is not an empty set, it is
sufficient to require ε < 0.1.
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E Further details of the numerical results in Section 4

E.1 Tuning parameter selection in simulations

For BIWEIGHT [12], we choose (using their notation) the default value as K = 3σ and β =
2σ2 log(n) = 17σ2, where σ is the standard deviation of the uncontaminated distribution Fi. We
denote this choice of tuning paramter as BIWEIGHT(2). It is noted in [12] that such choice is
not guaranteed to ensure consistency. Therefore, we also consider a stronger penalty value β =
5σ2 log(n) = 42.6σ2 in the simulation (denoted as BIWEIGHT(5)). For the R_CUSUM procedure,
we combine it with the wild binary segmentation framework [13] for multiple change point scenarios.
We generate 500 random intervals with threshold set to 5σ2 log(n) = 42.6σ2.

For the robust U -statistics test, we only consider the univariate version of their proposed statistic Tn
here and the distribution of Tn under the null (no change points) is approximated by the Gaussian
multiplier bootstrap. Combining with the backward detection algorithm (c.f. Algorithm 1 in [14]),
this robust test can be used to perform multiple change point detection.

For aARC, the value ε is chosen via the tournament procedure proposed by [15]. We include the
details here for completeness.

We use the first T = 300 of each simulated data set as the training set and obtain a sequence of
estimates {θ̂1, . . . ,θ̂m} returned by the RUME with input {ε1, . . . ,εm} which is an equally spaced
set from 0 to 0.25 with size m = 201. Consider the following pairwise test function:

φjk = 1

{∣∣∣∣∣ 1

T

T∑
i=1

1
{
pθ̂j (Yi) > pθ̂k(Yi)

}
− Pθ̂j

(
Y >

θ̂j + θ̂k
2

)∣∣∣∣∣ >∣∣∣∣∣ 1

T

T∑
i=1

1
{
pθ̂j (Yi) > pθ̂k(Yi)

}
− Pθ̂k

(
Y >

θ̂j + θ̂k
2

)∣∣∣∣∣
}
,

where pθ̂j is the probability density of Pθ̂j = N (θ̂j , σ
2). When φjk = 1, then θ̂k is favoured over θ̂j ,

and when φjk = 0, then θ̂k is favoured over θ̂j . We select εj∗ that corresponds to the estimate θ̂j∗
where

j∗ = arg min
j=1,...,m

∑
k 6=j

φjk. (29)

It is shown in [15] that the above procedure would pick a j∗ such that Pθ̂j∗ is close to N (θ, σ2)

in total variance metric provided that the training data are independent samples from the Huber’s
ε-contamination model (1) with F = N (θ, σ2) and fixed contamination distribution H . Note that we
consider here specifically the case when F , the uncontaminated distribution, is Gaussian in the Huber
ε-contamination model (1). Other classes of distributions of F can also be considered by using the
corresponding density function.

E.2 Further simulation results

E.2.1 Adversarial settings (i) and (ii)

In this subsection, we provide the complete simulation results for the two adversarial attack settings
that are considered in our paper. Tables 1 and 2 correspond to scenario (i) and (ii), respectively.
The last column in Table 1 shows the mean error in estimating the number of change points and if
K̂ = 2∆− 1, it means the algorithm detects the number of spurious change points created by the
adversarial noise. The last column in Table 2 shows the median (rescaled) Hausdorff distance and if
K̂ = 0, it means the algorithm cannot detect the true change points in the presence of contamination.

Table 1: Estimated number of change points for various competing methods over 100 simulations
when the adversarial noise tries to create spurious change points. The number of change points in
terms of fi is K = 0 while the number of change points in terms of E[Yi] is 2∆− 1. Bold: methods
with the lowest mean error for estimating the number of change point K.
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Number of detected change points
ε ∆ σ Method K̂ = K K̂ = 2∆− 1 (K̂ −K)/100

0 1 1 PELT 100 0 0.00
ARC 100 0 0.00
aARC 77 0 0.30

BIWEIGHT(2) 100 0 0.00
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 100 0 0.00

0.05 1 1 PELT 0 100 1.00
ARC 85 15 0.15
aARC 72 10 0.56

BIWEIGHT(2) 0 72 1.50
BIWEIGHT(5) 1 99 0.99

R_CUSUM 97 3 0.03
R_USTAT 0 88 1.15

0.05 1 5 PELT 95 5 0.05
ARC 83 16 0.18
aARC 85 14 0.16

BIWEIGHT(2) 95 5 0.05
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 35 55 0.79

0.05 1 20 PELT 100 0 0.00
ARC 98 2 0.02
aARC 97 3 0.03

BIWEIGHT(2) 98 2 0.02
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 76 15 0.34

0.05 5 1 PELT 0 98 0.02
ARC 89 0 0.15
aARC 77 0 0.39

BIWEIGHT(2) 9 4 4.75
BIWEIGHT(5) 96 0 0.04

R_CUSUM 100 0 0.00
R_USTAT 50 6 2.14

0.05 5 5 PELT 100 0 0.00
ARC 73 0 0.36
aARC 67 0 0.53

BIWEIGHT(2) 100 0 0.00
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 87 0 0.24

0.05 5 20 PELT 100 0 0.00
ARC 95 0 0.05
aARC 89 0 0.12

BIWEIGHT(2) 100 0 0.00
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 95 0 0.12

0.1 1 1 PELT 0 100 1.00
ARC 83 12 0.24
aARC 84 4 0.47

BIWEIGHT(2) 0 37 2.96
BIWEIGHT(5) 0 100 1.00
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R_CUSUM 0 100 1.00
R_USTAT 0 79 1.29

0.1 1 5 PELT 98 2 0.02
ARC 72 25 0.31
aARC 80 20 0.20

BIWEIGHT(2) 27 70 0.76
BIWEIGHT(5) 94 6 0.06

R_CUSUM 97 3 0.03
R_USTAT 0 82 1.23

0.1 1 20 PELT 100 0 0.00
ARC 96 3 0.05
aARC 99 1 0.01

BIWEIGHT(2) 100 0 0.00
Biwerght(5) 100 0 0.00
R_CUSUM 100 0 0.00
R_USTAT 51 41 0.57

0.1 2 1 PELT 0 99 3.01
ARC 86 0 0.17
aARC 80 3 0.61

BIWEIGHT(2) 0 28 5.23
Biwerght(5) 0 100 3
R_CUSUM 30 20 1.43
R_USTAT 1 28 2.63

0.1 5 1 PELT 2 80 8.07
ARC 85 0 0.19
aARC 85 0 0.54

BIWEIGHT(2) 0 18 11.67
BIWEIGHT(5) 6 10 4.42

R_CUSUM 99 0 0.02
R_USTAT 0 61 9.40

0.1 5 5 PELT 100 0 0.00
ARC 74 0 0.29
aARC 52 0 1.07

BIWEIGHT(2) 99 0 0.01
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 58 3 1.50

0.1 5 20 PELT 100 0 0.00
ARC 90 0 0.14
aARC 97 0 0.03

BIWEIGHT(2) 100 0 0.00
BIWEIGHT(5) 100 0 0.00

R_CUSUM 85 0 0.29
R_USTAT 63 0 0.61

0.2 1 1 PELT 0 100 1.00
ARC 62 28 0.50
aARC 56 21 0.77

BIWEIGHT(2) 0 3 9.48
BIWEIGHT(5) 0 100 1.00

R_CUSUM 0 100 1.00
R_USTAT 0 82 1.25

0.2 1 5 PELT 1 99 0.99
ARC 75 25 0.25
aARC 99 1 0.01

BIWEIGHT(2) 0 100 1.00
BIWEIGHT(5) 1 99 0.99

R_CUSUM 0 100 1.00
R_USTAT 0 79 1.28
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0.2 1 20 PELT 100 0 0.00
ARC 100 0 0.00
aARC 100 0 0.00

BIWEIGHT(2) 97 3 0.03
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 0 80 1.27

0.2 2 1 PELT 0 100 3.00
ARC 57 2 0.53
aARC 59 7 0.84

BIWEIGHT(2) 0 3 11.64
BIWEIGHT(5) 0 100 3.00

R_CUSUM 0 100 3.00
R_USTAT 0 33 3.01

0.2 5 1 PELT 0 100 9.00
ARC 74 0 0.36
aARC 71 0 0.48

BIWEIGHT(2) 0 5 18.48
BIWEIGHT(5) 0 99 9.01

R_CUSUM 0 71 8.36
R_USTAT 0 70 9.52

0.2 5 5 PELT 100 0 0.00
ARC 67 0 1.56
aARC 93 0 0.12

BIWEIGHT(2) 69 0 0.54
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 0 51 9.26

0.2 5 20 PELT 100 0 0.00
ARC 100 0 0.00
aARC 100 0 0.00

BIWEIGHT(2) 99 0 0.01
BIWEIGHT(5) 100 0 0.00

R_CUSUM 100 0 0.00
R_USTAT 73 1 0.99

Table 2: Estimated number of change points for various competing methods over 100 simulations
when the adversarial noise tries to hide change points. The number of change points in terms of fi is
K = 2∆− 1 while there is no change points in terms of E[Yi]. Also the median Hausdorff distance
divided by sample size and the number of repetitions that the Hausdorff distance is less than 2h. Bold:
methods with the smallest and second smallest mean error for estimating the number of change point
K and median Hausdorff distance divided by sample size.

Number of detected change points dH(η̂,η)

ε ∆ κ Method K̂ = 0 K̂ = K |K̂ −K|/100 ≤ 2h median

0 1 0.6 PELT 0 100 0.00 100 0.00
BIWEIGHT(2) 0 100 0.00 100 0.00
BIWEIGHT(5) 0 100 0.00 100 0.00

ARC 0 100 0.00 100 0.00
aARC 9 78 0.22 75 0.01

R_CUSUM 0 98 0.00 99 0.00
R_USTAT 0 82 0.30 82 0.00

0 2 0.6 PELT 0 100 0.00 100 0.00
BIWEIGHT(2) 0 100 0.00 100 0.00
BIWEIGHT(5) 0 100 0.00 100 0.00

ARC 0 100 0.00 100 0.00
aARC 0 88 0.12 87 0.01

17



R_CUSUM 0 99 0.01 100 0.00
R_USTAT 0 70 0.44 70 0.00

0.1 1 0.6 PELT 100 0 1.00 0 1.00
BIWEIGHT(2) 39 2 1.57 0 0.58
BIWEIGHT(5) 100 0 1.00 0 1.00

ARC 46 36 0.70 33 0.31
aARC 46 32 0.96 32 0.33

R_CUSUM 60 40 0.60 40 0.50
R_USTAT 0 91 0.12 90 0.00

0.1 1 0.66 PELT 100 0 1.00 0 1.00
BIWEIGHT(2) 0 9 4.85 17 0.37
BIWEIGHT(5) 0 100 0.00 100 0.00

ARC 7 93 0.07 92 0.00
aARC 39 52 0.59 52 0.04

R_CUSUM 8 92 0.08 91 0.01
R_USTAT 0 84 0.28 84 0.00

0.1 1 1 PELT 70 2 1.05 1 1.00
BIWEIGHT(2) 0 48 1.28 52 0.03
BIWEIGHT(5) 0 100 0.00 100 0.00

ARC 3 87 0.15 87 0.00
aARC 2 93 0.08 93 0.00

R_CUSUM 0 100 0.00 100 0.00
R_USTAT 0 82 0.25 82 0.00

0.1 2 0.6 PELT 100 0 3.00 0 1.00
BIWEIGHT(2) 58 2 2.39 0 1.00
BIWEIGHT(5) 100 0 3.00 0 1.00

ARC 35 32 1.55 32 0.36
aARC 29 17 1.71 15 0.25

R_CUSUM 99 0 2.99 0 0.75
R_USTAT 15 62 0.80 54 0.05

0.1 2 0.66 PELT 100 0 3.00 0 1.00
BIWEIGHT(2) 0 6 5.55 21 0.12
BIWEIGHT(5) 0 100 0.00 96 0.02

ARC 0 77 0.81 78 0.01
aARC 14 44 1.09 42 0.23

R_CUSUM 77 4 2.6 4 0.75
R_USTAT 3 64 0.62 59 0.05

0.1 2 1 PELT 73 1 2.55 0 1.00
BIWEIGHT(2) 0 57 1.47 75 0.00
BIWEIGHT(5) 0 100 0.00 100 0.00

ARC 0 83 0.2 83 0.01
aARC 0 89 0.12 89 0.01

R_CUSUM 0 100 0.00 100 0.00
R_USTAT 0 70 0.43 70 0.00

0.2 1 1.2 PELT 100 0 1.00 0 1.00
BIWEIGHT(2) 3 0 8.01 1 0.43
BIWEIGHT(5) 99 1 0.99 0 1.00

ARC 9 47 0.69 42 0.13
aARC 15 41 1.03 33 0.24

R_CUSUM 6 94 0.06 92 0.01
R_USTAT 18 68 0.38 68 0.00

0.2 1 1.6 PELT 94 0 1.00 0 1.00
BIWEIGHT(2) 0 0 27.61 0 0.47
BIWEIGHT(5) 0 98 0.04 98 0.00

ARC 3 97 0.03 97 0.01
aARC 1 94 0.08 94 0.01

R_CUSUM 0 100 0.00 100 0.00
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R_USTAT 0 84 0.20 84 0.00
0.2 2 1.2 PELT 100 0 3.00 0 1.00

BIWEIGHT(2) 7 4 6.32 0 0.24
BIWEIGHT(5) 100 0 3.00 0 1.00

ARC 0 29 0.88 43 0.09
aARC 3 29 1.09 23 0.12

R_CUSUM 52 15 2.04 15 0.75
R_USTAT 56 23 2.03 18 1.00

0.2 2 1.6 PELT 94 0 2.89 0 1.00
BIWEIGHT(2) 0 0 28.27 1 0.23
BIWEIGHT(5) 0 98 0.06 99 0.00

ARC 0 98 0.02 98 0.01
aARC 0 95 0.05 97 0.01

R_CUSUM 0 100 0.00 100 0.00
R_USTAT 2 71 0.46 69 0.03

E.2.2 Sensitivity of the choice of h

In the simulations above, we use a fixed h for different choices of ∆, which serves the purpose
of testing the sensitivity of h. To be complete, we also directly test the sensitivity of our methods
with respect to the choice h on three settings that are considered in the adversarial setting (i)
and (ii) from the previous section. We consider five choices of window width 2h from the set
{10 log(n), 20 log(n), 30 log(n), 40 log(n), 60 log(n)} = {85, 170, 255, 340, 511}. The results in
the tables below are obtained by averaging over 100 repetitions and the numbers in the brackets
indicate standard errors. The results suggest that a range of choices of the window width can achieve
the best performance, whereas if h is chosen to be too small or large relative toL, then the assumptions
in our Theorem 1 would be violated and lead to poor performance of the algorithms.

1. Scenario (ii) with κ = 1, ε = 0.1 and ∆ = 2, which corresponds to K = 3 and L = 1250.

Algorithm Choice of 2h scaled Hausdorff distance Number of change points

ARC

85 0.11 (0.10) 3.42 (1.10)
170 0.05 (0.05) 3.59 (0.89)
255 0.01 (0.02) 3.05 (0.22)
340 0.01 (0.01) 3.00(0.00)
511 0.01 (0.00) 3.00 (0.00)

aARC

85 0.12 (0.09) 4.79 (2.20)
170 0.06 (0.08) 3.51 (1.19)
255 0.02 (0.05) 3.03 (0.41)
340 0.02 (0.06) 2.95 (0.26)
511 0.03 (0.06) 2.94 (0.24)

2. Scenario (ii) with κ = 1, ε = 0.1 and ∆ = 3, which corresponds to K = 5 and L = 833.

Algorithm Choice of 2h scaled Hausdorff distance Number of change points

ARC

85 0.09 (0.08) 5.17 (1.21)
170 0.02 (0.03) 5.32 (0.57)
255 0.01 (0.00) 5.00 (0.00)
340 0.01 (0.02) 4.99(0.10)
511 0.17 (0.01) 3.01 (0.10)

aARC

85 0.09 (0.07) 5.98 (1.96)
170 0.09 (0.04) 5.27 (0.90)
255 0.03 (0.06) 4.83 (0.49)
340 0.02 (0.03) 4.95 (0.21)
511 ∞ (NaN) 2.88 (0.41)
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3. Scenario (i) with σ = 1, ε = 0.1 and ∆ = 5, which corresponds to K = 0 and L = 5000.

Algorithm Choice of 2h Number of change points

ARC

85 6.72 (3.34)
170 2.46 (1.92)
255 0.27 (0.65)
340 0.03(0.22)
511 0.00 (0.00)

aARC

85 7.08 (4.29)
170 2.15 (3.53)
255 1.10 (2.11)
340 0.78 (1.74)
511 0.18 (0.76)

E.2.3 Less adversarial attack

In below, we further consider two specific attacks which do not use any knowledge about the true
change points and therefore less adversarial in nature.

1. We consider the contamination distributions to be the Normal distributions with means
2 sin(10πt/T ) for t = 1, ..., T and ε = 0.2, where the sample size T = 3000. Three true
change points are equally spaced and located at 750, 1500 and 2250. We fixed the signal-to-
noise ratio to be 1.2 with κ = 1.2 and σ = 1. Note that the relatively high frequency of the
sin function creates the effect of spurious change points on a segment without true change
points. We obtain the following results over 100 repetition and the numbers in the brackets
indicate standard errors.

scaled Hausdorff distance Number of change points

Biweight(2) 0.16 (0.03) 9.37 (2.40)
Biweight(5) 0.03 (0.05) 3.24 (0.52)
R_cusum 0.01 (0.02) 3.02 (0.14)
ARC 0.05 (0.07) 2.90 (0.30)
aARC 0.06 (0.09) 2.88 (0.46)
PELT ∞ (NaN) 0.00 (0.00)

2. We consider the contamination distributions to be Cauchy distribution with scale parameter
10. The experiment set-up is the same as case 1 above. This heavy-tailed contamination has
been considered by [12] and the Biweight algorithm is designed and proven to be effective
in this setting. Therefore, it is not surprised that they outperform other methods in the results
obtained below.

scaled Hausdorff distance Number of change points

Biweight(2) 0.00 (0.00) 3.08 (0.27)
Biweight(5) 0.00 (0.00) 3.00 (0.00)
R_cusum 0.01 (0.00) 3.03 (0.14)
ARC 0.01 (0.02) 3.02 (0.14)
aARC 0.01 (0.01) 3.00 (0.00)
PELT 0.24 (0.01) 81.74 (12.45)

Based on the results above, we note that the comparison is unfair for the PELT algorithm as it is not a
robust algorithm. The R_cusum algorithm perform competitively but this combination of wild binary
segmentation and robust testing procedure has not been studied before (theoretically or empirically).
The performances of our algorithms (ARC and aARC) under these less adversarial scenarios are also
not bad.
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E.3 Details of Section 4.2

Throughout the real data experiments, we consider choices of h that are smaller than
the one used in simulation due suspected short minimal segment lengths and adapt λ =

max{1.2σ
√

5 log(n)h−1, 8σε} to account for the inflated estimation error caused by using a smaller
h, where n always refers the sample size of the data. Also, we observed that it is not necessary
to search for 4h local maximisers, which often leads to under estimation of the number of change
points. Instead, we search for 2h local maximisers in the real data experiments. When imple-
menting aARC, we specify the part of data that we use for selecting ε according to the strategy
described in Section E.1. When implementing ARC, we manually input the value ε and adapt
λ = max{1.2σ

√
5 log(n)h−1, 8σ

√
ε} to account for the larger asymptotic bias when assuming Fi’s

are heavy-tailed. R_USTAT is not considered in real data analysis since its extension to multiple
change point detection is still preliminary and in particular, no method for choosing the initial block
size is available.

E.3.1 Well-log data

van den Burg and Williams [1] performed a systematic study on the performance of different change
point detection algorithms on a selection of real world data sets, which includes the well-log data.
Five human annotations were collected for each data set and the covering metric (see Definition A.2)
is used to evaluate the distance between the estimated change points and human annotations.

Given the suspected short minimal segment length in the data, we choose 2h = 10 log(n) and adjust
λ accordingly while using the 3500th to 4000th data point to select ε. Running the aARC algorithm
100 times, we achieve an average score of 0.807 under the covering metric, which is better than the
result obtained by fine-tuning the BIWEIGHT algorithm as reported in [1]. We note that R_CUSUM
implemented with wild binary segmentation also performs competitively achieving a score of 0.849
with 500 intervals and a BIC-type threshold.

E.3.2 PM2.5 index data

For both datasets, we choose 2h = 15 log(n) and adapt λ to account for both the choice of h and
the difference between ARC and aARC. We would like to emphasise that the variability of ARC and
aARC are mainly due the sample splitting step in the RUME, where we randomly split the 2h data
points into two sets of size h. This step is useful both in terms of theoretical analysis and numerical
performance. The variability of the algorithms can be stabilised when the change points possess a
stronger signal strength and/or the sample size is large.

Table 3: Frequency of the number of change points detected by aARC and ARC over 1000 repetitions

Data sets Method K̂ = 2 K̂ = 3 K̂ = 4

London PM2.5 ARC 0 350 463
aARC 0 790 206

Beijing PM2.5 (corrupted) aARC 753 126 33

For the London PM2.5 data, we run aARC and ARC 1000 times and use the 1000th to 1500th data
points to select ε in aARC. The result is shown in Table 3. Out of the 1000 repetitions, the three
change points corresponding to the aARC result denoted in Figure 4 are detected 790 times. One
additional change point is detected in the first quarter of the data 206 times. While for ARC with input
ε = 0.01, four change points, which corresponds to the ARC result denoted in Figure 4, are detected
463 times. BIWEIGHT(2) and BIWEIGHT(3) seem to detect spurious change points caused by the
large variability in the data set, as shown in Figure 1.

For the Beijing PM2.5 data set, we run aARC 1000 times on the corrupted data set and use 500th to
1000th data points to select ε. The result is shown in Table 3. The original two change points that
were detected on the original data set (without contamination) are detected 753 times on the corrupted
the data set and only one of them is detected 86 times. There are 126 times when the spurious change
point is detected additionally.

21



Figure 1: BIWEIGHT method on London PM 2.5 data with different penalty values

Figure 2: Plot of the diagnostic statistics Dh(j) on the clean and corrupted Beijing PM2.5 index data

An inspection of the plot of the diagnostic statistics on the corrupted and clean data sets in Figure
2 reveals that the original signal is restored in the presence of adversarial attack due to the local
nature of the scanning method, while the fake signal created by the adversary will also exceed the
threshold occasionally. We also consider the BIWEIGHT method with three different penalty values
on the Beijing PM2.5 data. The result is shown in Figure 3. Although different penalty values lead to
different segmentation of the original data set, they all detect the spurious change point created by the
adversarial noise after the data is contaminated. We use the result of BIWEIGHT(3) for illustration in
Figure 1 in Section 1, but we remove the last detected change point for clarity as it seems to be a
spurious point near the endpoint of the data set.

Figure 3: BIWEIGHT method on Beijing PM2.5 data with different penalty values
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