
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cons2Plan: Vector Floorplan Generation from Various Conditions
via a Learning Framework based on Conditional Diffusion Models

Anonymous Authors

ABSTRACT
The field of floorplan generation has attracted significant interest
from the community. Remarkably, recent progress in methods based
on generative models has substantially promoted the development
of floorplan generation. However, generating floorplans that satisfy
various conditions remains a challenging task. This paper proposes
a learning framework, named Cons2Plan, for automatically and
high-quality generating vector floorplans from various conditions.
The input conditions can be graphs, boundaries, or a combination of
both. The conditional diffusion model is the core component of our
Cons2Plan. The denoising network uses a conditional embedding
module to incorporate the conditions as guidance during the reverse
process. Additionally, Cons2Plan incorporates a two-stage approach
that generates graph conditions based on boundaries. It utilizes
three regression models for node prediction and a novel conditional
edge generation diffusionmodel, named CEDM, for edge generation.
We conduct qualitative evaluations, quantitative comparisons, and
ablation studies to demonstrate that ourmethod can produce higher-
quality floorplans than those generated by state-of-the-art methods.

CCS CONCEPTS
• Applied computing→ Computer-aided design; •Mathemat-
ics of computing → Probabilistic reasoning.

KEYWORDS
Vector Floorplan Generation, Graph Generation, Conditioned Dif-
fusion Model

1 INTRODUCTION
Automated vector floorplan generation has experienced remark-
able growth due to the surge of deep learning techniques [4, 24, 35].
These approaches can be divided into two categories. The first
type, such as RPLAN [36], predicts floorplan images at the pixel
level using boundary conditions. The second type, exemplified
by Graph2Plan [15], generates floorplans at the box level by de-
termining room-bounding boxes. This method uses boundaries
or integrates graphs for conditional floorplan generation. Despite
their effectiveness, these two methods require an additional post-
processing step to obtain vector floorplans and the resulting floor-
plans lack variations. Recently, a box-level floorplan generation
method named HouseDiffusion [29], which is based on a continue

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Given three different conditions as input,
Cons2Plan directly generates the vector floorplans without
any post-processing. Users can generate floorplans by simply
adjusting two parameters based on their desired conditions.

and discrete diffusion model, has eliminated the need for any post-
processing steps. Additionally, the probabilistic sampling of the
diffusion model also contributes to the diversity of floorplans. How-
ever, HouseDiffusion is limited to using graph conditions and cannot
generate floorplans under boundary conditions and their combi-
nation. In the actual design process, the boundary condition is
frequently considered preliminary information for designers when
crafting floorplans. Furthermore, boundary conditions help ensure
that the floorplan efficiently utilizes the available space within a
given area and can influence the overall appearance and proportion
of the floorplan [15].

In this paper, we propose a learning framework named Cons2Plan
for floorplan generation under three different conditions (see Fig-
ure 1). Cons2Plan is inspired by HouseDiffusion and builds upon
its foundation by adding the latter two condition options. The key
idea of Cons2Plan is employing a conditional diffusion model with
a carefully designed conditional embedding module in the denois-
ing network (see Figure 2). We transform the conditional diffusion
model into a floorplan generator by augmenting its underlying
transformer encoder backbone with cross-attention [33], which
has been proven to be an effective method for handling various
input modalities [16, 17]. In the input conditions, since our learning
framework always requires the graph condition as a conditional
input, generating the graph condition from the boundary becomes
necessary when only the boundary is provided. Moreover, generat-
ing graphs based on the boundary is a useful yet overlooked task in
architectural designs. So, Cons2Plan also incorporates a two-stage
approach to generate graphs based on the boundary image. Our
two-stage approach consists of two steps: (i) the first step contains
three regression networks to predict the number and types of rooms
in floorplans based on boundary conditions, and (ii) the second step
includes an edge generation network conditioned on boundaries

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

�
���

�
�

�
�

�
��

�
�

�
���

Figure 2: The overview of our learning framework. It con-
sists of two primary components: one part is the denoising
network of the conditional diffusion model, and the other is
a two-stage approach that uses boundary images as input to
generate diverse graphs.

and previously predicted room information, which is implemented
using a conditional edge generation diffusion model, named CEDM.
The approach leverages the regression model to predict room infor-
mation while thoroughly considering boundary conditions and uses
the diffusion model to ultimately generate diverse and high-quality
graphs.

Extensive experiments demonstrate Cons2Plan’s ability to effec-
tively generate floorplans based on different conditions and outper-
form the existing state-of-the-art methods (e.g., RPLAN [36] and
Graph2Plan [15]) in both qualitative and quantitative evaluations.
In scenarios with more constraint conditions than in HouseDiffu-
sion [29], the performance metrics are nearly identical.
Our Contributions. The main contributions of our work can be
summarized as follows.
• We propose a learning framework based on a conditional diffu-
sion model that can automatically and efficiently generate vector
floorplans considering three conditions.

• We design a two-stage approach that generates plausible and
diverse graphs based on the input boundary conditions, serving
as an important component of our learning framework.

• Extensive experiments demonstrate the superiority of ourmethod
under various input conditions. Furthermore, we conduct abla-
tion studies to illustrate the effectiveness of the proposed condi-
tional embedding module and two-stage approach.

2 RELATEDWORK
2.1 Learning-based floorplan generation
Most of the existing floorplan generation methods are either pixel-
level generation methods or box-level generation methods.
Pixel-level floorplan generation. [36] presents a two-stage strat-
egy, named RPLAN, to automatically generate floorplans by first
computing the number and types of rooms, and then determin-
ing the positions of the walls between the rooms. [25] propose
a generative model named House-GAN for floorplan generation.
House-GAN utilizes a generative adversarial network that takes
graphs as input to generate diverse floorplans that fit the graph.
Subsequently, they made improvements based on House-GAN and

proposed House-GAN++ [26]. House-GAN++ combines a relational
GAN with a conditional GAN. Like other pixel-level methods, post-
processing is still required afterward. Most importantly, the quality
of the floorplans generated by it is significantly lower compared to
HouseDiffusion [29].
Box-level floorplan generation. [15] achieves a learning frame-
work called Graph2Plan that generates floorplans using graphs and
boundaries as constraints. This framework heavily relies on the
dataset, as it uses the Turing function to search for the most sim-
ilar boundary within the dataset. Moreover, the post-processing
step is also essential. [5] uses a generative adversarial network and
graph convolutional network to produce floorplans from linguistic
descriptions. [35] proposes a learning-based method that generates
floorplans by combining suitable rooms together. Recently, [29] uses
a generative model for floorplan generation through a diffusion
model named HouseDiffusion. Taking a graph as input, HouseD-
iffusion can generate diverse vector floorplans that fit the graph
and require no post-processing. However, there is still a drawback:
the input conditions are singular, as they only accept graphs as
constraint conditions.

2.2 Graph generation
Graph generation techniques have been extensively applied in var-
ious domains, such as social networks [7, 40] and chemical com-
pounds [30]. Among these, state-of-the-art approaches use deep
neural networks for graph generation. [39] devises a reversible
mapping between the latent space and the graph, which generates
node feature and edge feature matrices for the graph. [8] designs a
GAN-based graph generative model in which the purpose of the
discriminator is to ensure that the generated graph contains the
required properties. [34] first uses discrete diffusion models, named
DiGress, to generate graphs. DiGress adds noise to vertices and
edges and predicts the types of vertices and edges. However, ex-
isting graph generation methods have not been directly applied to
generate graphs in floorplans, nor have they generated plausible
graphs with boundaries as constraint conditions.

2.3 Conditional diffusion models
Recently, the Diffusion Model (DM) [3, 9, 20, 37] has gained sig-
nificant attention. Subsequently, to increase controllability, the
Conditional Diffusion Model (CDM) has also been proposed. [10]
introduces a Conditional Diffusion Model that integrates a classifier
into the sampling process to guide the generation process. [22] fur-
ther developed this approach by augmenting the number of control
conditions. Later, [14] introduced an approach that directly embeds
conditions into the denoising network to control the generation
process. This method has a higher training cost but significantly
better performance.

However, there are few works on using CDM for floorplan gen-
eration. Some works [2, 6, 21] use discrete 2D coordinates as the
object. However, their methods are based on unconditional genera-
tion using DM. More recently, [29] first proposes a vector floorplan
generation method based on the CDM, namedHouseDiffusion. It can
directly generate high-quality and diverse floorplans, even though
the graph is the sole input condition provided.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Cons2Plan: Vector Floorplan Generation from Various Conditions via a Learning Framework based on Conditional Diffusion Models ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 METHODOLOGY
In this section, we first discuss the representation methods for
floorplans and conditions in Section 3.1. Then, we introduce the
two-stage approach to generate graphs, which serves as an essential
part of our framework, in Section 3.2. Finally, we introduce the
conditional embedding module in Section 3.3.

3.1 Floorplan and conditions representation
For floorplan data representation, we represent a floorplan as a set of
axis-aligned polygonal geometries 𝐺 = {𝐺1, ...,𝐺𝑖 , ...,𝐺𝑁 }. Where
N denotes the total number of rooms and doors. Each polygonal
geometry is defined as a sequence of corners with 2D coordination
𝐺𝑖 = {𝐶𝑖,1,𝐶𝑖,2, ...,𝐶𝑖,𝑁𝑖

|𝐶𝑖, 𝑗 ∈ 𝑅2}. 𝑁𝑖 denotes the number of cor-
ners in 𝐺𝑖 , which needs to be specified during sampling. Since the
number of corners greatly influences the quality of the generated
floorplan in satisfying the boundary conditions, we set the corner
count for all room types, excluding living rooms, to 4. Upon examin-
ing the dataset, we observe that 95% of non-living room-type rooms
have four corners, making this a reasonable generalization. The
living room corner count, however, is sampled from the probability
histogram during each inference. This histogram is constructed
based on the dataset.

For graph condition representation, the graph is illustrated using
a bubble diagram where nodes represent rooms, and edges indicate
room connections. Each room node is associated with a specific
room type. Furthermore, we use adjacency matrices for storing and
processing the graph condition.

For boundary condition representation, we represent it as a three-
channel image. The three-channel image includes the following
information at each pixel, which defaults to 0:
• Inside mask: taking a value of 1 for the interiors.
• Boundary mask: taking a value of 0.5 for the exterior walls.
• Global mask: Combining inside and boundary masks together.

3.2 Two-Stage approach for graph generation
The graph generation based on the boundary plays a crucial role in
both architectural design and our learning framework. Although
there are many methods capable of implementing graph genera-
tion, none of these methods consider generating graphs conditional
on boundaries. Therefore, we propose a graph generation method
that fully considers boundary conditions. For the conditional graph
generation method, inspired by [18], we formulate the graph gener-
ation problem as node prediction and edge generation. The process
of generating graphs from a building boundary involves two stages:
predicting nodes of the graph and obtaining edges between nodes.
Node prediction is implemented by three regression models and
edge generation is implemented by a conditional diffusion model
called CEDM.
Node prediction. Our first step is to predict the number and types
of rooms by using the building boundary. The node prediction pro-
posed by [36] can accomplish this task quite well, so we directly
use their three networks. We first use the LivingNet, a regression
network, to determine the living room’s location. We then adopt
LocationNet, an encoder-decoder network, for predicting the type
and position of the next room to be added. Upon obtaining the type
of the next room to be added, we use ContNet, a regression network,

E
�

’

’

E

E
�

Y’

E’

Y’’ Y’’

�’

�’

’

Figure 3: The overview of CEDM. It tasks as input boundaries,
node sequence 𝑋 and noisy edge 𝐸𝑡 , and outputs clean edge.
Our transformer blocks also feature residual connections
and layer normalization. Scale and Shift operation is (𝑋1𝑀1 +
1) ⊙ 𝑋2 + 𝑋1𝑀2 for learnable weight matrices𝑀1 and𝑀2.

to determine whether to continue adding rooms. We only use the
predicted number and types of rooms, not their positional informa-
tion, because restricting the locations of rooms would reduce the
diversity of the generated graphs.

We modify the data input format for the networks by using a
three-channel image as the input, which is consistent with the
boundary condition representation. The architecture of the three
networks has not been modified. The resulting node information
will serve as the input for the next step.
Edge generation. The next step is to generate edges. There are
some methods based on RNN [38] or GAN [8] that can implement
edge generation. However, they have been proven to be less effec-
tive in terms of accuracy and diversity compared to methods using
Diffusion Models [34]. Inspired by the graph generative model (Dis-
crete Graph Denoising Diffusion model, DiGress) [34], we use a
modified DiGress to generate edges. Unlike DiGress, which predicts
the probability distribution of node attributes and edge attributes
in the graph simultaneously, we use node attributes and boundary
as conditions and focus on predicting the probability distribution
of edge attributes. Therefore, our model is a conditional edge gen-
eration diffusion model named CEDM.

The reason we do not use DiGress to directly generate graphs
with boundaries as conditions is that we discover DiGress cannot
predict the number of nodes in a graph. Instead, the number of
nodes is pre-sampled from a histogram of node counts derived from
the dataset, without considering the boundary conditions. Exist-
ing DM-based graph generation models all use the same strategy.
This results in the number of nodes in the generated graph not
depending on the boundaries, which leads to the generated floor-
plans deviating from the probability distribution of the original
data. Our experiments in the Ablation Studies further corroborated
this conclusion.

In our method, we represent room types as node attributes and
the connectivity between rooms as edge attributes. CEDMuses node
attributes and boundary conditions as guiding conditions, which
we represent as 𝐶 . Edge attributes are represented by the spaces 𝜉 ,
with cardinality 𝑏. As we only consider the presence or absence of
edges between nodes, the value of 𝑏 is set to 2. We use 𝑒𝑖 𝑗 to denote

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

�
���

���� ��
��

�����

�����

�

�

��

�
�

Figure 4: The overview of CEM-DM. The denoising network takes as input a building boundary 𝑦𝐵 , a bubble graph 𝑦𝐺 , and
noised floorplan 𝑋 𝑡 . The core module of CEM-DM is a Transformer model with the conditional embedding module. The
conditional embedding module employs cross-attention to integrate boundary features extracted by EfficientNet into the vertex
features of a noised floorplan. Additionally, the adjacency matrix represented by the generated graph is utilized as a mask
matrix in the multi-head attention layers.

the connection relationship between node 𝑖 and node 𝑗 , and 𝐸 to
denote all the edge attributes in the graph 𝐺 . Simultaneously, we
use 𝒆𝒊𝒋 ∈ R𝑏 to denote the one-hot encoding of edges. A tensor
𝑬 ∈ R𝑛×𝑛×𝑏 groups the one-hot encoding 𝒆𝒊𝒋 of each edge, where
𝑛 denotes the number of nodes.

Similarly to diffusion models for images, which apply noise in-
dependently on each pixel, we diffuse separately on each edge at-
tribute. For the noisemodel, we use the same noise representation as
DiGress, which is represented by transitionmatrices (Q1,Q2, ...,Q𝑇)
such that [Q𝑡]𝑖 𝑗 = 𝑞(𝑒𝑡 = 𝑗 |𝑒𝑡−1 = 𝑖) represents the probability
of edge 𝑒 transitioning from state 𝑖 to state 𝑗 between time 𝑡 − 1
and 𝑡 : 𝑞(𝐸𝑡 |𝐸𝑡−1) = 𝑬𝑡−1Q𝑡 . Since the forward process is still Mar-
kovian, the transition matrix from 𝐸 to 𝐸𝑡 reads Q̄𝑡 = Q1 ...Q𝑡 .
When Q̄𝑡 is precomputed, the noisy states 𝐸𝑡 can be built from 𝐸:
𝑞(𝐸𝑡 |𝐸) = 𝑬Q̄𝑡 . When conditions 𝐶 are introduced, the forward
diffusion process remains unchanged. This is because the forward
diffusion process involves adding noise to the original edge attribu-
tions until they become pure noise, the process that is unrelated to
the conditions 𝐶:

𝑞(𝐸𝑡 |𝐸𝑡−1,𝐶) = 𝑞(𝐸𝑡 |𝐸𝑡−1) = 𝑬𝑡−1Q𝑡 . (1)

The posterior distribution 𝑞(𝐸𝑡−1 |𝐸𝑡 , 𝐸,𝐶) can also be computed
using Bayes rule:

𝑞(𝐸𝑡−1 |𝐸𝑡 , 𝐸,𝐶) ∝ 𝑬𝑡 (Q𝑡)′ ⊙ 𝑬Q̄𝑡−1, (2)

where ⊙ denotes a elementwise product. Afterward, we can utilize
Eq. 2 to calculate the probability distribution of 𝐸𝑡−1.

For denoising network 𝝓𝜽 parametrized by 𝜃 , it takes a noisy
edge 𝐸𝑡 and conditions 𝐶 as input and aims to predict the clean
edges 𝑝𝜃 (𝐸 |𝐸𝑡 ,𝐶). To train 𝝓𝜽 we use the cross-entropy loss 𝑙 be-
tween the predicted edge probabilities 𝑝𝐸 and the true edge 𝐸:

𝐿(𝑝𝐸 , 𝐸) =
∑︁

1⩽𝑖, 𝑗⩽𝑛

Cross − entropy(𝑒𝑖 𝑗 , 𝑝𝐸𝑖 𝑗) . (3)

Once the diffusion model is trained, we can obtain a pure edge 𝐸.
Then, by using 𝐸, we can sample to get 𝐸𝑡−1. To do so, we need

to estimate the reverse diffusion iteration 𝑝𝜃 (𝐸𝑡−1 |𝐸𝑡 ,𝐶) using the
prediction 𝑝𝐸 . We model this distribution as a product over edges:

𝑝𝜃 (𝐸𝑡−1 |𝐸𝑡 ,𝐶) =
∏

1⩽𝑖, 𝑗⩽𝑛

𝑝𝜃 (𝑒𝑡−1
𝑖 𝑗 |𝐸𝑡 ,𝐶) . (4)

To compute each term, we marginalize over the network predic-
tions:

𝑝𝜃 (𝑒𝑡−1
𝑖 𝑗 |𝐸𝑡 ,𝐶) =

∑︁
𝑒∈𝜉

𝑝𝜃 (𝑒𝑡−1
𝑖 𝑗 |𝑒𝑖 𝑗 = 𝑒, 𝐸𝑡 ,𝐶)𝑝𝐸𝑖 𝑗 (𝑒), (5)

where we choose:

𝑝𝜃 (𝑒𝑡−1
𝑖 𝑗 |𝑒𝑖 𝑗 = 𝑒, 𝐸𝑡 ,𝐶) = 𝑞(𝑒𝑡−1

𝑖 𝑗 |𝑒𝑖 𝑗 = 𝑒, 𝑒𝑡𝑖 𝑗 ,𝐶) . (6)

Eq. 6 is valid only under the condition of 𝑞(𝑒𝑡
𝑖 𝑗
|𝑒𝑖 𝑗 = 𝑒) > 0. Finally,

the probability distribution of 𝐸𝑡−1 can be calculated, and thus
the 𝐸𝑡−1 can be sampled, which will be the input of the denoising
network at the next time step.

For the CEDM’s architecture (see Figure 3), the denoising net-
work takes noisy edge attributions 𝑬𝑡 , graph-level features 𝑌 and
conditions 𝐶 as input and outputs tensors 𝐸 which represent the
predicted distribution over clean edge. We first use ResNet34 [12]
to perform feature extraction on the boundaries and obtain a node
sequence by performing one-hot encoding on the node attributes.
To improve the network expressivity, we use formulas [28] to calcu-
late the number of cycles in the graph. The obtained feature 𝑦 and
feature 𝑌 represent the node-level cycle feature and graph-level
cycle feature, respectively. Afterward, we concatenate the boundary
features, node sequence, and node-level cycle features as the input
conditional features 𝐶 . At the core of the denoising network, we
use a modified graph transformer network proposed by [11]. In the
transformer block, we first compute the unnormalized attention
scores using the updated conditional features 𝐶′ without applying
softmax. Finally, we incorporate both the edge features 𝐸′ and the
graph-level features 𝑌 ′ into the attention scores by employing scale
and shift operation [27].

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Cons2Plan: Vector Floorplan Generation from Various Conditions via a Learning Framework based on Conditional Diffusion Models ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5: Comparison to the state-of-the-art with the only boundary. Boundaries are extracted from the training samples to
serve as conditional inputs for all methods. Each row displays the results of different methods applied to the same boundary.

3.3 Conditional embedding mechanism
So far, we have proposed a two-stage approach for generating
graphs. In the following, we introduce how to use our conditional
embedding module to incorporate boundary conditions (denoted as
𝑦𝐵) and graph conditions (denoted as 𝑦𝐺) into denoising network,
named CEM-DM (see Figure 4).

For the boundary constraint, we use a three-channel image as
input, which is consistent with the boundary condition represen-
tation. First, a modified EfficientNet-b1 [32] is used to obtain the
spatial features. By removing the last fully connected layer and the
adaptive average pooling layer, a multi-channel feature map (8x8) is
ultimately obtained. It is worth noting that we use the pre-trained
EfficientNet-b1 parameters as the initial parameters for our feature
extraction model. Then, we use 1-D convolution to transform fea-
ture maps into sequences 𝛾 (𝑦𝐵) and employ ResBlock to merge
the time step 𝑡 , which has undergone position embedding, with
the corner coordinates of 𝑋 𝑡 , thereby obtaining the features 𝜑 (𝑋 𝑡).
The Block in ResBlock utilizes instance normalization (IN) and
sigmoid-weighted linear unit (SiLU). Subsequently, we enhance the
transformer backbone with the cross-attention layer. To enhance
the performance of generating floorplans without boundaries, we
add the output of the ResBlock to 𝑅 in the cross-attention layer. The
output result 𝑅 is ultimately used as the input for the Multi-head
Attention Layers.

For the graph constraint, we employ the same method used
in HouseDiffusion, transforming them into an adjacency matrix
and using it as a mask matrix in the Multi-head Attention Layers,
limiting attention to connected rooms only. We also use two other

Condition Model FID (↓) BC (↓)

Boundary
RPLAN 63.7±2.4 0.0±0.0

Graph2Plan 41.3±3.0 0.14±0.0
Ours 8.8±0.3 0.05±0.0

Table 1: FID score and BC comparison to RPLAN and
Graph2Plan with the only boundary. 512 generated floor-
plans are selected to calculate the FID score and BC.

types of mask matrices: the component-wise mask matrix and the
global mask matrix. They are used for limiting attention among
corners within the same room and between every pair of corners
across all rooms, respectively.

Based on conditioning pairs, we can train the conditional diffu-
sion model via:

𝐿 = 𝐸𝑋, 𝑦, 𝜖∼N(0,1), 𝑡
[
| |𝜖 − 𝜖𝜃

(
𝑋 𝑡 , 𝑡, 𝑦𝐵, 𝑦𝐺

)
| |22
]
. (7)

Because our method considers graphs as necessary conditions
and boundaries as optional constraints, we train both with and
without boundaries simultaneously in CEM-DM. This is facilitated
by randomly assigning a value of 0 to the boundary constraints
of some samples in the batch size. During the inference, inspired
by Classifier-free guidance[14], we introduce a hyperparameter 𝜆 ∈
(0, 1) to determine whether to use boundaries. Specifically, Use the
following formula to infer:

𝜖𝜃
(
𝑋 𝑡 , 𝑡, 𝑦𝐵, 𝑦𝐺

)
= 𝜆𝜖𝜃

(
𝑋 𝑡 , 𝑡, 𝑦𝐵, 𝑦𝐺

)
+ (1 − 𝜆) 𝜖𝜃

(
𝑋 𝑡 , 𝑡, 𝑦𝐺

)
. (8)

We also provide a parameter𝑤 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, paired with 𝜆, to
dictate the selection of one of three scenarios for generation.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 6: Comparison to HouseDiffusion. An example of
graph-constrained floorplan generation using HouseDiffu-
sion and our method is shown. For each graph, each method
is executed twice, generating two different floorplans.

4 EXPERIMENTS
4.1 Experimental Setting
Dataset. We conduct experiments on a representative benchmark
RPLAN [36], which is a large-scale dataset with more than 80K real
floorplans from residential buildings. In this dataset, each floorplan
is represented as an image, which provides detailed information
about the types of rooms and their connectivity relationships.
Baselines.We compare our method with the following three state-
of-the-art floorplan generation methods: (i) RPLAN [36] is a regres-
sion model that can generate floorplans through only boundaries;
(ii) HouseDiffusion [29] only takes graphs as conditions to generate
vector floorplans based on diffusion models; (iii) Graph2Pan [15]
can generate floorplans under both boundaries and graphs.
Evaluation Metrics. We conducted both quantitative and qualita-
tive evaluations. For quantitative evaluations, we use two metrics:
(i) Diversity – it is evaluated by the Frechet Inception Distance
(FID) [13], which is a global metric to calculate the distribution
similarity between the generated images and the ground truth; (ii)
Compatibility – it includes Boundary Compatibility (BC) and Graph
Compatibility (GC). Specifically, BC calculates the area difference
between the boundary geometry and the convex hull formed by
the geometries of all rooms [31], while GC uses the modified Graph
Edit Distance [1] to compare the room connectivity relationships
in the graph with those in the generated floorplans.

4.2 Implementation Details
We use PyTorch to implement and train all networks. All the ex-
periments are run on a single A800 GPU. Before training. we use

Figure 7: Comparison to Graph2Plan with the same bound-
ary and graph. All conditions are extracted from the ground
truth and used as input for both methods.

post-processing tools to extract boundary images, graphs, and vec-
tor floorplans from the RPLAN. The extracted data is used as the
dataset for all networks.

In the two-stage approach, 80% of the dataset is used for training
and the remaining 20% for testing. For the node prediction networks,
our experimental procedure is the same as [36]. For the CEDM,
Adam [19] is used as the optimizer with weight decay [23], and we
train the network for 1000 epochs with a batch size of 6000. The
initial learning rate is set to 2e-4.

For the CEM-DM, similar to the HouseDiffusion, the dataset is
divided into four groups based on the number of rooms (i.e., 5, 6,
7, or 8 rooms). To generate floorplans for each group, we remove
the group’s samples from training to prevent the network from just
memorizing them. We use the Adam optimizer with default settings
combined with an exponential falloff from le-3 to le-5 over 400k
steps. We train for 400k steps with a mini-batch of 400 floorplans.
We set the number of diffusion steps to 1000 and uniformly sample
𝑡during training.

4.3 Results and Discussions
We compare our method with baselines under three input condi-
tions: only boundaries, only graphs, as well as both boundaries and
graphs. Additionally, we also showcase the capability of Cons2Plan
to generate diverse floorplans.
Only boundaries. In this setting, we compare with RPLAN and
Graph2Plan since they can generate floorplans using only bound-
ary conditions. Specifically, RPLAN achieves floorplan generation
by predicting room positions and generating inner walls, while
Graph2Plan searches for the closest floorplans to the input bound-
ary in the database and extracts their corresponding graphs to use
as its input. In contrast, our method employs a two-stage approach
to generate diverse graphs based on the given boundary.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Cons2Plan: Vector Floorplan Generation from Various Conditions via a Learning Framework based on Conditional Diffusion Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

FID (↓) GC (↓)

Condition Model 5 6 7 8 5 6 7 8

Graph
HouseDiffusion 11.2±0.2 10.3±0.2 10.4±0.4 9.5±0.1 1.5±0.0 1.2±0.0 1.7±0.0 2.5±0.0
Ours w/o rc 12.9±0.1 13.1±0.3 12.3±0.3 11.9±0.4 1.5±0.0 1.8±0.1 2.2±0.1 2.9±0.0

Ours 9.4±0.2 10.8±0.3 10.6±0.2 9.9±0.1 1.4±0.1 1.3±0.1 1.9±0.2 2.2±0.1

Table 2: FID score and GC results comparison amongHouseDiffusion, ourmethod, and ourmethodwithout residual connections,
with only graphs. 512 generated floorplans are selected to calculate the FID score and GC. For the HouseDiffusion method, we
copy the numbers reported in the HouseDiffusion paper [29].

FID (↓) GC (↓) BC (↓)

Condition Model 5 6 7 8 5 6 7 8 5 6 7 8

B & G Graph2Plan 28.0±0.0 29.5±0.0 31.7±0.0 32.7±0.0 0.5±0.1 0.7±0.1 1.6±0.3 3.0±0.5 0.10±0.0 0.11±0.0 0.12±0.0 0.12±0.0
Ours 7.8±0.0 6.8±0.1 6.4±0.2 6.2±0.2 1.0±0.1 1.2±0.1 1.6±0.0 2.2±0.1 0.05±0.0 0.05±0.0 0.06±0.0 0.06±0.0

Table 3: FID score, GC, and BC comparison to Graph2Plan with the boundary and graph conditions. 512 generated floorplans
are selected to calculate the FID score, GC, and BC.

Figure 5 and Table 1 show the qualitative and quantitative eval-
uation, respectively. As shown in Figure 5, RPLAN generates crum-
bling walls in all samples. This is due to the low accuracy ofWallNet
used in generating semantic images of walls. On the other hand,
the biggest issue with Graph2Plan is that after selecting the graph
for dataset retrieval, some rooms are missing in the generated floor-
plans (e.g., the balcony is missing in the second and last rows,
and the bathroom is missing in the third row). This is because
the missing rooms are completely covered by other rooms after
post-processing. It is worth noting that our method can not only
generate high-quality floorplans but also produce floorplans with
different graphs from the ground truth. Table 1 shows an obvious
improvement in FID score compared to all other methods. Regard-
ing BC comparison, RPLAN is not suitable for comparison since
it only generates the center position of rooms and the inner wall
position for each room. However, our method still performs better
than Graph2Plan in terms of BC.
Only graphs. We compare the floorplans created using our ap-
proach with those produced by HouseDiffusion when only graphs
are provided. Qualitative and quantitative evaluations are shown in
Figure 6 and Table 2, respectively. As shown in Figure 6, the quality
of floorplans generated by both HouseDiffusion and our method is
quite similar. In Table 2, our method performs slightly worse than
HouseDiffusion in terms of FID score and GC. This is primarily due
to CEM-DM training to generate floorplans in a mini-batch that
includes both cases with and without boundaries, while HouseD-
iffusion only trains for cases without boundaries. Our approach
results in a loss of probability density when predicting only graphs.
However, we mitigate this effect by incorporating residual con-
nections. We also present the quantitative results of the method
without residual connections, named Ours w/o rc, to demonstrate
the effectiveness of our improvements.
Both boundaries and graphs. In this setting, we compare with
Graph2Plan since it can generate floorplans with both boundary
and graph conditions. The qualitative evaluation results are shown
in Figure 7, from which we can see that Graph2Plan still has cases
of missing rooms (e.g., the first row is missing a study room). In
addition, to test the performance of our method, we selected some

Figure 8: Performance testing of Cons2Plan in generat-
ing floorplans. We executed three independent trials of
Cons2Plan with identical boundary conditions, resulting in
the generation of three unique floorplans.

complex graphs and boundaries for the last three rows. In the
second row, there is a bedroom that does not connect to any other
rooms, and in the last two rows, there are bedrooms connected
to two rooms simultaneously. Graph2Plan is unable to generate
floorplans under such graph conditions. Because it simply places
room boxes based on the spatial relationship of nodes in the graph,
and the post-processing only adds door decorations. In contrast, our
method can generate floorplans that fully satisfy both conditions.

Table 3 shows a quantitative evaluation between the two meth-
ods. To ensure fairness, we do not use the post-processing step
when calculating the BC for Graph2Plan. From Table 3, it can be
observed that our method has an obvious improvement in FID score
and BC. The FID score of our generated floorplans is reduced by

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 9: Ablation studies. We compare our two-stage ap-
proach with both the direct application of the DiGress
method and the Single-DiGress method. We generate graphs
using each method and then use these graphs as conditions
to generate floorplans with our CEM-DM.

an average of 75% compared to Graph2Plan. BC is also lower than
Graph2Plan’s by at least 50% in all cases. Although our method has
a higher GC than Graph2Plan when the number of rooms is small
(e.g., less than 7), as the number of rooms increases, our method
demonstrates a clear advantage in GC.
Flooplan generation performance.We also test the performance
of ourCons2Plan to generate diverse floorplans with the only bound-
aries. The generated results can be seen in Figure 8. We use our
approach to generate three different floorplans under the same
boundary. In the first two rows, our method can generate floorplans
with different room numbers and room connection relationships.
In the last two rows, compared to the ground truth, our method
can generate floorplans with the same room types but different
connection relationships. This demonstrates that our Cons2Plan is
capable of generating plausible and diverse floorplans through our
two-stage approach and the conditional embedding module.

4.4 Ablation Studies
We conduct a series of ablation studies to verify the effectiveness
of our technical contributions.
Two-stage approach. To verify the effectiveness of our two-stage
approach, we compared our method with a direct application of
DiGress to generate graphs. Additionally, we also create a two-
stage approach that solely relies on the predicted number of nodes
from regression models, while discarding node type information. In
generating edges, this approach uses only the boundary image as a
constraint, concurrently predicting the probability distributions for
both nodes and edges. We named this method Single-DiGress.

Figure 9 and Table 4 qualitatively and quantitatively measure
the effectiveness of our two-stage approach. Directly using DiGress
to generate graphs results in the creation of an excessive number

Condition Model FID (↓) BC (↓)

Boundary
DiGress 10.3±0.2 0.05±0.0

Single-DiGress 9.3±0.3 0.05±0.0
Ours 8.7±0.2 0.05±0.0

Table 4: FID score and BC comparison to DiGress and Single-
DiGresswith the only boundaries. Allmetricswere calculated
based on the 512 floorplans generated.

Embeding Method FID (↓) GC (↓) BC (↓)

Simple 12.0±0.5 2.1±0.1 0.09±0.0
Ours 6.8±0.1 1.3±0.1 0.05±0.0

Table 5: Quantitative evaluation includes the FID score, GC
and BC for the two condition embedding methods. Both met-
rics are calculated using the same 512 ground truth samples.

of room nodes. This is mainly due to the node acquisition strategy
employed by DiGress, leading to poor floorplans that are overly
crowded and do not conform to the intuitive principles of actual
floorplan designs, as demonstrated in Figure 9. For Single-DiGress,
while it seemingly is capable of generating reasonable floorplans
based on boundary conditions, as shown in Figure 9, it produces
a greater variety of node types. This randomness stems from its
use of a diffusion model without fully considering the boundaries
to generate node types, whereas our method produces node types
that are more realistic. Consequently, Single-DiGress exhibits a
higher FID score than our method. However, both methods show
an improvement in FID scores compared to the direct use of the
DiGress method, as indicated in Table 4.
Conditional embedding module. In Cons2Plan, we use the con-
ditional embedding module to embed the boundary constraint into
the denoising network, guiding the model to generate floorplans
that meet the constraints. To demonstrate the effectiveness of this
module, we conduct relevant ablation studies and show the results
in Table 5. We compare our conditional embedding method with a
simple approach of directly adding the boundary features to each
corner features 𝛾 (𝑦𝐵) + 𝜑 (𝑋 𝑡). We extract boundaries and graphs
from samples as conditional input for evaluation. We can see that
simply adding boundary constraints to corner features performs
poorly in all evaluation metrics compared to our approach. This
confirms the effectiveness of the conditional embedding module in
our conditional diffusion model.

5 CONCLUSION
This paper proposes Cons2Plan, a floorplans generation framework
that is more generalizable than SOTA floorplans generation meth-
ods in terms of input constraint conditions. The proposed method
uses a conditional diffusion model with a conditional embedding
module. By combining regression models and a discrete diffusion
model, this method not only takes into account the boundary condi-
tions but also significantly improves the diversity of the generated
graphs. Extensive experiments demonstrate that our method sup-
ports various conditions, producing higher quality floorplans than
state-of-the-art techniques.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cons2Plan: Vector Floorplan Generation from Various Conditions via a Learning Framework based on Conditional Diffusion Models ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau.

2015. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition
Problems. In 4th International Conference on Pattern Recognition Applications and
Methods 2015. https://doi.org/10.5220/0005209202710278

[2] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den
Berg. 2023. Structured Denoising Diffusion Models in Discrete State-Spaces.
arXiv:2107.03006 [cs]

[3] Hanqun Cao, Cheng Tan, Zhangyang Gao, Guangyong Chen, Pheng-Ann
Heng, and Stan Z. Li. 2022. A Survey on Generative Diffusion Model. CoRR
abs/2209.02646 (2022). https://doi.org/10.48550/arXiv.2209.02646

[4] Stanislas Chaillou. 2020. ArchiGAN: Artificial Intelligence x Architecture. In
Architectural Intelligence: Selected Papers from the 1st International Conference on
Computational Design and Robotic Fabrication (CDRF 2019), Philip F. Yuan, Mike
Xie, Neil Leach, Jiawei Yao, and Xiang Wang (Eds.). Springer Nature Singapore,
117–127. https://doi.org/10.1007/978-981-15-6568-7_8

[5] Qi Chen, Qi Wu, Rui Tang, Yuhan Wang, Shuai Wang, and Mingkui Tan. 2020.
Intelligent Home 3D: Automatic 3D-House Design From Linguistic Descriptions
Only. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 12622–12631. https://doi.org/10.1109/CVPR42600.2020.01264

[6] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. 2023. Analog Bits:
Generating Discrete Data Using Diffusion Models with Self-Conditioning.
arXiv:2208.04202 [cs]

[7] Marco Conti, Andrea Passarella, and Fabio Pezzoni. 2011. A model for the
generation of social network graphs. In 2011 IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks. 1–6. https://doi.org/10.1109/
WoWMoM.2011.5986141

[8] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model
for small molecular graphs. ICML 2018 workshop on Theoretical Foundations and
Applications of Deep Generative Models (2018).

[9] Congyue Deng, Chiyu Max Jiang, Charles R. Qi, Xinchen Yan, Yin Zhou, Leonidas
Guibas, and Dragomir Anguelov. 2023. NeRDi: Single-View NeRF Synthesis
with Language-Guided Diffusion as General Image Priors. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 20637–20647.
https://doi.org/10.1109/CVPR52729.2023.01977

[10] Prafulla Dhariwal and Alex Nichol. 2021. Diffusion Models Beat GANs on Image
Synthesis. arXiv:2105.05233 [cs, stat]

[11] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A Generalization of Trans-
former Networks to Graphs. CoRR abs/2012.09699 (2020). https://arxiv.org/abs/
2012.09699

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. InAdvances in Neural Information Processing Systems,
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.), Vol. 30. https://proceedings.neurips.cc/paper_files/paper/
2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

[14] Jonathan Ho and Tim Salimans. 2021. Classifier-Free Diffusion Guidance. In
NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications.
https://openreview.net/forum?id=qw8AKxfYbI

[15] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui
Huang. 2020. Graph2Plan: Learning Floorplan Generation from Layout Graphs.
ACM Transactions on Graphics 39, 4 (Aug. 2020), 118–1. https://doi.org/10.1145/
3386569.3392391

[16] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin
Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan
Shelhamer, Olivier J Henaff, Matthew Botvinick, Andrew Zisserman, Oriol
Vinyals, and Joao Carreira. 2022. Perceiver IO: A General Architecture for Struc-
tured Inputs & Outputs. In International Conference on Learning Representations.
https://openreview.net/forum?id=fILj7WpI-g

[17] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and
Joao Carreira. 2021. Perceiver: General Perception with Iterative Attention. In
Proceedings of the 38th International Conference on Machine Learning. 4651–4664.
https://proceedings.mlr.press/v139/jaegle21a.html

[18] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J. Kim.
2021. HOTR: End-to-EndHuman-Object InteractionDetectionwith Transformers.
In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
74–83. https://doi.org/10.1109/CVPR46437.2021.00014

[19] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs]

[20] Junhyeok Lee and Seungu Han. 2021. NU-Wave: A Diffusion Probabilistic Model
for Neural Audio Upsampling. In Interspeech 2021. 1634–1638. https://doi.org/10.
21437/Interspeech.2021-36 arXiv:2104.02321 [cs, eess]

[21] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B.
Hashimoto. 2022. Diffusion-LM Improves Controllable Text Generation.

arXiv:2205.14217 [cs]
[22] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan,

Yuxiao Hu, Humphrey Shi, Anna Rohrbach, and Trevor Darrell. 2023. More
Control for Free! Image Synthesis with Semantic Diffusion Guidance. In 2023
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 289–299.
https://doi.org/10.1109/WACV56688.2023.00037

[23] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations. https://openreview.net/
forum?id=Bkg6RiCqY7

[24] Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-Generated
Residential Building Layouts. In ACM SIGGRAPH Asia 2010 Papers on - SIGGRAPH
ASIA ’10. 1. https://doi.org/10.1145/1882262.1866203

[25] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Fu-
rukawa. 2020. House-GAN: Relational Generative Adversarial Networks for
Graph-Constrained House Layout Generation. In Computer Vision – ECCV 2020,
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.).
Vol. 12346. Springer International Publishing, 162–177. https://doi.org/10.1007/
978-3-030-58452-8_10

[26] Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi
Cheng, and Yasutaka Furukawa. 2021. House-GAN++: Generative Adversarial
Layout Refinement Network towards Intelligent Computational Agent for Pro-
fessional Architects. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 13627–13636. https://doi.org/10.1109/CVPR46437.2021.01342

[27] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C.
Courville. 2018. FiLM: Visual Reasoning with a General Conditioning Layer. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI
Press, 3942–3951. https://doi.org/10.1609/AAAI.V32I1.11671

[28] N. Pržulj, D. G. Corneil, and I. Jurisica. 2004. Modeling Interactome: Scale-Free
or Geometric. Bioinformatics 20, 18 (Dec. 2004), 3508–3515. https://doi.org/10.
1093/bioinformatics/bth436

[29] Mohammad Amin Shabani, Sepidehsadat Hosseini, and Yasutaka Furukawa. 2023.
HouseDiffusion: Vector Floorplan Generation via a Diffusion Model with Discrete
and Continuous Denoising. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 5466–5475. https://doi.org/10.1109/CVPR52729.2023.
00529

[30] Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and
Jian Tang. 2020. GraphAF: a Flow-based Autoregressive Model for Molecular
Graph Generation. In International Conference on Learning Representations. https:
//openreview.net/forum?id=S1esMkHYPr

[31] Chun-Yu Sun, Qian-Fang Zou, Xin Tong, and Yang Liu. 2019. Learning Adaptive
Hierarchical Cuboid Abstractions of 3D Shape Collections. ACM Transactions on
Graphics 38, 6 (Dec. 2019), 1–13. https://doi.org/10.1145/3355089.3356529

[32] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks. In Proceedings of the 36th International Conference
on Machine Learning. 6105–6114. https://proceedings.mlr.press/v97/tan19a.html

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[34] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,
and Pascal Frossard. 2023. DiGress: Discrete Denoising diffusion for graph
generation. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=UaAD-Nu86WX

[35] Kai Wang, Xianghao Xu, Leon Lei, Selena Ling, Natalie Lindsay, Angel X. Chang,
Manolis Savva, and Daniel Ritchie. 2021. Roominoes: Generating Novel 3D Floor
Plans From Existing 3D Rooms. Computer Graphics Forum 40, 5 (Aug. 2021),
57–69. https://doi.org/10.1111/cgf.14357

[36] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang
Liu. 2019. Data-Driven Interior Plan Generation for Residential Buildings. ACM
Transactions on Graphics 38, 6 (Dec. 2019), 1–12. https://doi.org/10.1145/3355089.
3356556

[37] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2024. Diffusion Models: A
Comprehensive Survey of Methods and Applications. Comput. Surveys 56, 4
(April 2024), 1–39. https://doi.org/10.1145/3626235

[38] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In
Proceedings of the 35th International Conference on Machine Learning. 5708–5717.
https://proceedings.mlr.press/v80/you18a.html

[39] Chengxi Zang and Fei Wang. 2020. MoFlow: An Invertible Flow Model for
Generating Molecular Graphs. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 617–626. https:
//doi.org/10.1145/3394486.3403104

[40] Hong Zhu, Xin Zuo, and Meiyi Xie. 2019. DP-FT: A Differential Privacy Graph
Generation With Field Theory for Social Network Data Release. IEEE Access 7
(2019), 164304–164319. https://doi.org/10.1109/ACCESS.2019.2952452

https://doi.org/10.5220/0005209202710278
https://arxiv.org/abs/2107.03006
https://doi.org/10.48550/arXiv.2209.02646
https://doi.org/10.1007/978-981-15-6568-7_8
https://doi.org/10.1109/CVPR42600.2020.01264
https://arxiv.org/abs/2208.04202
https://doi.org/10.1109/WoWMoM.2011.5986141
https://doi.org/10.1109/WoWMoM.2011.5986141
https://doi.org/10.1109/CVPR52729.2023.01977
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/2012.09699
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://openreview.net/forum?id=qw8AKxfYbI
https://doi.org/10.1145/3386569.3392391
https://doi.org/10.1145/3386569.3392391
https://openreview.net/forum?id=fILj7WpI-g
https://proceedings.mlr.press/v139/jaegle21a.html
https://doi.org/10.1109/CVPR46437.2021.00014
https://arxiv.org/abs/1412.6980
https://doi.org/10.21437/Interspeech.2021-36
https://doi.org/10.21437/Interspeech.2021-36
https://arxiv.org/abs/2104.02321
https://arxiv.org/abs/2205.14217
https://doi.org/10.1109/WACV56688.2023.00037
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/1882262.1866203
https://doi.org/10.1007/978-3-030-58452-8_10
https://doi.org/10.1007/978-3-030-58452-8_10
https://doi.org/10.1109/CVPR46437.2021.01342
https://doi.org/10.1609/AAAI.V32I1.11671
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1109/CVPR52729.2023.00529
https://doi.org/10.1109/CVPR52729.2023.00529
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://doi.org/10.1145/3355089.3356529
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=UaAD-Nu86WX
https://doi.org/10.1111/cgf.14357
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3626235
https://proceedings.mlr.press/v80/you18a.html
https://doi.org/10.1145/3394486.3403104
https://doi.org/10.1145/3394486.3403104
https://doi.org/10.1109/ACCESS.2019.2952452

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning-based floorplan generation
	2.2 Graph generation
	2.3 Conditional diffusion models

	3 Methodology
	3.1 Floorplan and conditions representation
	3.2 Two-Stage approach for graph generation
	3.3 Conditional embedding mechanism

	4 Experiments
	4.1 Experimental Setting
	4.2 Implementation Details
	4.3 Results and Discussions
	4.4 Ablation Studies

	5 Conclusion
	References

