Appendix

In this Appendix, we first provide more training details of VITA (Appendix [A). In addition, the
inference procedure is explained in Appendix B}

A Training Details

A.1 Implementation

We use 4 NVIDIA A100 GPUs with 40GB of memory (8 A100 GPUs when using a Swin [22]
backbone), and activate Automatic Mixed Precision (AMP) provided by PyTorch. Our training
pipline is two-stage. We first pretrain the model for image instance segmentation on COCO [20]
train set using the batch size of 16 and by setting the number of input frames to 7' = 1. Then,
we finetune the pretrained model on the VIS train sets (YouTube-VIS 2019 [32], YouTube-VIS
2021, and OVIS [24]]) with pseudo-videos augmented from COCO images (see Appendix[A.T.T). We
use the batch size of 8 and set each input clip to be length of 7' = 6. Considering the difficulty and
varying number of training videos included in each dataset, we set up different training iterations for
each VIS dataset - 130k, 160k, 110k with decay of learning rates at 75k, 100k, 50k for YouTube-VIS
2019, 2021, and OVIS, respectively. And both Object Encoder and Object Decoder in VITA follow
the standard Transformer encoder and decoder architectures suggested in DETR [5]. However, we
just switch the order of self- and cross-attention in Object Decoder to make video queries learnable,
and eliminate dropouts to make computation more efficient, as discussed in Mask2Former [7]].

A.1.1 Pseudo-video generation

During training, we follow SeqFormer [30]] to generate pseudo-videos from a single image. Given a
single image, we first resize the short side of an image to one of the 400, 500 and 600 pixels while
maintaining its ratio. Then, the image is randomly cropped 7' times to a size in the range [384, 600]
to create a pseudo-video of length T'. Finally, the cropped images are resized to a shorter edge to be
randomly chosen from [288, 512] pixels with a step of 32 pixels.

A.2 Loss function

The final loss function of our frame-level detector [7], denoted by L in the main paper, is largely

composed of two terms: mask-related loss and categorical loss. The mask-related loss is again

consists of £, and ££iee, each representing a binary cross-entropy loss and a dice loss, respectively.

Then, the final loss L is a combination of a categorical loss (the cross entropy) and the mask-related
loss L = /\Clsﬁf +)\CCLZG + /\diceﬁf and we set A\gjs = 2, Aee = 2, and Ag;ee = 5, respectively.

cls dice

For the £, calculated from video-level results generated by VITA, we employ the same hyper-
parameters as frame-level losses: L, = ALy, + Ace Lo + AdiceLY;.e- Note that, for L7, and

cls
LY

dice’

we extend the functions of £, and Eéice to the temporal axis, just as IFC [15] did.

A.3 Building VITA on Mask2Former

Mask2Former uses 9 decoder layers where output frame queries from each layer can be used as an
input for VITA. However, using the outputs from all 9 layers during training leads to the lack of GPU
memory. Therefore, we use the outputs from the last 3 layers for training VITA.

B Inference procedure

In Tab. @ in the main paper, we measured the maximum number of frames that each model can
infer at once. To further specify the process of measuring the numbers, we provide simplified
PyTorch-style inference pseudo-codes of both VITA and Mask2Former-VIS in Tab. 8 and Tab. [9
respectively. For fair comparison, we modified the inference procedure of previous methods to collect
backbone features of each frame sequentially. The strategy prevents the methods from a memory
explosion until entering each VIS prediction module. The most noticeable difference is that VITA
collects only frame_queries and mask_features of each frame from our frame-level detector [7]]

13

Nelie BEN o) NV, IF NS I S B

denoted by the function mask2former () (line 2-12 in Tab.|8). Then, the frame_queries for the
entire video become the input of Object Encoder (line 19 in Tab. [8). On the other hand, previous
Transformer-based offline VIS models (e.g., Mask2Former-VIS), first aggregate the backbone features
of entire video and takes it as inputs for the VIS model, the function mask2former_vis () (line 3-20
in Tab.[9). After that, both of methods generate their video-level predictions by using their vq (video
queries) and mask_features.

Table 8: PyTorch-style inference pseudo-code of Table 9: PyTorch-style inference pseudo-code of

VITA. Mask2Former-VIS [6]].
def vita(video): 1 def previous_methods(video):
frame_queries = [] 2
mask_features = [] 3 frame_features = []
4
for frame in video: 5 for frame in video:
feats = backbone(frame) 6 feats = backbone (frame)
fq, mf = mask2former (7 frame_features.append (
feats 8 feats
) 9)
10
frame_queries.append(fq) 11 S
mask_features.append (mf) 12 Previous approaches receive
13 either multi or single scale
e 14 feature map at once for their
VITA only aggregates 15 encoder/decoder layers.
frame queries for its 16 B
remaining computations. 17 vq, mask_features =\
e 18 mask2former_vis (
fq = object_encoder (19 frame_features
frame_queries 20)
) 21
vq = object_decoder (fq) 22
23
w = mask_head (vq) 24 w = mask_head (vq)
pred_mask = [] 25 pred_mask = []
for mf in mask_features: 26 for mf in mask_features:
w.shape: (Nv x C) 27 # w.shape: (Nv x C)
mf.shape: (C x H x W) 28 # mf.shape: (C x H x W)
_mask = w @ mf 29 _mask = w @ mf
30
pred_mask.append (_mask) 31 pred_mask.append (_mask)
32
Nv x (K+1) 33 # Nv x (K+1)
pred_cls = cls_head(vq) 34 pred_cls = cls_head(vq)
35
Nv x T x Hx W 36 # Nv x T x Hx W
pred_mask = torch.stack(37 pred_mask = torch.stack(
pred_mask, dim=1 38 pred_mask, dim=1
) 39)
40
return pred_cls, pred_mask 41 return pred_cls, pred_mask

14

	Introduction
	Related Works
	Method
	Frame-level Detector
	VITA
	Clip-wise losses

	Experiments
	Datasets
	Implementation Details
	Main Results
	Ablation Studies

	Limitations
	Conclusion
	Training Details
	Implementation
	Pseudo-video generation

	Loss function
	Building VITA on Mask2Former

	Inference procedure

