
Appendix

In this Appendix, we first provide more training details of VITA (Appendix A). In addition, the
inference procedure is explained in Appendix B.

A Training Details

A.1 Implementation

We use 4 NVIDIA A100 GPUs with 40GB of memory (8 A100 GPUs when using a Swin [22]
backbone), and activate Automatic Mixed Precision (AMP) provided by PyTorch. Our training
pipline is two-stage. We first pretrain the model for image instance segmentation on COCO [20]
train set using the batch size of 16 and by setting the number of input frames to T = 1. Then,
we finetune the pretrained model on the VIS train sets (YouTube-VIS 2019 [32], YouTube-VIS
2021, and OVIS [24]) with pseudo-videos augmented from COCO images (see Appendix A.1.1). We
use the batch size of 8 and set each input clip to be length of T = 6. Considering the difficulty and
varying number of training videos included in each dataset, we set up different training iterations for
each VIS dataset - 130k, 160k, 110k with decay of learning rates at 75k, 100k, 50k for YouTube-VIS
2019, 2021, and OVIS, respectively. And both Object Encoder and Object Decoder in VITA follow
the standard Transformer encoder and decoder architectures suggested in DETR [5]. However, we
just switch the order of self- and cross-attention in Object Decoder to make video queries learnable,
and eliminate dropouts to make computation more efficient, as discussed in Mask2Former [7].

A.1.1 Pseudo-video generation

During training, we follow SeqFormer [30] to generate pseudo-videos from a single image. Given a
single image, we first resize the short side of an image to one of the 400, 500 and 600 pixels while
maintaining its ratio. Then, the image is randomly cropped T times to a size in the range [384, 600]
to create a pseudo-video of length T . Finally, the cropped images are resized to a shorter edge to be
randomly chosen from [288, 512] pixels with a step of 32 pixels.

A.2 Loss function

The final loss function of our frame-level detector [7], denoted by Lf in the main paper, is largely
composed of two terms: mask-related loss and categorical loss. The mask-related loss is again
consists of Lf

ce
and Lf

dice
, each representing a binary cross-entropy loss and a dice loss, respectively.

Then, the final loss Lf is a combination of a categorical loss (the cross entropy) and the mask-related
loss Lf = �clsLf

cls
+�ceLf

ce
+�diceLf

dice
and we set �cls = 2,�ce = 2, and �dice = 5, respectively.

For the Lv calculated from video-level results generated by VITA, we employ the same hyper-
parameters as frame-level losses: Lv = �clsLv

cls
+ �ceLv

ce
+ �diceLv

dice
. Note that, for Lv

ce
and

Lv

dice
, we extend the functions of Lf

ce
and Lf

dice
to the temporal axis, just as IFC [15] did.

A.3 Building VITA on Mask2Former

Mask2Former uses 9 decoder layers where output frame queries from each layer can be used as an
input for VITA. However, using the outputs from all 9 layers during training leads to the lack of GPU
memory. Therefore, we use the outputs from the last 3 layers for training VITA.

B Inference procedure

In Tab. 4 in the main paper, we measured the maximum number of frames that each model can
infer at once. To further specify the process of measuring the numbers, we provide simplified
PyTorch-style inference pseudo-codes of both VITA and Mask2Former-VIS in Tab. 8 and Tab. 9
respectively. For fair comparison, we modified the inference procedure of previous methods to collect
backbone features of each frame sequentially. The strategy prevents the methods from a memory
explosion until entering each VIS prediction module. The most noticeable difference is that VITA
collects only frame_queries and mask_features of each frame from our frame-level detector [7]

13



denoted by the function mask2former() (line 2-12 in Tab. 8). Then, the frame_queries for the
entire video become the input of Object Encoder (line 19 in Tab. 8). On the other hand, previous
Transformer-based offline VIS models (e.g., Mask2Former-VIS), first aggregate the backbone features
of entire video and takes it as inputs for the VIS model, the function mask2former_vis() (line 3-20
in Tab. 9). After that, both of methods generate their video-level predictions by using their vq (video
queries) and mask_features.

Table 8: PyTorch-style inference pseudo-code of
VITA.

1 def vita(video):
2 frame_queries = []
3 mask_features = []
4
5 for frame in video:
6 feats = backbone(frame)
7 fq , mf = mask2former(
8 feats
9 )

10
11 frame_queries.append(fq)
12 mask_features.append(mf)
13
14 """

15 VITA only aggregates

16 frame queries for its

17 remaining computations.

18 """

19 fq = object_encoder(
20 frame_queries
21 )
22 vq = object_decoder(fq)
23
24 w = mask_head(vq)
25 pred_mask = []
26 for mf in mask_features:
27 # w.shape: (Nv x C)

28 # mf.shape: (C x H x W)

29 _mask = w @ mf
30
31 pred_mask.append(_mask)
32
33 # Nv x (K+1)

34 pred_cls = cls_head(vq)
35
36 # Nv x T x H x W

37 pred_mask = torch.stack(
38 pred_mask , dim=1
39 )
40
41 return pred_cls , pred_mask

Table 9: PyTorch-style inference pseudo-code of
Mask2Former-VIS [6].

1 def previous_methods(video):
2
3 frame_features = []
4
5 for frame in video:
6 feats = backbone(frame)
7 frame_features.append(
8 feats
9 )

10
11 """

12 Previous approaches receive

13 either multi or single scale

14 feature map at once for their

15 encoder/decoder layers.

16 """

17 vq, mask_features =\
18 mask2former_vis(
19 frame_features
20 )
21
22
23
24 w = mask_head(vq)
25 pred_mask = []
26 for mf in mask_features:
27 # w.shape: (Nv x C)

28 # mf.shape: (C x H x W)

29 _mask = w @ mf
30
31 pred_mask.append(_mask)
32
33 # Nv x (K+1)

34 pred_cls = cls_head(vq)
35
36 # Nv x T x H x W

37 pred_mask = torch.stack(
38 pred_mask , dim=1
39 )
40
41 return pred_cls , pred_mask

14


	Introduction
	Related Works
	Method
	Frame-level Detector
	VITA
	Clip-wise losses

	Experiments
	Datasets
	Implementation Details
	Main Results
	Ablation Studies

	Limitations
	Conclusion
	Training Details
	Implementation
	Pseudo-video generation

	Loss function
	Building VITA on Mask2Former

	Inference procedure

