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1 IMPLEMENTATION DETAILS

1.1 Architecture of Semantic-guide Interactions
Block (SGIB)

In order to integrate image features and fine-grained semantic
features, we propose the Semantic-guide Interactions Block (SGIB).
The specific network architecture is shown in Figure 1. In stage 1, we
first perform convolution layers to transform the semantic features
to the same dimension as image features. The semantic features
Si € RED>WIxDs i = 01 are going through the self-attention
module and then fed into the cross-attention as query Q. The image

features C; ;€ RH “xWfxDc ,J = 0,1 are transmitted into the cross-

attention treated as key K and value V to produce fusion features
~ S S

Cj’ e REPWIXDe note that HY = HE, WS = WEC,i=0,1. The

calculation process of stage 2 is simllar to stage 1.

S x W X D,
Conv Self
1x1 Attentlon
HY X WS x Dg HY X W X D,
KV Cross Fusion
Attention Features
c c S S
Hj x W;" x D¢ Hy X W X D,

Figure 1: Architecture of Semantic-guide Interactions Block
(SGIB). During stage 1, i = j; while in stage 2, i # j.

2 MORE EXPERIMENTS

2.1 Performance of different methods

Table 1 shows the performance of various methods for homography
estimation on HPatches [1]. We utilize the MegaDepth [12] dataset
as the training dataset to retrain our SRMatcher following [21]. We
compare two groups of the methods, Detector-based and Detector-
free methods. Relative pose estimation results on the MegaDepth
are given in Table 2.

2.2 Ablations about fusion strategies

Within SGIB, a variety of fusion techniques are available to incor-
porate priors, such as spatial attention and channel attention. We
compare the cross-attention between semantic feature and image
feature with these fusion strategies. As shown in Table 3, channel
attention compromises the spatial integrity of semantics, result-
ing in the poorest performance. The performances of the spatial
attention are also noticeably inferior to our proposed SGIB. This
suggests that Semantic-Guide Interactions Block (SGIB) effectively
implements cross-attention between semantic and image features,
optimally utilizing the extensive semantic information available
in Vision Foundation Models (VFMs) while maintaining spatial
integrity.

Table 1: Evaluation on HPatches [1] for homography estima-
tion. For each method, a star symbol (*) denotes the official
version trained on the Oxford-Paris dataset, whereas ver-
sions without a star indicate its official release trained on
the author-preferred dataset. The best and second results are
highlighted.

Homography est. AUCT
@3px @5px @10px mAUC

Method

Detector-based matching :

Superpoint [5] cverwis 43.4 57.6 72.7 57.9
SIFT [16] 46.3 57.4 70.3 58.0
R2D2 [19] wws1o 50.6 63.9 76.8 63.8
SuperGlue [20] cverzo 53.9 68.3 81.7 68.0
Detector-free matching :

LoFTR* [21] cverar 58.5 69.8 81.1 69.8
LoFTR [21] cverzt 65.9 75.6 84.6 75.4
QuadTree [22] icir22 66.3 76.2 84.9 75.8
ASpan [4] eccvz 67.4 76.9 85.6 76.6
TopicFM [9] aaarzs 67.3 77.0 85.7 76.7
GeoFormer* [14] iccvas 68.0 76.8 85.4 76.7
SRMacther_LoFTR, trained on MegaDepth 68.9 76.9 84.9 76.9
SEM [3] cverwzs 69.6 79.0 87.1 78.6
MESA [24] cveras 71.1 78.6 86.0 78.6
SRMacther_GeoFormer* 71.2 79.3 87.0 79.2
CasMTR-2c¢ [2] i1ccvas 71.4 80.2 87.9 79.8
GeoFormer, trained on MegaDepth [14] 1ccvzs 72.1 79.9 87.7 79.9
ASTR [23] cverzs 71.7 80.3 88.0 80.0
DKM [7] cveres 713 806 885  80.1
PMatch [25] cvers 719 807 885 804
RoMa [8] cverze 722 81.2 89.1 80.8

SRMacther_GeoFormer, trained on MegaDepth  73.5 813  88.0 80.9

Table 2: Relative pose estimation results (%) on MegaDepth-
1500 benchmark. Training data: MegaDepth

MegaDepth1500 benchmark
AUC@5° T AUC@10°T AUC@20° 17

Pose estimation AUC

TopicFM [9] aaarzs 54.1 70.1 81.6
CasMTR-2c [2] iccvas 59.1 74.3 84.8
RoMa [8] cveras 62.6 76.7 86.3
LoFTR [21] cverat 52.8 69.2 81.2
SRMatcher_LoFTR 53.8 70.4 82.5
GeoFormer [14] iccvzs 51.7 68.3 80.2
SRMatcher_GeoFormer 53.2 70.0 81.8

2.3 Ablations about Semantic Extractors

To investigate whether fine-grained semantic features enhance
the efficacy of matching results, we employ three distinct seman-
tic extractors. The first one is ResNet-50 [10] pre-trained on the
ImageNet. Another one is the pre-trained CLIP [18] which has a
strong semantic extraction ability due to its text-image pairs train-
ing method. As Table 4 shows, the features generated by DINOv2
[17] are more effective than the others. This superior performance
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Table 3: Ablations about different fusion strategies in SFB.

Homography est. AUC

Modification @3px @5px  @10px @mAUC
Channel Attention 69.7 78.0 85.7 77.8
Spatial Attention 70.1 78.5 86.0 78.2
SRMatcher GeoFormer  71.2 79.3 87.0 79.2

stems from DINOv2’s self-supervised training method, which com-
pels the model to learn image features that are consistent across
various transformations and inherently possess a high semantic
value.

Table 4: Ablations about different semantic extractors. 'R’,
’C’,’D’ denote the ResNet-50, CLIP and DINOv2.

Homography est. AUC

Modification @3px @5px @10px @mAUC
SRMatcher-R 69.7 78.3 86.2 78.0
SRMacther-C 70.5 78.5 86.6 78.5
SRMatcher-D  71.2 79.3 87.0 79.2

2.4 Ablations about Different Layers

It is important to note that the semantic content extracted from
different layers of DINOv2 varies. As the number of layers increases,
the semantics become more representative. The key to successful
semantic guidance is to extract semantic features that are both deep
and capable of retaining critical spatial information, which is vital
for ensuring effective semantic guidance. In our initial experimental
design, following previous methods [11, 13] that utilized vision
foundation models (VFMs), we opted not to use features from the
last layer of VFMs. This issue was made because vision foundation
models (VFMs), being pretrained for specific downstream tasks,
may not be well-suited for task transfer. Therefore, in the main text,
we use features from the third-to-last layer of DINOv2 as semantic
priors. However, as shown in Tabel 5 we tried using the features
from different layers as the semantics. We find that the the features
from last layer lead to the performance increase, this finding differs
from previous methods. We believe this is due to DINOv2 being
pretrained through image-level and patch-level discriminative self-
supervised learning, which enables it to extract all-purpose visual
features, thus facilitating zero-shot patch-level feature matching
capability [15].

Table 5: Ablations about different layers of DINOv2.

Homography est. AUC

Modification @3px @5px @10px @mAUC
Third to last (main text) 71.2 79.3 87.0 79.2
Second to last 714 79.7 87.4 79.5

Last 71.8 79.9 87.6 79.8

Anonymous Authors

2.5 Ablations about Semantic Extractor
parameter

The DINOv2 is employed as semantic extractor to obtain various

and available semantic information. Specifically, we use DINOv2

with a ViT-B/14 [6] with registers as the default semantic extractor

of SRMatcher. We also conduct comparison experiments on ViT-

S/14 and ViT-L/14 with different parameters shown in Table 6.

Table 6: Ablations about DINOv2 parameters.

Homography est. AUC
@3px @5px @10px mAUC

DINOv2_ViT-S/14 21M 70.5 78.9 86.5 78.6
DINOv2_ViT-B/14 86M 71.2 79.3 87.0 79.2
DINOv2_ViT-L/14  300M 71.3 79.4 87.3 79.3

Modification Params

3 QUALITATIVE RESULTS

We provide additional qualitative comparisons of SRMatcher and
baseline methods on the Hpatches [1], ISC-HE [14] and MegaDepth
[12] datasets. In Figure 2 and Figure 4, we illustrate inlier and out-
lier matches with various projection thresholds to evaluate the
matching precision of different methods on the Hpatches dataset
and ISC-HE dataset. Figure 3 and Figure 5 display further quali-
tative results of homography estimation, the methods being com-
pared include LoFTR [21], GeoFormer [14], MESA [24], and our
SRMatcher_GeoFormer. Figure 6 offers more qualitative insights
on the MegaDepth dataset, the methods being compared include
LoFTR, SRMatcher LoFTR, GeoFormer, SRMactcher GeoFormer
trained on MegaDepth dataset.
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LoFTR

Figure 2: Qualitative of matching results with LoFTR [21], GeoFormer [14], MESA [24], and our SRMatcher on HPatches [1].

GeoFormer

MESA

Points classified as inliers by RANSAC are displayed in green, while outliers are shown in red.
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Figure 3: Qualitative of homography estimation results with LoFTR [21], GeoFormer [14], MESA [24], and our SRMatcher on

HPatches [1].
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LoFTR GeoFormer MESA

Figure 4: Qualitative of matching results with LoFTR [21], GeoFormer [14], MESA [24], and our SRMatcher on ISC-HE [14].
Points classified as inliers by RANSAC are displayed in green, while outliers are shown in red.
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Figure 5: Qualitative of homography estimation results with LoFTR [21], GeoFormer [14], MESA [24], and our SRMatcher on
ISC-HE [14].
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Figure 6: Qualitative image matches on MegaDepth dataset. Green signifies that the epipolar error in normalized image
coordinates is below 1 x 1074, whereas red denotes that this threshold has been surpassed. Training data: MegaDepth.
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