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A SUPPLEMENTARY MATERIAL

A.1 PROOF OF CONTINUOUS AND UNBOUNDED CASE

As p(Xi=x̄i) → 0 implies p(Xi=x̄i|·) → 0, as long as the conditioning is on a set of observations
that is not extremely improbable. Then:

p(X →
i=x̄i|·) = p(X →

i=x̄i,Mi = 1|·) + p(X →
i=x̄i,Mi = 0|·) (10)

= p(Mi = 1)p(X →
i=x̄i|Mi = 1, ·) + p(Mi = 0)p(X →

i=x̄i|Mi = 0, ·) (11)
= p(Mi = 1) + p(Mi = 0)p(Xi=x̄i|·) → p(Mi = 1) (12)

↑ p(Y |X →
i=x̄i, ·) =

p(Y |·)p(X →
i=x̄i|Y, ·)

p(X →
i=x̄i|·)

→ p(Y |·)p(Mi = 1)

p(Mi = 1)
→ p(Y |·) (13)

A similar analysis can be performed to derive the approximate versions of equations of Eq. (4) to (5),
which are special cases.

A.2 SUBOPTIMAL CHOICE OF PLACEHOLDER VALUES

If x̄i ↓ support(Xi), then X →
i = x̄i is either because of two mutually exclusive cases:

{
Mi = 1 or
Mi = 0 and Xi = x̄i

Let p(Mi = 0) = r and xj ↔= x̄j , ↗j ↔= i, then:

p(Y |X →
i=x̄i,X

→
↑i=x↑i) = p(Y |X →

i=x̄i,X↑i=x↑i) =
p(Y,X →

i=x̄i|X↑i=x↑i)

p(X →
i=x̄i|X↑i=x↑i)

(14)

p(X →
i=x̄i|X↑i=x↑i) = p(Mi = 1) + p(Mi = 0, Xi=x̄i|X↑i=x↑i) (15)

= 1↘ r + p(Xi=x̄i|Mi = 0,X↑i=x↑i)p(Mi = 0|X↑i=x↑i) (16)
= 1↘ r + r ≃ p(Xi=x̄i|X↑i=x↑i) (17)

p(Y,X →
i=x̄i|X↑i=x↑i) = p(Y |X↑i=x↑i)p(X

→
i=x̄i|Y,X↑i=x↑i) (18)

= p(Y |X↑i=x↑i)(1↘ r + r ≃ p(Xi=x̄i|Y,X↑i=x↑i)) (19)
From Eq. (17) and (19),

p(Y |X →
i=x̄i,X

→
↑i=x↑i) = p(Y |X↑i=x↑i)

1↘ r + r ≃ p(Xi=x̄i|Y,X↑i=x↑i)

1↘ r + r ≃ p(Xi=x̄i|X↑i=x↑i)
(20)

Thus, p(Y |X →
i=x̄i,X →

↑i=x↑i) = p(Y |X↑i=x↑i) is equivalent to
⇐ 1↘ r + r ≃ p(Xi=x̄i|Y,X↑i=x↑i) = 1↘ r + r ≃ p(Xi=x̄i|X↑i=x↑i) (21)
⇐ p(Xi=x̄i|Y,X↑i=x↑i) = p(Xi=x̄i|X↑i=x↑i) (22)
⇐ Y ⇒⇒ Xi=x̄i|X↑i=x↑i (23)

It is difficult to find x̄i to satisfy Eq. 23, most likely p(Y |X →
i=x̄i,X →

↑i=x↑i) ↔= p(Y |X↑i=x↑i).

A.3 ANALYSIS OF PLACEHOLDERS FOR STRUCTURED KNOCKOUT

In this subsection, we analyze the effect of different placeholder values on a structured Knockout
task, specifically the multi-modal tumor segmentation task from Section 4.4. We scale image inten-
sity values to [0, 1] per image. We train three Knockout models with the following placeholders: a
constant image of -1s, a constant image of 0s, and the mean of all images per modality. At inference
time, we evaluate on all modality missingness patterns. In the event that all images are missing, we
randomly select one so that the model sees at least one image. For Knockout-trained models, the
corresponding placeholder is imputed for missing images.

Fig. S1 shows the results. Interestingly, we observe the mean placeholder (Knockout*) performs
better than constant-image placeholders, and the constant image of 0s generally outperforms the
constant image of -1s. We hypothesize that in the context of structured inputs like images in con-
junction with limited data and model capacity, placeholders which balance feasibility with practical
considerations like causing unstable gradients due to out-of-range inputs is an important considera-
tion.
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Figure S1: Dice performance of multi-modal tumor segmentation across varying missingness pat-
terns of modality images. Knockout-trained models only. We observe mean placeholders perform
better than constant-image placeholders. Error bars depict the 95% confidence interval over test
subjects.

Figure S2: Test MSE evaluated against observations (Y ) from 10 repetitions of the regression sim-
ulation. Lower is better. X axis indicates the number of missing variables at inference time. a)
Complete training data. b) Missing completely at random (MCAR) training data. c) Missing not at
random (MNAR) training data

B EXPERIMENTAL DETAILS

All experiments were performed with access to a machine equipped with an AMD EPYC 7513 32-
Core processor and an Nvidia A100 GPU. CPU testing was performed on a machine equipped with
an Intel Xeon Gold 6330 CPU @ 2.00GHz. All code is written in PyTorch.

B.1 SIMULATIONS

B.1.1 REGRESSION

In each repetition, the data are sampled from a 10-dimensional multivariate Gaussian distribution
with mean µ and covariance !. The mean vector µ is sampled uniformly from the interval [0, 1],
i.e. µ ⇑ Uniform(0, 1) ↓ R10. The covariance matrix is sampled as ! := W TW , whereby
W ⇑ Uniform(0, 1) ↓ R10↓10. The first 9th variables of the multivariate Gaussian are assigned as
X (X ↓ R9) and the 10th variable is assigned as Y (Y ↓ R).

In addition to the MMSE-minimizing Bayes optimal predictions: E[Y |X], we also evaluate the
models’ predictions against the observed values of Y (Fig. S2). Since the input features have un-
bounded support, choosing appropriate placeholders (i.e. away from 0, see Fig. S3) is critical for
getting good performance.

B.1.2 BINARY CLASSIFICATION

We evaluate the prediction error rate with full features (X) and missing feature (only X1 or X2

as input). We also evaluate how close the models’ predicted probability distributions with missing
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Figure S3: Test MSE in the regression simulation decreases as the placeholders move away from 0.

feature are against the marginal distributions (Fig. S4a and Fig. S4a top and left panels) using Jensen-
Shannon divergence. The marginals distributions are estimated empirically using all data.

(a) Continuous inputs (b) Mixed inputs

Figure S4: Visualization of the two classification simulations. Knockout’s estimates of the marginal
distributions (i.e. P (Y |X1) and P (Y |X2), denoted by red lines) are closer to the empirical estimates
(blue lines) than baselines’. Top: P (Y=1|X1) estimated empirically and estimated by various
approaches. Left: Various estimates of P (Y=1|X2). Bottom Right: Data visualization.

Continuous Inputs. All input variables are continuous (X ↓ R2). Knockout achieves similar
error rate compared to standard training but much better performance when a variable is missing
(Table S6). Knockout↔ performs worse than Knockout due to the sub-optimal choice of placeholders.

Mixed Inputs. X consists of a binary variable and a continuous variable (i.e. X1 ↓ {0, 1}, X2 ↓
R). Knockout achieves better results than baselines in all scenarios (Table S6).

B.2 ALZHEIMER’S FORECASTING

All participants used in this work are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. ADNI aims to evaluate the structure and function of the brain across different disease
states and uses clinical measures and biomarkers to monitor disease progression. Applications for
ADNI data use can be submitted through the ADNI website at https://adni.loni.usc.
edu/data-samples/access-data/. Others would be able to access the data in the same
manner as the authors. We did not have any special access privileges that others would not have.
The investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. Michael Weiner (E-mail:
Michael.Weiner@ucsf.edu) serves as the principal investigator for ADNI.

We select the participants who have mild cognitive impairment (MCI) at the baseline (screening)
visit and had at least one follow-up diagnosis within the next five years. We excluded participants
who were diagnosed as CN in a later follow-up year (n=284) since these subjects might have been
diagnosed incorrectly at some point. After this exclusion, we are left with 789 participants. Ta-
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Table S6: Classification simulations. Best results are in bold. Err.: Proportion of test error. JSD:
Jensen–Shannon divergence of the estimated and empirical marginal.

Missing Rate = 0 Missing Rate = 1/2
Method Err. (X) Err. (X1) JSD (X1) Err. (X2) JSD (X2)

Continuous inputs

Common baseline 0.0003 0.3970 ⇓ 0.4001 ⇓
Knockout↔ (Ours) 0.0210 0.3549 0.0179 0.3727 0.0214
Knockout (Ours) 0.0007 0.2559 0.0003 0.2563 0.0007
Fitted Marginals N/A 0.2531 0.0006 0.2600 0.0006

Mixed inputs

Common baseline 0.0032 0.5972 ⇓ 0.5410 ⇓
Knockout↔ (Ours) 0.0187 0.4843 0.0038 0.3410 0.0073
Knockout (Ours) 0.0031 0.4028 0.0001 0.2844 0.0009
Fitted Marginals N/A 0.4028 0.0000 0.2809 0.0008

Table S7: Summary statistics of the participants at baseline in the Alzheimer’s Disease data. Mean
± standard deviations are listed. APOE4 row represents the number of alleles.

Characteristic (n=789)

Female/Male 324/465
Age (yr) 73.46± 7.39
Education (yr) 15.93± 2.81
APOE4 (0/1/2) 371/313/98
CDR 1.55± 0.89
MMSE 27.52± 1.82

ble S7 lists summary statistics for the participants; including sex, age, number of years of education
completed, count of Apolipoprotein E4 (APOE4) allele, Clinical Dementia Rating(CDR), and Mini
Mental State Examination (MMSE) scores at baseline.

As is common in many real-world longitudinal studies, ADNI experiences missing follow-up visits,
irregular timings, and high dropout rates before the study’s planned end. Table S8 shows the number
of subjects available in each diagnostic category for annual follow-ups. In Table S8 and all analyses,
any subject who progressed from MCI to AD before withdrawing was considered to remain in the
AD state until the fifth year, reflecting AD’s irreversible nature. We employed the reweighted cross-
entropy loss scheme introduced in Karaman et al. (2022) during training to account for the imbalance
in diagnoses.

Our input features include subject demographics (age; and number of years of education completed,
or PTEDUCAT), genotype (number of APOE4 alleles), cognitive assessments (Clinical Dementia
Rating, or CDR; Activities of Daily Living, or FAQ; Alzheimer’s Disease Assessments 11, 13, and
Q4, or ADAS11, ADAS13, ADASQ4, respectively; Mini-Mental State Exam, or MMSE; Rey Audi-
tory Verbal Learning Test Trials, or RAVLT immediate, learning, forgetting, and percent forgetting;

Table S8: The number of available subjects in each diagnostic group for annual follow-up visits in
the Alzheimer’s Disease data. The follow-up diagnoses are not actually exactly 12 months apart.
They have been rounded to the nearest time horizon in years.

Follow-up year 1 2 3 4 5

MCI 674 431 317 202 127
AD 110 218 261 286 292
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Table S9: The degree of missingness (%) in different data modalities in the Alzheimer’s Disease
data.

Data Type Missingness Rate (%)

Demographics 0.06
Genotype 0.89
Cognitive assessments 0.20
CSF 37.14
MRI 21.22
FDG 24.08

Logical Memory Delayed Recall, or LDELTOTAL; Trail Making Test Part B, Or TRABSCOR; and
Digit and Trails B versions of Preclinical Alzheimer’s Cognitive Composite score, or mPACCdigit
and mPACCtrailsB, respectively). The biomarkers are Cerebrospinal Fluid (CSF) measurements
(Amyloid-Beta 1–42, or ABETA; Total Tau, or TAU; Phosphorylated Tau, or PTAU), Magnetic Res-
onance Imaging (MRI) volume measurements (Ventricles; Hippocampus; WholeBrain; Entorhinal;
Fusiform; MidTemp; Intracranial Volume, or ICV; all computed using the FreeSurfer software (De-
sikan et al., 2006; Fischl et al., 2004)), and Positron Emission Tomography (PET) standardized
uptake value ratio (SUVR) score for tracer Fluorine-18-Fluorodeoxyglucose, or FDG. We note that
all of our input features are numerical and we perform z-score normalization using the mean and
standard deviation values derived from training data. The degree of missingness for each modality
in the dataset can be seen in S9.

We note that we train our models using the hyperparameters stated in Karaman et al. (2022). Fig-
ure S5 shows the Composite AUROC scores obtained using the complete portion of the dataset
(n = 256 subjects). In this experiment, the training data has no observed missing variables. These
results are similar to the results included in the main text, where Knockout outperforms the baseline
and the choice of the appropriate placeholder has an impact on the performance.

Figure S5: Composite AUROC scores obtained for the three model variants when each input feature
is missing during inference (x-axis) for the complete data case in the Alzheimer’s Disease forecast-
ing experiment. Displayed are averages of 10 train-test splits. Error bars indicate the standard error
across these splits.

B.3 MULTI-MODAL TUMOR SEGMENTATION

The RSNA-ASNR-MICCAI BraTS Baid et al. (2021) challenge releases a dataset of 1251 subjects
with multi-institutional routine clinically-acquired multi-parametric MRI scans of glioma. Each
subject has 4 modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and
T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). All the imaging datasets have been annotated
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manually, by one to four raters, following the same annotation protocol, and their annotations were
approved by experienced neuro-radiologists. Annotations comprise the GD-enhancing tumor (ET
— label 3), the peritumoral edematous/invaded tissue (ED — label 2), and the necrotic tumor core
(NCR — label 1).

The following pre-processing is applied: co-registration to the same anatomical template, interpo-
lation to the same resolution (1 mm3), skull-stripped, and min-max normalized to the range [0, 1].
The ground truth data were created after their pre-processing. For training, we use 80%/5%/15%
data split of the subjects for training/validation/testing.

For the segmentation model, we use a 3D UNet with 4 downsampling layers and 2 convolutional
blocks per resolution (Ronneberger et al., 2015). We minimize a sum of cross-entropy loss and Dice
loss with equal weighting and use an Adam optimizer with a learning rate of 1e-3.

B.4 TREE GENUS CLASSIFICATION

Table S10 shows the F-1 scores of the second site in the Tree Genus Classification experiment.

Table S10: F1-scores of Auto Arborist averaged over 5 random seeds (site: Buffalo). Best results in
bold, second-best underlined.

Aerial+Street Aerial Street

Common baseline 0.3684±0.0108 0.1871±0.0228 0.2969±0.0447

Knockout (Features) 0.3367±0.0255 0.1702±0.0204 0.2408±0.0283

Knockout (Structured) 0.3585±0.0219 0.1997±0.0155 0.3539±0.0135

B.5 PROSTATE CANCER DETECTION

A common clinical workflow for the diagnosis of prostate cancer is to detect and localize abnormal-
ities from 3 MR modalities: T2-weighted (T2w), diffusion-weighted (DWI) and apparent diffusion
coefficient (ADC) images (Turkbey et al., 2019). T2w images provide anatomical details, while
DWI and ADC highlight restricted diffusion, which can be a sign of malignancy.

We divided 1500 biparametric MR image sets provided from Prostate Imaging: Cancer AI (PICAI)
challenge (Saha et al., 2022) ”training” dataset into training, validation, test sets in a 0.6/0.2/0.2
ratio. Among the 1500 cases, 425 were confirmed as cancer by biopsy. DWI and ADC images are
registered to T2w images and all images are cropped around prostate and resized to 100≃ 100≃ 40.
For the modality-wise classification tasks, we used 3D CNN with 4 blocks, each with a convolution
layer, BatchNorm, leakly ReLU activation and average pooling layer, followed by fully connected
layer. We trained the models to predict PCa using binary cross entropy loss and an Adam optimizer
with a learning rate of 1e↘ 3.

Table S11: AUC performance for prostate cancer detection from the ensemble baseline, common
baseline, and Knockout, across varying missingness patterns at inference time. Each column repre-
sents non-missing modalities. Best results in bold, second-best underlined.

T2 ADC DWI ADC
+DWI

T2
+DWI

T2
+ADC All

Ensemble 0.683±0.013 0.786±0.010 0.718±0.007 0.780±0.005 0.722±0.005 0.766±0.006 0.766±0.004

Common 0.687±0.011 0.771±0.011 0.720±0.007 0.784±0.003 0.727±0.006 0.771±0.008 0.774±0.004

Knockout 0.694±0.009 0.730±0.019 0.736±0.009 0.789±0.005 0.744±0.004 0.753±0.011 0.774±0.007

B.6 PRIVILEGED INFORMATION FOR NOISY LABEL LEARNING

We briefly introduce two datasets we used for this experiment: CIFAR-10H (Peterson et al., 2019)
and CIFAR-10/100N (Wei et al., 2021). CIFAR-10H relabels the original CIFAR-10 10K test set
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Datasets PI quality SOP Common baseline Knockout↔ Knockout
CIFAR-10H (Worst) High 51.3±1.9 55.2±0.8 56.9±0.59 57.4±0.6

CIFAR-10N (Worst) Low 85.0±0.8 82.3±0.3 83.6±0.7 84.7±0.7

CIFAR-100N (Fine) Low 61.9±0.6 60.7±0.6 61.6±0.6 62.1±0.3

Table S12: Test accuracy of different methods on noisy label dataset with PI. Best results in bold,
second-best underlined.

with multiple annotators and provides high-quality sample-wise annotation information such as an-
notator ID, reaction time and annotator confidence as PI. Following a previous setup (Wang et al.,
2023), we test on the high-noise version of CIFAR-10H, by selecting incorrect labels when avail-
able, denoted as ”CIFAR-10H Worst”. The estimated noise rate is 64.6%. While we train on the
high-noise version, testing is conducted on the original CIFAR-10 50K training set. CIFAR-10/100N
provides multiple annotations for CIFAR-10/100 training set. The raw data also includes informa-
tion about annotation process. But this information is provided as averages over batches of examples
rather than sample-wise. The estimated noise rate is 40.2% for CIFAR-10/100N.

For all CIFAR experiments and baselines, we use the Wide-ResNet-10-28 (Zagoruyko & Ko-
modakis, 2016) architecture. We use SGD optimizer with 0.9 Nesterov momentum, a batch size
of 256, 0.1 learning rate and 1e-3 weight decay and minimized the cross-entropy loss with respect
to the provided labels. The total training epoch is 90, and the learning rate decayed by a factor of 0.2
after 36, 72 epochs. For the PI features, we use annotator ID and annotation reaction time. In PI fea-
tures are normalized to [0, 1] for preprocessing. For Knockout, during training, we randomly knock
out all PI features at 50% rate and use -1 as placeholder value. All experiments are performed on
one A6000. In Table S12, We further show results for common baseline, Knockout↔ and Knockout.
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