
Published as a conference paper at ICLR 2024

TEACHING LANGUAGE MODELS TO HALLUCINATE
LESS WITH SYNTHETIC TASKS

Erik Jones,1‡ Hamid Palangi,2 Clarisse Simões,2 Varun Chandrasekaran,3‡
Subhabrata Mukherjee,4‡ Arindam Mitra,2 Ahmed Awadallah,2 Ece Kamar2

1 UC Berkeley 2 Microsoft Research 3 UIUC 4 Hippocratic AI

ABSTRACT

Large language models (LLMs) frequently hallucinate on abstractive summariza-
tion tasks such as document-based question-answering, meeting summarization,
and clinical report generation, even though all necessary information is included
in context. However, optimizing LLMs to hallucinate less on these tasks is chal-
lenging, as hallucination is hard to efficiently evaluate at each optimization step.
In this work, we show that reducing hallucination on a synthetic task can also re-
duce hallucination on real-world downstream tasks. Our method, SYNTRA, first
designs a synthetic task where hallucinations are easy to elicit and measure. It next
optimizes the LLM’s system message via prefix-tuning on the synthetic task, and
finally transfers the system message to realistic, hard-to-optimize tasks. Across
three realistic abstractive summarization tasks, SYNTRA reduces hallucination for
two 13B-parameter LLMs using only a synthetic retrieval task for supervision. We
also find that optimizing the system message rather than the model weights can be
critical; fine-tuning the entire model on the synthetic task can counterintuitively
increase hallucination. Overall, SYNTRA demonstrates that the extra flexibility of
working with synthetic data can help mitigate undesired behaviors in practice.

1 INTRODUCTION

Large language models (LLMs) are prone to hallucinate—i.e., fabricate entities, details, or other
content—when generating responses to queries, even when all salient information is included in
context. For example, LLMs can make up citations (Liu et al., 2023), add titles when generating
biographies (Min et al., 2023), or invent new product attributes when advertising (Koto et al., 2022).
To confidently deploy LLMs, we need methods to monitor and reduce these hallucinations.

Unfortunately, directly reducing LLM hallucinations on real-world tasks is challenging, in part be-
cause we cannot scalably evaluate hallucination during optimization. To exhibit this evaluation
challenge, suppose the LLM generates the fictional noun “fixed liability response” when summa-
rizing a meeting. Cheap-to-run rule-based manual verifiers would struggle to (i) decide that this
term is worth checking, and (ii) identify whether the term is real or fabricated. On the other hand,
using humans or LLMs to detect hallucination in long-form outputs is slow, expensive, and error-
prone (Guerreiro et al., 2023). It is thus difficult to directly optimize against LLM hallucinations
with gradient descent or reinforcement learning, as we cannot efficiently evaluate the loss or reward.

In response, we introduce SYNTRA, a method that uses synthetic data to reduce LLM hallucinations
(Figure 1). SYNTRA first designs a synthetic task where hallucination can be efficiently and tractably
evaluated. It then exploits this tractability by optimizing the LLM system message on the synthetic
task via prefix-tuning (Li & Liang, 2021), and finally transfers the system message to realistic tasks.

The core component of SYNTRA is the design of the synthetic task, which provides the only direct
supervision signal that captures hallucination. For this supervision signal to be sufficient, we argue
that the synthetic task must at least satisfy two properties: (i) LLMs should hallucinate frequently on
the task, and (ii) hallucination can be cheaply and automatically evaluated on the task. The former
ensures that optimizing on the synthetic task teaches the model to hallucinate less, while the latter

†Correspondence to erjones@berkeley.edu and hpalangi@microsoft.com
‡Work done at Microsoft Research.

1

Published as a conference paper at ICLR 2024

Design synthetic task Optimize synthetic task

System message:

User prompt:

You are a helpful AI Assistant

Prompt:
The following is a list of names:
Elis Smith, Joe James, Ella Towns
Return all names that start with “E”

Learn system message postfix

LLM Output:
Elis Smith, Elanor James, Ella Towns

LLM Grad

Transfer system message

Summarize
Meeting
Transcript

Generate
Clinical
Report

Answer
Given
Documents

Use learned postfix for realistic tasks

Prompt: Prompt: Prompt:

Figure 1: Overview of the SYNTRA framework. We first define a synthetic task where hallucination
is easy to tractably evaluate. Next, we optimize the LLM system message on this task by learning a
continuous postfix via prefix-tuning. We then transfer the learned system message across real tasks.

makes optimization tractable. Throughout this work, we use the names retrieval task as the synthetic
task: given a list of random names, we prompt the LLM to retrieve the first n names on the list that
start with some letter. We say the model hallucinates if it generates a name that is not on the list.

SYNTRA then optimizes the LLM to reduce hallucination on the synthetic task. To do so, we
optimize the LLM system message (e.g.,“You are a helpful AI assistant”) by appending a continuous
postfix to it, then optimizing the postfix. We optimize the system message rather than the whole
model to learn high-level instructions for how to hallucinate less, which we expect to transfer well.
We additionally optimize the LLM to keep its output constant on a set of reference prompts, so the
LLM does not latch onto spurious attributes of the synthetic task.

We find that SYNTRA consistently reduces hallucination across models, tasks, and metrics. We
evaluate Vicuna v1.1 (Chiang et al., 2023) and Orca (Mukherjee et al., 2023) on three realistic
tasks: search-and-retrieve, meeting summarization, and clinical report generation. Following, Yue
et al. (2023), we measure hallucination with GPT-4, and find that optimizing the system message
consistently reduces hallucination: on Orca, SYNTRA reduces the hallucination rate by over 7 points
on average and 16 points on specific tasks. In contrast, fine-tuning the whole model can increase the
hallucination rate. We also test whether SYNTRA reduces hallucination according to other metrics,
and find its outputs (i) overlap more with references and (ii) contain fewer ungrounded entities.

SYNTRA is not without limitations; it requires designing a synthetic task, and reduces hallucination
on some models more than others. Nevertheless our work provides encouraging evidence that we
can use synthetic data to isolate and optimize against undesired LLM behaviors.

2 THE SYNTRA PIPELINE

We describe SYNTRA (Synthetic Transfer), our method to reduce hallucination on abstractive sum-
marization tasks using synthetic data. We outline the setup (Section 2.1), introduce synthetic tasks
(Section 2.2), then describe how SYNTRA reduces hallucination on realistic tasks (Section 2.3).

2.1 SETUP

We study LLMs that take prompts (e.g., “Write a clinical report about the following dialog...”) and
produce long-form outputs (e.g., “Overview: Patient has...”). The behavior of the LLM is modulated
by two features: a system message that provides high-level instructions (e.g., “You are a helpful
and honest AI assistant)”, and the raw model weights. We thus represent the LLM as LLMϕ,θ, a
composition of the system function sϕ that appends the prompt to the system message ϕ,1 and the raw
LLM fθ that generates text based on weights θ. Formally, LLMϕ,θ = fθ ◦ sϕ. This decomposition
into system messages and prompts is standard for many instruction-tuned LLMs (OpenAI, 2023).

We measure hallucination on abstractive summarization tasks, where models respond to queries
given some context. We model an abstractive summarization task τ (e.g., generate clinical reports

1While the system prompt ϕ is usually text, this is challenging to optimize. Following Li & Liang (2021)
we append continuous embeddings to the text, which can be optimized via gradient descent.

2

Published as a conference paper at ICLR 2024

from dialogues) as a distribution over prompts Dτ , where each prompt p can be decomposed into a
query q that is appended to context c, i.e., p = c ∥ q. For example, the context c might be a dialog
between a patient and a doctor, and the query might be “Write a clinical report containing ...”. We
assume that the context c always has all required information to correctly respond to query q.

Hallucinations in the abstractive summarization setting are grounding errors: errors where the output
contains some information that is not supported by the context. We define the hallucination function
h, which takes in a prompt and output and returns 1 if the output is supported by the prompt, and 0
otherwise. The hallucination rate ℓhal on task τ for model parameters θ and system prompt ϕ is

ℓhal(ϕ, θ; τ) := Ep∼Dτ
h(p, LLMϕ,θ(p)), (1)

where the expectation is taken over the distribution Dτ and sampling during LLM decoding.

The hallucination function h is at best expensive to evaluate for many different user prompts and out-
puts, and at worse intractable. This is especially true for abstractive summarization, as even humans
can struggle to read and remember long contexts while evaluating generated summaries (Guerreiro
et al., 2023). To measure hallucination in general, we rely on proxy metrics hprox that can use refer-
ence outputs or external databases to approximate h. Existing work has considered many possible
proxy metrics including comparing to ground truth outputs (Nan et al., 2021), decomposing outputs
into atomic facts and evaluating them separately (Min et al., 2023), using entailment models (Roit
et al., 2023), or using LLM judges (Yue et al., 2023; Gao et al., 2023a).

2.2 SYNTHETIC TASKS

A natural approach to reduce hallucination is to optimize against the hallucination rate ℓhal over all
tasks simultaneously, but this is intractable; the hallucination function h is expensive to evaluate at
scale, which rules out direct optimization. Optimizing against proxy metrics hprox is also problem-
atic, as they may (i) unfaithfully capture hallucination and (ii) still be expensive to optimize.

Rather than trying to optimize a proxy in general, we instead optimize the true hallucination rate
exactly on a carefully constructed synthetic task. Concretely, we construct a synthetic task τsyn

such that the hallucination function restricted to this task, h
∣∣
Dτsyn

, is easy to automatically evaluate
and optimize. For example, suppose the prompts contain random first and last names (context)
and ask the LLM to retrieve n names that start with some letter (query). We can test if the LLM
hallucinates by checking whether the each name it generates is in the prompt, and optimize to reduce
the corresponding hallucination rate directly.2

We seek synthetic tasks τsyn that satisfy two desiderata: (i) the LLM hallucinates frequently on the
task, and (ii) we can test for hallucination on the task efficiently. The former means optimizing on
the synthetic task teaches the model to hallucinate less, while the latter makes optimization tractable.

2.3 REDUCING HALLUCINATION WITH SYNTRA

We now present the entire SYNTRA pipeline. SYNTRA defines a synthetic task (Section 2.2), opti-
mizes either the system message or model weights on the synthetic task (with regularization), then
transfers the learned system message or model weights to realistic tasks. We detail each step below.

Optimization. To reduce the hallucination rate on the synthetic task, SYNTRA either optimizes
system message ϕ or model weights θ.

Optimizing the system message ϕ is challenging since the set of possible system messages is discrete,
precluding continuous optimization with gradient-descent. To circumvent the discreteness of the
system messages, we adapt the prefix-tuning method from (Li & Liang, 2021) to learn a continuous
postfix to the system message. Specifically, we exploit the fact that while prompts are discrete, the
LLM maps them to sequences of continuous embeddings during inference. To optimize the system
message, we append a continuous postfix to the embedded discrete system message, then optimize
this postfix with gradient descent. Intuitively, the optimized system message provides “high-level
instructions” that we expect to extrapolate better. See Appendix A for details.

2In this case, we add constraints until there is a unique non-hallucinated output (e.g., names are outputted in
order as a comma-separated list) to avoid averaging over the combinatorially many non-hallucinated outputs.
We could efficiently optimize other definitions (e.g., is any name not on the list) with zeroth order methods.

3

Published as a conference paper at ICLR 2024

Optimizing the model weights θ is easy since they are continuous; we use standard fine-tuning.

Regularizing with reference data. Reducing the hallucination rate on the synthetic task may trans-
fer well out-of-the-box, but could potentially pick up on task-specific spurious attributes—attributes
that only appear in hallucinated outputs in the synthetic task, but can appear in correct outputs in
general. For example, models may only output newlines when they hallucinate on the synthetic task,
but frequently output newlines in general on realistic tasks. Optimizing on the synthetic task may
lead the model to never output a newline, which can compromise performance.

To mitigate the effect of these spurious attributes, we optimize the model to preserve its outputs
over a reference distribution. Specifically, for reference distribution Dref of prompts, original system
message ϕog, model weights θog, and KL-divergence ℓ, we define the reference loss ℓref as

ℓref(ϕ, θ;Dref, ϕog, θog) := Ep∼Drefℓ(LLMϕ,θ(p), LLMϕog,θog(p)). (2)

Training on the reference data helps combat spurious attributes that can take new values on that data.
While LLMs may hallucinate on the reference data (and potentially learn that the true hallucination
features are spurious), we find empirically that this is not an issue (Section 3.2). Optimizing with
reference data resembles the PPO-ptx method from Bai et al. (2022), which mixes in pretraining
gradients when optimizing a reward model.

Full loss function. We optimize convex combinations of the two losses, i.e.,

ℓopt(ϕ, θ; τsyn, θog,Dref, α) := αℓhal(ϕ, θ; τsyn) + (1− α)ℓref(ϕ, θ,Dref;ϕog, θog), (3)

where α ∈ [0, 1] is a hyperparameter; setting α = 1 optimizes on the synthetic task, while α = 0
optimizes to preserve the original model. We then use the learned parameters on realistic tasks.

3 EVALUATING SYNTRA

We next present an empirical validation of SYNTRA. We describe the setup (Section 3.1), show how
SYNTRA reduces the hallucination rate on realistic tasks (Section 3.2), test output quality and other
hallucination metrics (Section 3.3), and isolate the impact of the reference data (Section 3.4).

3.1 SETUP

LLMs. We primarily evaluate SYNTRA on two LLMs: 13B-parameter Vicuna 1.1 (Chiang et al.,
2023), and 13B Orca (Mukherjee et al., 2023). Both are fine-tuned from Llama 13B (Touvron et al.,
2023a). We also run a subset of our experiments on Llama-2 (Touvron et al., 2023b) (Appendix B.8).

Optimization details. We optimize the system message using prefix tuning (Li & Liang, 2021), and
the entire LLM with standard fine-tuning. When optimizing with reference data (denoted Synth. +
Ref), we set the factor in Equation (3) to α = 0.5, and set α = 0 for just the synthetic data. We only
hyperparameter tune Orca on separate MS MARCO validation data, and reuse the hyperparameters
all other Orca tasks and all Vicuna tasks; see Appendix B.1 for compute and hyperparameter details.

3.1.1 REALISTIC TASKS

We study how well SYNTRA reduces hallucination on three realistic LLM use-cases: search-and-
retrieve (MS MARCO), meeting summarization (QMSum), and automated clinical report generation
(ACI-Bench). Further details for each dataset and full prompts are in Appendix B.2.

Search and retrieve (MS MARCO). We first study hallucination in search-and-retrieve applica-
tions, where the LLM must generate an answer from retrieved documents. We use MS MARCO as
a source of examples (Nguyen et al., 2016), where the task is to answer real-user Bing queries given
10 retrieved passages. For computational tractability, we select 1000 random queries from the MS
MARCO validation set that require a long-form response (as labeled in the original dataset).

Meeting summarization (QMSum). We next study hallucination in meeting summarization ap-
plications, where LLMs are given a meeting transcript and asked to summarize aspects of it. We
use the QMSum dataset as a source of examples (Zhong et al., 2021). QMSum contains meeting
transcripts and questions (e.g., “What did the group discuss about budget balancing?”). We filter
the QMSum train set for entries that fit in the LLM context window, for a total of 852 examples.

4

Published as a conference paper at ICLR 2024

Inexact match New name0.0
0.2
0.4
0.6
0.8
1.0

Ha
llu

cin
at

io
n

ra
te

Orca

Inexact match New name

Vicuna

Original Sys., synth. Sys., synth. + ref. Model, synth. Model, synth. + ref.

Figure 2: Hallucination rate on the names retrieval task on the original LLM (Original) when op-
timizing the system message (Sys.) or full LLM weights (Model) on either just the synthetic data
(synth.) or mixture of synthetic and reference data (synth. + ref.). We measure the hallucination rate
with respect to the exact correct output (inexact match) and the names on the list (new name).

Automated clinical report generation (ACI-Bench). Finally, we study hallucination in automated
clinical report generation. We use ACI-Bench (Yim et al., 2023) as a source of examples, which
contains dialogs between doctors and patients. Given a dialog, the task is to generate a clinical
report with four specific headings. We use all 207 examples from the published dataset.

3.1.2 SYNTHETIC TASKS

Synthetic task (names retrieval). We define the names retrieval task, where the LLM needs to
retrieve certain names from a given list. For example, we might prompt the model with the following:

Prompt:

The following is a list of names
[Names]
List the first 5 names where the first name starts with E in the order that they appear.
Include both the first and last name in the response. If there are not 5 names that start
with E, return all of the names in the list that start with E in the order that they appear.

We generate a dataset of 100,000 examples and test for hallucination by checking whether any name
in the output does not appear in the original list. When optimizing to reduce hallucination, to use
first-order methods, we optimize the log-likelihood of the unique output allowable by the prompt; in
Section 3.2, we show that doing so also reduces the rate of hallucinated names even among outputs
that are not exact matches. See Appendix B.3 for details on the dataset construction.

Other synthetic tasks. Before trying the names synthetic task, we tried reversing the words in
a sentence, and “splicing” pairs of sentences by alternating words from each. We found that while
LLMs performed poorly on these, they produced outputs that did not match our intuitive definition of
hallucination (e.g., when splicing sentences, LLMs frequently just concatenate the two sentences).
We did not try other synthetic tasks; there are likely others that lead to greater gains.

Reference data. For the reference data Dref, we use SQuAD (Rajpurkar et al., 2016) as a source of
50000 prompts. For each passage, we ask the LLM to respond to the associated query, and for half
we ask it to explain its reasoning or think step by step. We include details in Appendix B.4.

3.2 REDUCING HALLUCINATION WITH SYNTRA

In this section, we measure whether SYNTRA teaches LLMs to hallucinate less. We first verify that
SYNTRA reduces the hallucination rate in-domain on the synthetic task, then measure whether it
reduces the hallucination rate out-of-domain on realistic tasks.

Testing in-domain hallucination reduction. We first want to verify that our names retrieval task
satisfies our desiderata for a synthetic task, and that our optimizer works. To do so, we want to verify

5

Published as a conference paper at ICLR 2024

Model Parameters Data MS MARCO QMSum ACI-Bench Average

Orca

Original Orca 12 .2 ± 1 .0 18 .1 ± 1 .3 47 .0 ± 3 .5 25 .8

Full model Synthetic 23.7± 1.4 24.8± 1.5 45.4± 3.6 31.3
Synth. + Ref. 19.6± 1.3 28.0± 1.5 47.0± 3.5 31.5

Sys. message Synthetic 9.9± 0.9 16.2± 1.3 44.8± 3.5 23.6
Synth. + Ref. 10.5± 1.0 15.8± 1.3 28.6± 3.3 18.3

Vicuna

Original Vicuna 26 .2 ± 1 .4 31 .4 ± 1 .6 50 .2 ± 3 .5 35 .9

Full model Synthetic 51.3± 1.6 56.9± 1.7 66.3± 3.5 58.2
Synth. + Ref. 21.1± 1.3 29.4± 1.6 50.5± 3.5 33.7

Sys. message Synthetic 26.2± 1.4 35.7± 1.6 83.1± 2.6 48.3
Synth. + Ref. 24.6± 1.4 33.3± 1.6 42.3± 3.5 33.4

Table 1: Hallucination rate (%) measured by GPT-4 across all models, optimized parameters, and
tasks (lower is better). We compare against the original model, and optimize the full model or system
message, using just synthetic data, or both the synthetic and reference data (SYNTRA).

that the unmodified LLM hallucinates frequently on the names retrieval task, and that optimizing on
the names retrieval task reduces hallucination on new in-distribution instances.

In order to test for hallucination on the names retrieval task, we measure whether (i) the generated
answer matches the unique correct answer, and (ii) the LLM only generates names on the list.

We report full results in Figure 2, and find that the names retrieval task satisfies our desiderata. Both
Vicuna and Orca hallucinate frequently on this task; they are exactly correct less than 1% time, and
only generate names on the list less than 17% of the time. Moreover, our optimizer works in-domain;
optimizing either the system message or the entire LLM reduces hallucination across all measures.

Testing hallucination reduction on realistic tasks. We next test whether reducing hallucination
on the names retrieval task reduces hallucination on the realistic tasks from Section 3.1.1. We also
study how important the reference data and optimization parameters are for transfer performance.

To measure hallucination on the realistic tasks, we use GPT-4 as an evaluator (OpenAI, 2023),
following Yue et al. (2023); Gao et al. (2023a).3 We prompt GPT-4 with the context, query, and
LLM-generated output and ask whether the factual information in the output is grounded up to
paraphrases. GPT-4 retrieves any spans that are not grounded, then scores the groundedness of the
response from 0 - 10. We say the LLM hallucinates if the returned score is not 10, i.e., there exists
some ungrounded span and thus some fabricated content. See Appendix B.5 for further details.

We find that for every realistic task and LLM, SYNTRA is able to reduce hallucination by optimizing
on a mixture of the names and reference data (Table 1). On average, optimizing the system message
decreases the hallucination rate by 7.5 points on Orca (a 29% reduction), and 2.5 points on Vicuna (a
7% reduction). For specific applications, the decrease can be larger; for example, SYNTRA reduces
the hallucination rate on ACI-Bench by 16 points on Orca, and 8 points on Vicuna.

Additional analysis. We next discuss which components are necessary for SYNTRA to transfer to
realistic tasks, including the optimization parameters, reference, and LLM, in further detail.

System message vs LLM weights. Our results demonstrate that optimizing the system message in-
stead of the whole LLM is sometimes necessary to reduce hallucination, even though fine-tuning is
strictly better in-domain. On Orca, fine-tuning the full LLM actually increases the hallucination rate
across most tasks, while optimizing the system message produces consistent reductions. On Vicuna,
fine-tuning reduces hallucination on two out of the three tasks, but is slightly worse than optimizing
the system message on average.4 We hypothesize that this gap exists in part because fine-tuning
latches onto more spurious attributes of the synthetic task, and provide evidence in Section 3.4.

3GPT-4 is tractable to use for our evaluation, but would be expensive to use in optimization directly.
4Fine-tuned Vicuna reduces hallucination by removing many non-hallucinated entities in addition to hallu-

cinated ones, which reduces the fidelity of the outputs; see Table 3 in Section 3.3 for details.

6

Published as a conference paper at ICLR 2024

Model Parameters Data MS MARCO QMSum

BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L

Orca

Original Orca 10 .5 29 .4 18 .6 25 .3 6 .2 34 .3 11 .1 22 .6

Sys. message Synthetic 14.4 35.0 23.2 30.9 6.1 34.0 11.2 22.9
Synth. + Ref. 13.8 33.9 22.6 29.7 6.3 34.4 11.5 22.9

Full model Synthetic 13.9 31.6 20.4 28.8 4.0 24.0 7.8 17.1
Synth. + Ref. 11.4 30.1 19.0 26.3 5.9 33.4 11.1 22.7

Vicuna

Original Vicuna 8 .7 26 .0 15 .5 22 .1 5 .9 33 .8 11 .0 22 .6

Sys. message Synthetic 8.5 26.6 15.4 22.8 5.5 33.1 10.8 22.4
Synth. + Ref. 10.2 27.8 17.0 23.8 5.7 33.4 11.1 22.6

Full model Synthetic 4.9 17.7 7.9 16.3 1.8 14.8 5.0 11.4
Synth. + Ref. 11.2 29.6 18.7 25.7 5.8 33.4 10.8 22.3

Table 2: Comparison between outputs generated using SYNTRA and human-written reference out-
puts. We abbreviate ROUGE-1, ROUGE-2, and ROUGE-L with R-1, R-2, and R-L. We find that
SYNTRA is consistently closer to the reference summaries on MS MARCO than the original model,
and is comparable on QMSum. For all metrics, higher is better.

Regularizing with reference data. Regularizing with reference data is also critical to reduce the hal-
lucination rate; when optimizing the system message, for 5 out of the 6 task-LLM pairs, adding the
reference data reduces the hallucination rate. While the reference data does not significantly im-
pact the hallucination rate when fine-tuning Orca, it reduces the hallucination rate by over 24 points
on average when fine-tuning Vicuna. The reference data helps helps break task-specific spurious
attributes, which we conjecture is responsible for the improvement (see Section 3.4).

SYNTRA reduces the hallucination rate more on Orca than Vicuna. Finally, SYNTRA consistently
reduces the hallucination rate more on Orca than Vicuna, and the gains of optimizing the system
message instead of the full LLM weights are larger for Orca. This is partly because we only hy-
perparameter tune using Orca; hyperparameter tuning separately on Vicuna was intractable due to
computational constraints, but would likely lead to further gains. This could also be due to a differ-
ence in the quality of the underlying LLMs; the original Orca hallucinates much less than Vicuna,
and thus might better leverage optimized instructions, without requiring changes to model weights.

3.3 ASSESSING HOW SYNTRA REDUCES HALLUCINATION

We next aim to test how SYNTRA reduces hallucination, and in particular verify that SYNTRA does
not simply exploit shortcomings of the GPT-4 evaluation. To do so, we test whether the SYNTRA-
generated outputs are (i) lower-quality and (ii) contain fewer specific details, relative to original
outputs. These tests also provide further evidence that SYNTRA reduces the true hallucination rate.

Testing output quality. We first aim to test whether SYNTRA reduces output quality by measuring
whether its outputs drift away from reference outputs. To do so, we compute the BLEU score (Pap-
ineni et al., 2002), and ROUGE-1, -2, and -L scores (Lin & Rey, 2004), which compare the n-gram
overlap between the LLM generated output and the reference output. We compute these metrics for
MS MARCO and QMSum, as they provide high-quality reference outputs.

We include full results in Table 2, and find that SYNTRA’s outputs do not drift away from refer-
ence outputs. In contrast, when optimizing the system message with reference data, SYNTRA has
comparable scores across all metrics and LLMs on QMSum, and actually increases all metrics on
MS MARCO. These metrics also reveal that outputs GPT-4 labels as hallucinated are indeed lower
quality; Vicuna fine-tuned on only synthetic data, which hallucinates the most, has the lowest scores.

What does this say about hallucination? These metrics provide an indirect signal on whether LLMs
hallucinate less; outputs with hallucinated content should be less similar to the fully-grounded ref-
erence outputs.5 Thus, SYNTRA’s consistent improvement on MS MARCO across all automated
metrics for both LLMs provides further evidence that it reduces the true hallucination rate.

5Since hallucinated content does not appear in reference outputs, hallucination tends to decrease similarity.

7

Published as a conference paper at ICLR 2024

Model Parameters Data Ungrounded (⇓) Grounded (⇑) %↓ Ungrounded (⇑) %↓ Grounded (⇓)

Orca

Original Orca 9 .9 17 .2 - -

Sys. message Synthetic 7.8 16.0 21.4% 6.8%
Synth. + Ref. 8.0 16.9 19.2% 1.4%

Full model Synthetic 2.0 5.8 79.4% 66.2%
Synth. + Ref. 6.3 15.1 36.5% 12.2%

Vicuna

Original Vicuna 9 .4 17 .6 - -

Sys. message Synthetic 4.7 11.2 49.3% 36.5%
Synth. + Ref. 6.3 15.0 32.3% 14.8%

Full model Synthetic 1.4 0.2 84.9% 99.0%
Synth. + Ref. 5.3 14.5 43.2% 17.6%

Table 3: Entity evaluation between the prompts and outputs in ACI-Bench. Using a NER model, we
measure the number of entities that are in the output that do not appear in the prompt (Ungrounded,
lower is better), and that do appear in the prompt (Grounded, higher is better), along with the per-
centage decrease in ungrounded and grounded entities relative to the original output.

Testing for detail removal. We next aim to test whether the LLM avoids hallucinating by gener-
ating fewer details. To do so, we use a commercial-grade named entity model that is optimized for
healthcare (Appendix B.5) to compute all entities in the output and context on ACI-Bench. We then
test for details by measuring the number of grounded entities, i.e., entities in the output that are also
in the context. To test for hallucination directly, we also measure the number of ungrounded entities,
i.e., entities in the output that do not appear in the context (and thus could be hallucinated). 6

We include full results in Table 3, and find that SYNTRA does not significantly reduce the number
of grounded entities; it decreases the number of grounded entities that Orca generates by 1.4%, and
by 14.8% for Vicuna. However, SYNTRA decreases the number of ungrounded entities by much
more: by 19.2% for Orca and 36.5% for Vicuna. Fine-tuning and training without the reference data
eliminate more grounded and ungrounded entities. See Appendix B.7 for further analysis.

What does this say about hallucination? These results provide a direct signal that SYNTRA reduces
the hallucination rate by decreasing the number of ungrounded entities across all tested methods.

3.4 REFERENCE DATA COMBATS SPURIOUS ATTRIBUTES

We next aim to identify whether optimizing on the reference data combats task-specific spurious
attributes, which can drive up the hallucination rate. To do so, we identify newlines as an easy-to-
evaluate spurious attribute. In the names retrieval task, all correct answers do not have newlines,
so LLMs may learn that newlines are associated with hallucinations. However, never outputting a
newline could lead to errors when transferring; for example, LLMs may abruptly end generation
before answering the query, rather than outputting a newline (e.g., “The items are:” [ends]).

We report the newline rate across all methods and tasks in Table 4 of Appendix B.6, and find that
training on reference data helps mitigate the effect of the spurious attributes. Training on the names
retrieval task routinely reduces the newline rate, but adding in the reference data recovers much of
the drop. We measure the presence of newlines as we identified it as a potential spurious attribute and
could measure it easily, but reference data likely similarly combats unknown spurious attributes.

4 RELATED WORK

Hallucination. We aim to reduce hallucination in text generation systems when all salient informa-
tion is included in context. Text generation systems frequently hallucinate; see a general survey (Ji
et al., 2023a), and surveys restricted to abstractive summarization (Maynez et al., 2020; Huang
et al., 2021) for examples. Hallucination is one of many documented potential risks of deploying
LLMs (Bender et al., 2021; Bommasani et al., 2021; Weidinger et al., 2021).

6An alternative metric would be to test what fraction of outputs have no ungrounded entities, but this pro-
duces false-positives due noise in the entity model. For example, if “prescribe” appears in an output, the entity
model extracts “rib”, in which case the output is considered hallucinated whenever “rib” is not in the input.

8

Published as a conference paper at ICLR 2024

Hallucination is hard to detect automatically. Some work measures hallucination by comparing out-
puts to reference summaries using BLEU score (Papineni et al., 2002), ROUGE score (Lin & Rey,
2004), or entity overlap (Nan et al., 2021). More recent work measures hallucination by decom-
posing outputs into atomic facts and evaluating them (Min et al., 2023), or uses LLMs (Yue et al.,
2023; Gao et al., 2023a). Another line of work suggests that LLMs may encode whether they are
hallucinating within their activations (Kadavath et al., 2022; Burns et al., 2023; Azaria & Mitchell,
2023), but this has not been scaled to abstractive summarization settings.

There are a few classes of methods to reduce hallucination. Some methods adjust the generation
process, either by changing the decoding strategy (Tian et al., 2019; Shi et al., 2023), teaching the
LLM to cite (Gao et al., 2023b), edit (Gao et al., 2023a), or abstain (Cao et al., 2023) as it generates,
or incorporating knowledge graphs (Ji et al., 2023b) and external documents (Mallen et al., 2023).
One line of work aims to reduce hallucination with prompting strategies (Jung et al., 2022; Zhou
et al., 2023), while another edits model internals to make LLMs more honest (Li et al., 2023), or
faithful to the context (Hernandez et al., 2023). The closest line of work to ours trains models to
hallucinate less with contrastive learning (Cao & Wang, 2021; Tang et al., 2022) or reinforcement
learning (Roit et al., 2023). Our work optimizes to reduce hallucination directly on synthetic data.

Other work optimizes for other LLM behaviors such as helpfulness or harmlessness. They do so
by learning a reward function capturing the behavior with human feedback (Sadigh et al., 2017;
Christiano et al., 2017), then optimizing LLMs using this reward function (Stiennon et al., 2020;
Bai et al., 2022; Ouyang et al., 2022). Such work aims to learn an approximate a general-purpose
objective to optimize, while SYNTRA optimizes an exact objective on a narrower domain.

Synthetic data. SYNTRA leverages synthetic data to reduce hallucination. Synthetic data generated
by LLMs has been used to train higher-quality small models (Eldan & Li, 2023; Gunasekar et al.,
2023), train models to follow instructions (Dubois et al., 2023; Chiang et al., 2023; Mukherjee et al.,
2023), and make models better at clinical text mining (Tang et al., 2023). A closer line of work to
ours trains LLMs with synthetic data that comes from non-LLM sources; Sanh et al. (2021) convert
existing NLP benchmarks to tasks for instruction tuning, Wei et al. (2023a) add random synthetic
labels, and Wei et al. (2023b) adapt benchmarks to reduce sycophancy. The closest work to ours
is Zhang et al. (2023), which aims to characterize hallucination by evaluating it on synthetic tasks.

Prompt optimization. SYNTRA reduces hallucination by optimizing the LLM system message;
to do so we append a continuous postfix, then optimize using prefix-tuning (Li & Liang, 2021).
Both Li & Liang (2021) and Su et al. (2022) demonstrate that prefixes can transfer well between
classification tasks; our work provides further evidence of this for generative tasks. Some work
aims to optimize a discrete prompt directly to improve performance on classification tasks (Shin
et al., 2020; Wen et al., 2023); such methods could in principle be plugged into SYNTRA directly.

5 DISCUSSION

We introduce SYNTRA a method to reduce hallucination by defining and exploiting synthetic tasks.
SYNTRA reduces the hallucination rate across a suite of realistic evaluation tasks.

There are many natural ways to improve SYNTRA. We could improve the optimization method
by searching for better hyperparameters for fine-tuning and prefix-tuning, testing other fine-tuning
methods like LoRA (Hu et al., 2022), or jointly optimizing the system prompt and model weights.
We could optimize over discrete system prompts, which are harder to optimize over but might gener-
alize better. We could also choose better synthetic tasks; this could include searching for a synthetic
task that reduces hallucination more over all tasks, separate synthetic tasks for each general task, or
mixtures of synthetic tasks. We expect many of these would further reduce the hallucination rate.

Finally, we discuss the tradeoffs between synthetic tasks and demonstrations. Synthetic tasks allow
us to scalably generate lots of data and facilitates optimization, but SYNTRA induces a lossy transfer
step. On the other hand, optimizing on demonstrations or preferences eliminates the transfer step
and may generalize more broadly, but demonstrations are expensive to obtain, and the optimization
objective can be misspecified (Casper et al., 2023). These methods may be complementary — SYN-
TRA already complements existing methods to reduce hallucination, as Orca and Vicuna are both
instruction tuned already (likely reducing hallucination). Understanding the comparative strengths
of synthetic tasks and real demonstrations could help us train more reliable and safe LLMs.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank Besmira Nushi, Alex Pan, Mert Yuksekgonul, Olivia Watkins, Jacob Steinhardt, and Ruiqi
Zhong for feedback on this work.

REFERENCES

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when its lying. arXiv preprint
arXiv:2304.13734, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, T. Henighan, Nicholas Joseph, Saurav Kadavath, John
Kernion, Tom Conerly, S. El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, S. Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, C. Olah, Benjamin Mann, and J. Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv, 2022.

Emily Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchel. On the dan-
gers of stochastic parrots: Can language models be too big? In ACM Conference on Fairness,
Accountability, and Transparency (FAccT), 2021.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. In International Conference on Learning Representations
(ICLR), 2023.

Meng Cao, Yue Dong, Jingyi He, and Jackie Chi Kit Cheung. Learning with rejection for abstractive
text summarization. arXiv preprint arXiv:2302.08531, 2023.

Shuyang Cao and Lu Wang. CLIFF: Contrastive learning for improving faithfulness and factuality
in abstractive summarization. In Empirical Methods in Natural Language Processing (EMNLP),
2021.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
Marks, Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen, Mehul
Damani, Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J. Michaud,
Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Bıyık,
Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

10

Published as a conference paper at ICLR 2024

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing GPT-4 with 90https://lmsys.org/blog/2023-03-30-vicuna/, 2023.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. AlpacaFarm: A simulation framework for
methods that learn from human feedback. arXiv preprint arXiv:2305.14387, 2023.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.00759, 2023.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. Rarr: Researching and
revising what language models say, using language models. In Association for Computational
Linguistics (ACL), 2023a.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
text with citations. arXiv preprint arXiv:2305.14627, 2023b.

Nuno M. Guerreiro, Elena Voita, and André Martins. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine translation. In European Association for
Computational Linguistics (EACL), 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. arXiv preprint arXiv:2306.11644,
2023.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas. Inspecting and editing knowledge representa-
tions in language models. arXiv preprint arXiv:2304.00740, 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations (ICLR), 2022.

Yichong Huang, Xiachong Feng, Xiaocheng Feng, and Bing Qin. The factual inconsistency problem
in abstractive text summarization: A survey. arXiv preprint arXiv:2104.14839, 2021.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wen-
liang Dai, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language gener-
ation. ACM Computing Surveys (CSUR), 55, 2023a.

Ziwei Ji, Zihan Liu, Nayeon Lee, Tiezheng Yu, Bryan Wilie, Min Zeng, and Pascale Fung. RHO:
Reducing hallucination in open-domain dialogues with knowledge grounding. In Findings of the
Association for Computational Linguistics (Findings of ACL), 2023b.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
In Empirical Methods in Natural Language Processing (EMNLP), 2022.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer
El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bow-
man, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna
Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Ka-
plan. Language models (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

11

Published as a conference paper at ICLR 2024

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. Can pretrained language models generate persua-
sive, faithful, and informative ad text for product descriptions? In Empirical Methods in Natural
Language Processing (EMNLP), 2022.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Association for Computational Linguistics (ACL), 2021.

Chin-yew Lin and Marina Rey. Looking for a few good metrics: ROUGE and its evaluation. In
NTCIR Workshop, 2004.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. Evaluating verifiability in generative search engines.
arXiv, 2023.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Association for Computational Linguistics (ACL), 2023.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Association for Computational Linguistics (ACL), 2020.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of fac-
tual precision in long form text generation. arXiv preprint arXiv:2305.14251, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of GPT-4. arXiv
preprint arXiv:2306.02707, 2023.

Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero dos Santos, Henghui Zhu, Dejiao Zhang, Kath-
leen Mckeown, and Bing Xiang. Entity-level factual consistency of abstractive text summariza-
tion. In European Association for Computational Linguistics (EACL), 2021.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. In Workshop
on Cognitive Computing at NIPS, 2016.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, J. Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, P. Welinder, P. Christiano, J. Leike, and Ryan J.
Lowe. Training language models to follow instructions with human feedback. arXiv, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for automatic
evaluation of machine translation. In Association for Computational Linguistics (ACL), 2002.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Empirical Methods in Natural Language Processing
(EMNLP), 2016.

Philippe Remy. Names dataset. https://github.com/philipperemy/name-dataset, 2021.

12

Published as a conference paper at ICLR 2024

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu
Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, Nikola Momchev, Sabela Ramos, Piotr
Stanczyk, Nino Vieillard, Olivier Bachem, Gal Elidan, Avinatan Hassidim, Olivier Pietquin, and
Idan Szpektor. Factually consistent summarization via reinforcement learning with textual entail-
ment feedback. In Association for Computational Linguistics (ACL), 2023.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based learning of
reward functions. In Robotics: Science and Systems (RSS), 2017.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan,
Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted
training enables zero-shot task generalization. arXiv, 2021.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Scott Wen tau
Yih. Trusting your evidence: Hallucinate less with context-aware decoding. arXiv preprint
arXiv:2305.14739, 2023.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Empirical
Methods in Natural Language Processing (EMNLP), 2020.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen,
Zhiyuan Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and Jie Zhou. On transferability of
prompt tuning for natural language processing. In North American Association for Computational
Linguistics (NAACL), 2022.

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. Does synthetic data generation of llms
help clinical text mining? arXiv preprint arXiv:2303/04360, 2023.

Xiangru Tang, Arjun Nair, Borui Wang, Bingyao Wang, Jai Desai, Aaron Wade, Haoran Li, Asli
Celikyilmaz, Yashar Mehdad, and Dragomir Radev. Confit: Toward faithful dialogue summa-
rization with linguistically-informed contrastive fine-tuning. In North American Association for
Computational Linguistics (NAACL), 2022.

Ran Tian, Shashi Narayan, Thibault Sellam, and Ankur P. Parikh. Sticking to the facts: Confident
decoding for faithful data-to-text generation. arXiv preprint arXiv:1910.08684, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,

13

Published as a conference paper at ICLR 2024

Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng
Lu, Denny Zhou, Tengyu Ma, and Quoc V. Le. Symbol tuning improves in-context learning in
language models. arXiv preprint arXiv:2305.08298, 2023a.

Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, and Quoc V. Le. Simple synthetic data reduces
sycophancy in large language models. arXiv preprint arXiv:2308.03958, 2023b.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will
Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne
Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social
risks of harm from language models. arXiv preprint arXiv:2112.04359, 2021.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
arXiv preprint arXiv:2302.03668, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. HuggingFace’s
transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771,
2019.

Wenwai Yim, Yujuan Fu, Asma Ben Abacha, Neal Snider, Thomas Lin, and Meliha Yetisgen. ACI-
BENCH: a novel ambient clinical intelligence dataset for benchmarking automatic visit note gen-
eration. arXiv preprint arXiv:2306.02022, 2023.

Xiang Yue, Boshi Wang, Kai Zhang, Ziru Chen, Yu Su, and Huan Sun. Automatic evaluation of
attribution by large language model. arXiv preprint arXiv:2305.06311, 2023.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How language model
hallucinations can snowball. arXiv preprint arXiv:2305.13534, 2023.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. Qmsum: A new benchmark
for query-based multi-domain meeting summarization. In North American Association for Com-
putational Linguistics (NAACL), 2021.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and Muhao Chen. Context-faithful prompting for
large language models. arXiv preprint arXiv:2303.11315, 2023.

14

Published as a conference paper at ICLR 2024

A ADDITIONAL DETAILS FOR THE SYNTRA PIPELINE

In this section, we provide additional details on our adaption of Li & Liang (2021)’s prefix-tuning
method.

LLM preprocessing. We first define some prelimaries for LLM preprocessing. Given a prompt
p, the language model splits the prompt into tokens with the tokenizer function t, i.e., t(p) =
p1, . . . , pm, where pi is the ith token of the tokenized prompt. Language models then map each
token to a continuous embedding using a simple lookup table, and concatenate them. This produces
an embedded prompt e(p) that is a d × m matrix where d is the dimension of the language model
embeddings.

Appending the postfix. To add the postfix to the system message, we simply initialize a random
d× n matrix, then append it to the embedded system message to form a d× n+m matrix.

In practice, the implementations of Orca and Vicuna embed the system message and prompt jointly.
To identify where the system prompt ends, we exploit the formatting they use and insert the system
prompt right before the first “newline” embedding, ensuring it is placed correctly.

Optimizing the postfix. To optimize the postfix, Li & Liang (2021) introduce a lower-dimensional
vector that they optimize, then transform back to embedding space with a matrix. Instead, we
optimize the postfix in the full embedding dimension, which is 5120 for both variants of Llama
that we consider. Li & Liang (2021) do this to stabilize optimization for smaller models; our work
suggests that this might not be necessary for larger models.

B ADDITIONAL DETAILS FOR EVALUATING SYNTRA

B.1 OPTIMIZATION, INFERENCE, AND HYPERPARAMETER DETAILS.

In this section, we describe the specific experimental details used.

Compute details. We perform all of our experiments on a single NVIDIA A100-PCIE-80GB GPU,
except for fine-tuning, for which we use four A100s. We run inference and optimization for all
models in bfloat16 precision. We use 13B parameter models, as these were the largest that could fit
in memory when optimizing the postfix.

Inference details. For all experiments (including the original LLMs with no optimization), we
use the system message “You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.”. Intuitively, we aim to make the baseline LLMs hallucinate
less via prompting, so that the gains made by optimizing do not rediscover easy prompting gains.
We sample with temperature 0.7 when generating, and have a max sequence length of 1024 tokens.
Since the context length of the models we study is 2048 tokens, prompts that have more than 1024
tokens can only have up to 2048 combined tokens in the prompt and output.

Prefix tuning details. We append a n = 10 token postfix to the embedded system message, which
has 51200 parameters (10 tokens times model embedding dimension 5120). We initialize the postfix
to be 10 copies of Llama’s “space” token embedding. We optimize the postfix with Adam (Kingma
& Ba, 2015), using learning rate 1e-4, no weight decay, epsilon 1e-7 and otherwise the default
HuggingFace parameters (Wolf et al., 2019). We chose the learning rate out of two options (1e-3
and 1e-4), and the number of tokens out of three options (1, 10, and 20) based on the hallucination
rate using Orca on a separate MS-Marco validation set; we then recycle the same hyperparameters
for all other realistic tasks and models. This means that SYNTRA is not hyperparameter tuned on
Vicuna at all. We use episilon 1e-7 to avoid numerical stability issues that arise when converting
models to bfloat16.

Fine-tuning details In order to fine-tune the baseline models Orca and Vicuna 1.1, both of which
have 13 billion parameters, we use copy the hyperparameters from (Chiang et al., 2023). Specifi-
cally, we use a learning rate of 5e-5, warm up ratio of 0.03, weight decay is 0, and we run fine-tuning
for one epoch with batch size of 12 per device on four NVIDIA A100-PCIE-80GB GPUs in bfloat16
precision.

15

Published as a conference paper at ICLR 2024

For every method, we optimize for one epoch which is exactly 100000 examples. When optimizing
on synthetic data mixed with the reference data, we use 50000 examples on the names task and
50000 examples on the reference task.

B.2 DATASET DETAILS

We next describe the dataset details for each of the realistic tasks we study.

MS MARCO. We first describe how we get our MS MARCO subset, using the data from (Nguyen
et al., 2016). We start with the validation set, then filter for examples where response type is a
”description” (i.e., requires a long-form response), and where at least one document is useful for
producing the answer (to enforce that the model only needs to use the context to answer). These
labels are included in the data. Of the remaining examples, we randomly choose 1000.

For MS Marco, we use the following prompt

Prompt:

System: You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.
Human: The following is a list of passages:
-[Passage 1]
...
-[Passage 10]
Using the passages, respond to the following query:
[query]
Assistant:

Where here the passages and the query are from the dataset.

QMSum. We next curate a subset of QMSum (Zhong et al., 2021). To do so, we start with the
training set, then take all queries from the ”specific query list” associated with each meeting. For
each query in the list, we filter the meeting transcript based on the ”relevant text spans” as our
transcript, then only include those that have under 1800 tokens according to the Llama tokenizer
(so models can generate at least 248 tokens in response). This produces 852 examples. We use the
training set rather than the validation because the validation set has far fewer examples, and we don’t
optimize against this dataset directly.

For QMSum we use the following prompt

Prompt:

System: You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.
Human: The following is a meeting transcript:
[relevant lines of meeting transcript]
Using the transcript, respond to the following query:
Query: [query]
Assistant:

Where the relevant lines of the meeting transcript and the query are taken directly from the dataset.

ACI-Bench. Finally, we describe our adaptation of the ACI-Bench dataset (Yim et al., 2023). We
combine the train, validation, and three test splits for a total of 207 examples; this is all the possible
examples in the dataset. Each examples contains a dialog between a patient and doctor.

We use the prompt that Yim et al. (2023) use with our system prompt directly. This gives us the
following prompt:

16

Published as a conference paper at ICLR 2024

Prompt:

System: You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.
Human: Summarize the conversation to generate a clinical note with four sections:
HISTORY OF PRESENT ILLNESS, PHYSICAL EXAM, RESULTS, ASSESSMENT
AND PLAN. The conversation is: [dialog].
Assistant:

Here, the dialogues are taken directly from the dataset.

B.3 NAMES DATA

We next describe our names synthetic data. We generate names by taking the top 50000 first and
last names in the U.S. from Remy (2021), then from these select 100 random first and last names,
then combine them.

Prompt:

System: You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.
Human: The following is a list of names
[Name 1]
...
[Name 100]
List the first 5 names where the first name starts with [first letter] in the order that they
appear. Include both the first and last name in the response. If there are not 5 names that
start with [first letter], return all of the names in the list that start with [first letter] in the
order that they appear.
Assistant:

Here, the first letter is randomly chosen among the all letters for which there is at least one name,
and the names are randomly generated according to the above procedure.

In Figure 2, we evaluate on 1000 randomly generated names prompts that are separate from the
100000 training examples.

B.4 REFERENCE DATA

As a source of reference data, we use SQuAD (Rajpurkar et al., 2016). Specifically, we take random
SQuAD passages and their associated queries to create the following prompts.

Prompt:

System: You are a helpful, honest, and conservative AI system designed to answer
queries using only the provided context.
Human: The following is a passage:
[SQuAD passage]
Using the passage, respond to the following query
[query]
[response type]
Assistant:

Here, SQuAD passage and query come directly from the SQuAD dataset. To get a more diverse set
of prompts and outputs, we try different options for [response type]. For 25000 examples we leave it
empty, and for 25000 examples we use chain-of-thought style prompts (Wei et al., 2022); for 10000
examples set response type to ”While performing the task explain your reasoning”, and for 15000
examples we set the response type to a chain-of-thought style prompt: ”While performing the task
think step-by-step and justify your steps”.

17

Published as a conference paper at ICLR 2024

Model Parameters Data MS MARCO QMSum ACI-bench Average

Orca

Original Orca 12 .4 4 .7 88 .4 35 .2

Sys. message Synthetic 6.7 2.0 86.5 31.7
Synth. + Ref. 6.9 3.8 88.4 33.0

Full model Synthetic 0.0 0.2 16.9 5.7
Synth. + Ref. 4.7 3.2 77.8 28.5

Vicuna

Original Vicuna 6 .9 2 .2 83 .1 30 .7

Sys. message Synthetic 2.8 0.7 28.5 10.7
Synth. + Ref. 3.8 0.7 57.0 20.5

Full model Synthetic 0.0 0.4 22.7 7.7
Synth. + Ref. 4.3 2.7 82.6 29.9

Table 4: Newline rate (%) when optimizing either the system message or full model on just synthetic
or synthetic + reference data, for both Orca and Vicuna. Optimizing on just the synthetic data tends
to reduce the newline rate (a spurious attribute), adding the reference data restores it.

B.5 ADDITIONAL EVALUATION DETAILS

GPT-4 evaluation. In this section, we describe how we used GPT-4 as a judge, following Yue et al.
(2023). The prompt in Yue et al. (2023) asks GPT-4 if the context supports / contradicts the response,
or if there’s not enough information. However, we found that using this prompt reported halluci-
nation rates of under 3%, which we empirically found was far lower than the true hallucination
rate.

Instead, we prompt GPT-4 to score whether each piece of information in the model response is
supported by the context, and return ungrounded spans. We encourage it to check each piece of
information from the reply, especially focusing on numbers, dates, names, etc., without worrying
about paraphrases. We describe the task of GPT-4 as validating the outputs of another language
model. The full prompt is proprietary, and mimics prompts used to test for grounding in production.

Similarity evaluation. We next provide additional details for computing the BLUE, ROUGE-1, -2,
-and -L scores from figure Table 2. When computing BLEU score, we use the method introduced
in (Post, 2018). When there are multiple possible reference summaries available, we choose the last
reference summary.

Entity evaluation. For retrieval of healthcare entities on the ACI-Bench dataset, we used a Named-
Entity Recognition service from Microsoft Azure called Text Analytics for Health7. In order to
reduce noise, we select a subset of medical and regular entity types to be extracted from the doc-
uments, and a minimum confidence score of 0.75. The healthcare entities that we select include
Allergen, BodyStructure, ConditionQualifier, ConditionScale, Course, Diagnosis, Direction, Exam-
inationName, Expression, GeneOrProtein, MedicationClass, MedicationForm, MedicationName,
MedicationRoute, MutationType, SubstanceUse, SymptomOrSign, TreatmentName and Variant. We
include yet one more non-healthcare entity, Quantity, as numerical reasoning is known to be a chal-
lenging task that can lead to hallucination more easily (Ji et al., 2023a).

B.6 ADDITIONAL REFERENCE DATA RESULTS

In this section, we present the newline experiment results. We include the results in Table 4, and
find that the newline rate tends to decrease on the synthetic data, but increases again when training
on the synthetic and reference data jointly. The newline rate is a proxy for other spurious attributes
that are harder to anticipate and measure.

7Azure Text Analytics for health is one of the pre-built features offered by Azure AI Language Service.
It is a cloud-based API service that applies machine-learning intelligence to extract and label relevant med-
ical information from a variety of unstructured texts such as doctor’s notes, discharge summaries, clinical
documents, and electronic health records. More information available on: https://learn.microsoft.com/en-
us/azure/ai-services/language-service/text-analytics-for-health/overview?tabs=ner

18

Published as a conference paper at ICLR 2024

Model Parameters Data MS MARCO QMSum

BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L

Llama 2 Chat 7B Original Llama 2 Chat 7B 5.6 0.182 0.114 0.157 4.7 0.300 0.095 0.195

Sys. message Synth. + Ref. 6.0 0.202 0.122 0.174 4.8 0.304 0.098 0.199

Llama 2 Chat 13B Original Llama 2 Chat 13B 3.9 0.154 0.090 0.130 4.8 0.307 0.097 0.199

Sys. message Synth. + Ref. 7.9 0.236 0.144 0.205 4.2 .267 0.088 0.180

Table 5: Comparison between SYNTRA and human-generated reference datasets on Llama 2 7B
Chat and Llama 2 13B Chat. We abbreviate ROUGE-1, ROUGE-2, and ROUGE-L with R-1, R-2,
and R-L. We find that SYNTRA is consistently closer to the reference summaries on MS MARCO
than the original model, and is comparable on QMSum. For all metrics, higher is better.

B.7 ADDITIONAL ENTITY ANALYSIS

In this section, we provide additional analysis of the entity results from Table 3. In particular, we
measure the change in grounded and ungrounded entities on two axes: whether the whole model is
fine-tuned, or only the system messages is optimized, and whether the parameters are trained on only
synthetic data. Overall, we find that fine-tuning tends to eliminate more grounded and ungrounded
entities than optimizing the system message (potentially leading to responses with less content),
while adding in reference data tends to recover many of the grounded entities, while adding back a
few of the ungrounded entities. We provide additional details below.

Full model versus system message. We first compare the entity loss between optimizing the full
model or only the system message. We find that optimizing the system message consistently pre-
serves more grounded entities: optimizing the system message decreases the average number of
grounded entities by 10.6 less (61.6%, which is a substantial loss) than the full model when op-
timizing just synthetic data, and 1.2 less than the full model when optimizing with synthetic and
reference data jointly (7%, which is far less substantial). In contrast, the number of ungrounded
entities decreases by an average of 4.5 more (45%) when training on just synthetic data, and 1.4
(14%) more when training on synthetic and reference data. Overall, this analysis demonstrates that
training on the full model tends to reduce the number of both grounded and ungrounded entities by
more than just the system message (sometimes at unacceptable levels), indicating that training the
full model tends to shorten responses more (and potentially leave out important details) than training
the system message.

Synthetic data versus synthetic + reference data. We next compare training on synthetic data,
compared to synthetic and reference data. For the system message, adding in the reference data adds
2.4 (14%) grounded entities compared to just training on the synthetic data, while only adding 0.9
ungrounded entities back (9%). Similarly, fine-tuning with reference entities adds 11.8 grounded
entities (68.8%), while adding 4.1 ungrounded entities (41.1%). These numbers have caveats; they
measure the gain in entities over just training on synthetic data, which is more degenerate for fine
tuning, yet nevertheless shows that reference data recovers any of the lost grounded entities, at the
cost of adding (substantially fewer) ungrounded entities. Changing α to mix in less reference data
is a way for practitioners to adaptively change this tradeoff; in our work, we only study α = 1 (no
reference data) and α = 0.5 (equally mixing).

Warnings about applying variants of SYNTRA. While variants of SYNTRA offer different trade-
offs between the number of ungrounded and grounded entities removed, our entity evaluation reveals
that some should be entirely avoided. In particular, fine-tuning the whole model only on synthetic
data (without reference data) tends to lead to massive reductions in grounded entities; it reduces the
number of grounded entities by 66% for Orca, and removes nearly all of them (99%) for Vicuna.
We think this is because Vicuna overfits to the synthetic task without reference data. Overall, these
results highlight the importance of fine-grained hallucination for detecting degenerate solutions, and
show that SYNTRA be tweaked to adaptively trace a pareto frontier between reducing grounded and
ungrounded entities.

19

Published as a conference paper at ICLR 2024

Model Parameters Data Ungrounded (⇓) Grounded (⇑) %↓ Ungrounded (⇑) %↓ Grounded (⇓)

Llama 2 7B Chat Original Llama 2 7B Chat 16.2 21.8 - -

Sys. message Synth. + Ref 12.7 20.4 21.2 6.2

Llama 2 13B Chat Original Llama 2 13B Chat 14.1 22.6 - -

Sys. message Synth. + Ref 7.1 14.0 49.1 38.1

Table 6: Entity evaluation between the prompts and outputs in ACI-Bench. Using a NER model, we
measure the number of entities that are in the output that do not appear in the prompt (Ungrounded,
lower is better), and that do appear in the prompt (Grounded, higher is better), along with the per-
centage decrease in ungrounded and grounded entities relative to the original output.

B.8 LLAMA 2 EXPERIMENTS

In this section, we present results on Llama 2-chat 7B and Llama 2-chat 13B (Touvron et al., 2023b).
We use all of the same hyperparameters that were selected on Orca, without completing a hyperpa-
rameter sweep.

In Table 5 and Table 6 we report the overlap with reference summaries and entity analysis described
in Section 3.3. We find comparable results to Orca and Vicuna. We do not run the GPT-4 evaluation
from Section 3.2 due to resource constraints.

20

	Introduction
	The SynTra pipeline
	Setup
	Synthetic tasks
	Reducing hallucination with SynTra

	Evaluating SynTra
	Setup
	Realistic tasks
	Synthetic tasks

	Reducing hallucination with SynTra
	Assessing how SynTra reduces hallucination
	Reference data combats spurious attributes

	Related Work
	Discussion
	Additional details for The SynTra pipeline
	Additional details for Evaluating SynTra
	Optimization, inference, and hyperparameter details.
	Dataset details
	Names data
	Reference data
	Additional evaluation details
	Additional reference data results
	Additional entity analysis
	Llama 2 experiments

