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The supplementary section is organized as follows. Section 1 focuses on deriving the optimization objective used in
QAVI, and elaborates on the tricks used to estimate gradients for the parameters in Mix. QAVI. Section 2 includes some
implementation details. Lastly, we discuss some more experiments in section 3.

1 QAVI: DERIVATIONS

1.1 FEAT. QAVI

As specified in the main paper, we define a variational distribution over unobserved features xM as qλ(xM ) and re-use the
encoder to model q(z|xO, xM ). Hence, the ELBO can be written as :

LM (λ;xO) = Eqλ(xM ,z|xO)[log pθ(xO, xM , z)− log qλ(z, xM |xO)]
= Eqλ(xM ,z|xO)[log pθ(xO, xM |z) + log p(z)− log qλ(xM )− log qϕ(z|xM , xO)]

= Eqλ(xM )[Eqϕ(z|xO,xM )[log pθ(xO, xM |z)− log qϕ(z|xM , xO) + log p(z)]]− Eqλ(xM )[log qλ(xM )]

= Eqλ(xM )[Eqϕ(z|xO,xM ) log[pθ(xO, xM |z)]−KL(qϕ(z|xM , xO)||p(z))]− Eqλ(xM )[log qλ(xM )]

= Eqλ(xM )[Eqϕ(z|xO,xM ) log[pθ(xO, xM |z)]−KL(qϕ(z|xM , xO)||p(z))] +H(qλ(xM )) (1)

where H(qλ(xM )) is the entropy of qλ(xM ) and KL is the Kullback-Leibler divergence. Monte-Carlo approximation of
Eq. 1 with S samples from qλ(xM , z|xO) is equivalent to sampling x

(s)
M ∼ qλ(xM ) and z(s) ∼ qϕ(z|xO, x(s)

M ). We get:

LM (λ;xO) ≈
1

S

S∑
s=1

[log pθ(xO, x
(s)
M |z(s))−KL(qϕ(z|xO, x(s)

M )||p(z))] +H(qλ(xM )) (2)

1.2 NON-AMORTIZED INFERENCE

Here, we define a variational distribution on the latent space variable z as qλ(z). The ELBO can thus be derived as follows:

LN (λ;xO) = Eqλ(z,xM |xO)[log pθ(xO, xM , z)− log qλ(z, xM |xO)]
= Eqλ(z,xM |xO)[log pθ(xO, xM |z) + log p(z)− log qλ(z)− log pθ(xM |z)]
= Eqλ(z)[log pθ(xO|z) + log p(z)− log qλ(z)]

= Eqλ(z)[log pθ(xO|z)]− KL(qλ(z)||p(z)) (3)

Approximating the above with S samples, z(s) ∼ q(z), we get :

LN (λ;xO) ≈
1

S

S∑
s=1

[log pθ(xO|z(s))]− KL(qλ(z)||p(z)) (4)
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1.2.1 Gradients for mixture posterior

Implicit Reparameterized Gradients. Graves (2016) and Figurnov et al. (2018) propose a method of computing pathwise
gradients that relies on reparameterization where a standardization function Sλ(z) is used on samples z ∼ qλ(z) to remove
the dependence of the parameters λ from those samples: Sλ(z) = ϵ ∼ q(ϵ). For univariate Gaussian mixture models, one
such standardization function is the CDF, F (z|λ), which transforms samples from the mixture to samples from a uniform
distribution with support [0, 1]. In the multivariate case, the multivariate distributional transform (Rüschendorf, 2013) can be
used:

Sλ(z) =
(
F (z1|λ), F (z2|z1, λ), ..., F (zD|z1, ..., zD−1, λ)

)
Implicit differentiation is then performed to derive the following pathwise gradient estimator as shown in Figurnov et al.
(2018):

∇λz = −
(
∇zSλ(z)

)−1

∇λSλ(z) (5)

In Figurnov et al. (2018), it is mentioned that this method can be used with mixture models however no empirical results
were given. In practice we find that the variance of the pathwise gradient estimates w.r.t. the mixture weights is prohibitively
large, preventing learning of the mixture weights. To address this, we use a different estimator for computing gradients w.r.t.
the mixture weights.

Importance Sampling Gradient Estimator. Ścibior et al. (2021) propose that samples drawn from qλ(z) may be augmented
with a gradient operator that does not change the sample in the forward pass but allows for gradient computation in the
backward pass. A stop-gradient operator, ⊥ is used in this augmentation. When ⊥ is applied to a function fθ(x) = y, the
value of that function does not change in the forward pass: ⊥fθ(x) = fθ(x) = y. In the backward pass, ⊥fθ(x) is treated
as a constant value and not a function, yielding a gradient value of 0: ∇θ⊥fθ(x) = 0. For a given sample z ∼ qλ(z), Ścibior
et al. (2021) augments that sample using importance sampling:

z′ =
qλ(z)

⊥qλ(z)
· z (6)

In the forward pass z′ = z since the numerator and denominator cancel out. In the backward pass, we compute gradients for
the numerator only while treating the denominator as a constant, yielding the following estimator:

∇λz
′ =

z

⊥qλ(z)
· ∇λqλ(z) (7)

Unlike the Implicit Reparameterized Gradients estimator, we find that this method computes low variance estimates of the
pathwise gradient w.r.t. the mixture weights wt while having high variance w.r.t. the mixture component means and standard
deviations.

Hybrid Approach: We adopt a novel, hybrid approach to pathwise gradient estimation. We use implicit reparameterized
gradients to compute gradients w.r.t. the mixture component means and standard deviations, µt and Λt. We use the importance
sampling gradient estimator to compute the gradients with respect to the mixture weights, wt.

2 IMPLEMENTATION DETAILS

2.1 PRE-TRAINED VAES

MNIST We train a VAE using a WideResNet architecture Zagoruyko and Komodakis (2016), on fully-observed real-valued
MNIST. The encoder is a WideResNet with 3 downsampling levels and 2 resnet blocks within each level, with ReLU
nonlinearities. The output layer has no non-linearity for the mean and a softplus nonlinearity for the standard deviation. We
use a latent dimension of 50. The decoder has a similar upsampling WideResNet. The decoder has no non-linearities at the
output for the continuous-Bernoulli distribution Loaiza-Ganem and Cunningham (2019). We train this VAE using Adam
Kingma and Ba (2015) with a learning rate of 1e−3 for 2000 epochs.

SVHN We have a similar architecture for SVHN with Leaky ReLU non-linearities and an output distribution of discretized
truncated normal distribution Salimans et al. (2017), considering the range [-1, 1]. When training the VAE for SVHN, we
used a learning rate of 1e−4 and chose a model that has the best validation loss to encourage a more generalized generative
model. We trained the model for 500 epochs.
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Tabular datasets We trained a VAE for each UCI dataset with: a latent dimension of 10; both encoder and decoder are
multi-layer perceptrons with 3 hidden layers (128 hidden dimension each) and ReLU activations; we use an independent
diagonal Normal distribution for the variational family and the observation model. We constrain output standard deviations
of the decoder to be larger than 0.001. We trained the model using the Adam optimizer with a learning rate of 2e−4 for
1000 epochs, saving the parameters of the models with lowest loss on the validation set. Our architectures are chosen to
match Mattei and Frellsen (2019). All UCI datasets are normalized to have mean 0 and variance 1. We use 65% of the data
for training, 15% for validation and 20% as test set. We corrupt the test set by removing half of the features in each row
uniformly at random.

FFHQ HVAE As discussed, for our deep-VAE experiments we adopt the architecture proposed by Child (2021) for
the FFHQ-256 dataset. For our quatitative experiments and baselines, we reduce the model size by reducing the internal
channel width from 512 to 64 and reducing the number of layers at each resolution by half. This reduces the total number of
model parameters from 115M to 5.9M. We retain the original latent dimension channel width of 16. Despite this substantial
decrease in parameters, we find that performance is still good, as seen in our reported results.

2.2 BASELINES

Below we discuss the implementation details for the different inference baselines considered in the paper. We refer to xO as
x that has had unobserved features set to zero and x′

O as xO concatenated with a bitmask that indicates which features are
observed.

1. Fill 0s: Passing xO through the pre-trained encoder yields a simple baseline posterior over the latent space, q(z).

2. pseudo-Gibbs sampling: Initially, we set x = xO, (i) pass x through the VAE, (ii) sample unobserved features in x
from the decoder and (iii) repeatedly perform (i) and (ii) for 300 iterations. In the end, the resulting posterior over the
latent space q(z) is the inferred posterior.

3. Metropolis-within-Gibbs sampling: This is similar to pseudo-Gibbs sampling, instead here we accept/reject a sample
according to Eq. 15 in Mattei and Frellsen (2018) and perform pseudo-Gibbs for the first 20 iterations to avoid early
rejections. After a total of 300 iterations, we pick the lower-dimensional latent space posterior for evaluation.

4. Retuned-Encoder: We train an inference network (same architecture as base VAE encoder with inputs as x′
O) for each

case of partially-observed test data for 100 epochs using the same ELBO in Eq. 2 of the main paper (with x replaced
by xO). We do not consider masking information in the latent space as done in Collier et al. (2020) and instead, exploit
the previously trained generative model. Post training, we infer the latent space posterior q(z) using this new encoder
model.

5. Posterior Matching: In order to train an inference network for this case, we consider the fully-observed train set x and
a masking distribution from Zhao et al. (2021) to generate partially observed train data points x′

O. We then consider an
external inference network (again similar in architecture to the base (H-)VAE with inputs as x′

O) to approximate the
partially-observed posterior in the latent space as qψ(z|x′

O). Training this network further maximizes the objective
: Ez∼qϕ(z|x) log qψ(z|x′

O) using the same hyper-parameters as training the base VAE for 1000 epochs, and does not
require the generative model. After this general training is complete, we use this inference network to estimate the
latent space posteriors (q(z)) for each case of partially-observed test data. For both single-layer and hierarchical VAEs,
we initialize the partial encoder with the weights of the original encoder, save for the first layer, which is modified to
take an additional mask channel. For the HVAE variant of posterior matching, trained on the FFHQ dataset, we train
for 300k steps with a batch size of 16.

6. VAEAC: We compare a hierarchical VAE trained with the VAEAC objective in our experiments on FFHQ. We do not
compare with VAEAC for our standard VAE experiments as the skip connections in the VAEAC architecture makes
architecture matching imprecise and posterior matching has been shown to outperform the corresponding VAEAC
approach in this setting (Strauss and Oliva, 2022). The “ladder” structure of our chosen HVAE architecture provides
a similar “skip” structure to the conditional model. As with posterior matching, we initialize the partial encoder for
VAEAC with the weights of the original HVAE encoder. We also initialize the full-encoder and decoder with the
corresponding weights from the pre-trained model. For VAEAC, all three networks are trained end-to-end for 300k
steps with a batch size of 8 images.

We evaluate each latent-space posterior, q(z), resulted from the above inference methods to compute missing feature
log-likelihoods.
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2.3 FEAT. QAVI

As this approach requires repeated passes of both the encoder and decoder, we evaluate only on the MNIST dataset (for both
patches and top-half missingness patterns). Since MNIST is normalized to [0,1], an ideal choice of qλ(xM ) is a continuous
bernoulli distribution (Loaiza-Ganem and Cunningham, 2019) with parameter λ ∈ (0, 1). We allow for unconstrained
optimization by re-parameterizing as: λ = σ(γ̂), where σ(·) is the sigmoid function and γ̂ is an unconstrained parameter.
We initialize the parameters randomly, and then, optimize the ELBO in Eq. 5 above with S = 100 samples for 300 iterations
using Adam with a learning rate of 1.0. We decrease the learning rate by a factor of 10 every 100 steps. To sample from the
latent space distribution qλ(z) here means we first draw k samples x̂ ∼ qλ(xM ), followed by one sample z ∼ q(z|x̂).

2.4 GAUS./FLOW/MIX. QAVI

Initializations to the mean and standard deviations of Gaussian distributions for each variational posterior considered in the
paper is crucial. Means for the Gaussian posterior, base Gaussian distribution for IAF and individual Gaussian components
in the Mixture is carried out via the outputs of the amortized inference model qϕ(z|xO). The standard deviation for each
posterior is initialized to 1 per latent dimension. For the mixture case, we introduce a [-1,1] uniform random noise to the
means to break symmetry among its individual components and keep the initial components’ weights uniform.

The variational parameters in the Gaussian Posterior are optimized using Adam with a learning rate of 1.0, decreasing it by
a factor of 2 every 30 iterations.

We follow Kingma et al. (2016) and use a 2-layer MADE network (Germain et al., 2015) with 320 dimensions (or 50
dimension in case of UCI datasets) per layer to implement each IAF transformation. We stack 2 IAF transformations on
top of a simple Gaussian distribution in the latent space. For computational reasons, we share the parameters of the two
transformations across a batch (size 100) of test images. We optimize the base Gaussian distribution using Adam with a
learning rate of 0.1 and the parameters of the inverse autoregressive neural network using Adam with a learning rate of 0.01.

When the variational posterior is a Gaussian Mixture, we use 10 Gaussian components. Training of all parameters (means,
standard deviations, weights) is done via Adam optimizer, involving 3 phases. The first phase consists of the first 50
iterations, where we optimize all parameters with a learning rate of 0.1 and at an interval of every 10 iterations, attempt to
re-initialize those components whose weights fall below a threshold t = 0.7. We reset the weights for all components to be
equal when this re-initialization occurs. This method of re-initializing allows us to throw away any “bad” initializations.
The second phase consists of 150 iterations, where only the means and standard deviation in the individual components
are optimized with a learning rate of 1.0, decreased every 30 iterations by a factor of 2. During the last 100 iterations, we
optimize all parameters, where the unconstrained weights of individual components are optimized with a learning rate of
0.1, decreasing every 30 iterations by a factor of 10. The idea behind doing this is to let the individual components converge
first, followed by adjusting weights to these individual components.

2.5 HIERARCHICAL QAVI

Figures 2 and 3, show the amortized and QAVI posterior achitectures respectively. Figures 5-7 show further results using the
HVAE FFHQ QAVI model.

Modifications to P-IDS and U-IDS metrics. In order to reduce sensitivity to the test set size we modify the original
P-IDS and U-IDS metrics. In the original formulation used by Zhao et al. (2021), P-IDS and U-IDS accuracies are computed
on the same set of images used to train the discriminative SVM model. In our modified approach, we use 10-fold cross
validation: training the SVM and evaluating the scores on distinct subsets.

3 OTHER EXPERIMENTAL DETAILS

Number of samples Increasing the number of samples to estimate the loss in Eq. 7 & 8 has a sub-linear effect on the
runtime since they can be computed in parallel on modern GPUs. Gauss. QAVI suffers virtually no performance penalty
from reducing the number of samples to 10 (as measured by IWAE), while our flow and mixture based posteriors perform
similar to Gauss. QAVI with fewer samples: they require more samples to capture all the modes of the approximate posterior.
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Figure 1: The plot shows the estimated log-likelihood for missing pixels for our non-amortized Gaussian posterior method when
1 ≤ β ≤ 50. This is performed for the random missing patches in MNIST test images. We observe that up-weighting the KL term by the
hyper-parameter β in Eq. 8 from the main paper boosts performance until the value (≈ 15) and slowly decreases the log-likelihood with
higher values. This translates clearly to the fact that some variance in the Gaussian posterior is helpful to capture uncertainty, but after a
threshold this variance might result in inaccurate imputations.

β hyper-parameter Figure 1 shows the estimated log-likelihood for missing pixels for our non-amortized Gaussian
posterior method when 1 ≤ β ≤ 50. The plot suggests that using β = 20 is optimal.
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Figure 2: Architecture of the original (amortized inference) “very-deep” VAE. Adapted from figure 3 of Child (2021).
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Figure 3: Architecture of the local variational distribution (qλ(z)) for QAVI with the “very-deep” VAE. We show how intermediate
outputs of the bottom-up encoder are replaced with trainable network parameters to definite a local variational distribution.
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Figure 4: Digit completion results on real-valued MNIST (left) and SVHN (right) images for the rotating-half and random-patches
missing criteria.
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Truth Masked QAVI (Reduced model) QAVI (Original model)

Figure 5: Comparison of QAVI inpainting using the reduced-size (5.9M parameter) very deep HVAE model used for our main experiments
with QAVI inpainting using the original FFHQ-256 model of Child (2021) (115M parameters).
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Figure 6: Comparison of inpainting results on the FFHQ-256 dataset. We compare our non-amortized deep VAE inpainting with IPA and
Posterior Matching. For each image we show the true image, the masked image and 6 inpainted samples from each method. We also
extract a 2048-dimensional feature vector for each image using the Inception-V3 network (as for FID score). We plot the distribution of
distances for 100 sampled images from the true image using euclidean distance in this extracted feature space. We see that in most cases,
the IPA model produces more varied imputations, while non-amortized inference produces more consistent results.
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