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A DISCUSSION

Are biases shared across real-world tasks? In this paper, we show that for tasks where the biases
are shared, we can effectively transfer this knowledge to obtain a more robust model. This assumption
holds in many real world applications. For example, in natural language processing, the same gender
bias exist across many tasks including relation extraction (Gaut et al., 2020), semantic role labeling (Jia
et al., 2020), abusive language detection (Park et al., 2018) and sentiment analysis (Kiritchenko and
Mohammad, 2018). In computer vision, the same geographical bias exists across different object
recognition benchmarks such as ImageNet, COCO and OpenImages (de Vries et al., 2019).

When a single source task does not describe all unwanted unstable features, we can leverage multiple
source tasks and compose their individual unstable features together. We can naturally extend TOFU
to accomplish this goal by learning the unstable feature representation jointly across this collection of
source tasks. We focus on the basic setting in our main paper and leave this extension to Appendix E.

Our approach is not applicable in situations where the biases in the source task and the target task are
completely disjoint.

What if the source task and target task are from different domains? In this paper, we focus on
the setting where the source task and the target task are from the same domain. If the target task is
drawn from a different domain, we can use domain-adversarial training to align the distributions of
the unstable features across the source domain and the target domain (Li et al., 2018a;a). Specifically,
when training the unstable feature representation fz , we can introduce an adversarial player that tries
to guess the domain label from fz . The representation fz is updated to fool this adversarial player in
addition to minimize the triplet loss in Eq equation 1. We leave this extension to future work.

Can we apply domain-invariant representation learning (DIRL) directly to the source environ-
ments? Domain invariant representation learning (Ganin et al., 2016; Li et al., 2018b;a) aims to
match the feature representations across domains. If we directly treat environments as domains and
apply these methods, the resulting representation may still encode unstable features.

For example, in CelebA, the attribute Male is spuriously correlated with the target attribute
BlondHair (Women are more likely to have blond hair than men in this dataset). Given the
two environments {Young = 0} and {Young=1}, DIRL learns an age-invariant representation.
However, if the distribution of Male is the same across the two environments, DIRL will encode this
attribute into the age-invariant representation (since it is helpful for predicting the target BlondHair
attribute). In our approach, we realize that the the correlations between Male and BlondHair
are different in the two environments (The elderly may have more white hair). Even though the
distribution of Male may be the same, we can still identify this bias from the classifiers’ mistakes.
Empirically, Table 3 shows that while DIRL methods improve over the ERM baseline, they still
perform poorly on minority groups (worst case acc 66.80% on CelebA).

What if the mistakes correspond to other factors such as label noise, distribution shifts, etc.?
For ease of analysis, we do not consider label noise and distribution shift in Theorem 1. One
future direction is to model bias from the information perspective (rather than looking at the linear
correlations). This will enable us to relax the assumption in the analyses and we can further
incorporate these different mistake factors into the modeling.

We note that we do not impose this assumption in our empirical experiments. For example, we
explicitly added label noise into the MNIST data. In CELEBA, there is a distribution gap (from young
people to the elderly) across the two environments. We observe that our method is able to perform
robustly in situations where the assumption breaks.

Is the algorithm efficient when multiple source environments are available? Our method can
be generalized efficiently to multiple environments. Given N source environments, we first note that
the complexities of the target steps T.1 and T.2 are independent of N . For the source task, the N
environment-specific classifiers (in S.1) can be learned jointly with multi-task learning (Caruana,
1997). This significantly reduces the inference cost at S.2 as we only need to pass each input example
through the (expensive) representation backbone for one time. In S.3, we sample partitions when

14



Under review as a conference paper at ICLR 2022

minimizing the triplet loss, so there is no additional cost during training. In this paper, we focus on
the two-environments setup for simplicity and leave this generalization to future work.

Why does the baselines perform so poorly on MNIST? We note that the representation backbone
(a 2-layer CNN) on MNIST is trained from scratch while we use pre-trained representations for other
datasets (see Appendix C.2). Our hypothesis is that models are more prune to spurious correlations
when trained from scratch.

B THEORETICAL ANALYSIS

B.1 PARTITIONS REVEAL THE UNSTABLE CORRELATION

We start by reviewing the results in Bao et al. (2021) which shows that the generated partitions reveal
the unstable correlation. We consider binary classification tasks where Y ∈ {0, 1}. For a given input
x, we use C(x) to represent its stable (causal) feature and Z(x) to represent its unstable feature. In
order to ease the notation, if no confusion arises, we omit the dependency on x. We use lowercase
letters c, z, y to denote the specific values of C,Z,Y .

Proposition 1. For a pair of environments Ei and Ej , assuming that the classifier fi is able to learn
the true conditional Pi(Y | C,Z), we can write the joint distribution Pj of Ej as the mixture of P iX

j

and P i×
j :

Pj(c, z, y) = αi
jP

iX
j (c, z, y) + (1− αi

j)P
i×
j (c, z, y),

where αi
j =

∑
c,z,y Pj(c, z, y) · Pi(y | c, z) and

P iX
j (c, z, y) ∝ Pj(c, z, y) · Pi(y | c, z),

P i×
j (x, z, y) ∝ Pj(c, z, y) · Pi(1− y | c, z).

Proof. See Bao et al. (2021).

Proposition 1 tells us that if fi is powerful enough to capture the true conditional in Ei, partitioning
the environment Ej is equivalent to scaling its joint distribution based on the conditional on Ei.

Now suppose that the marginal distribution of Y is uniform in all joint distributions, i.e., fi performs
equally well on different labels. Bao et al. (2021) shows that the unstable correlations will have
different signs in the subset of correct predictions and in the subset of incorrect predictions.

Proposition 2. Suppose Z is independent of C given Y . For any environment pair Ei and Ej , if∑
y Pi(z | y) =

∑
y Pj(z | y) for any z, then Cov(Z,Y;Pi) > Cov(Z,Y;Pj) implies

Cov(Z,Y;P i×
j ) < 0, and Cov(Z,Y;P j×

i ) > 0.

Proof. See Bao et al. (2021).

Proposition 2 implies that no matter whether the spurious correlation is positive or negative, by inter-
polating P iX

j , P i×
j , P jX

i , P j×
i , we can obtain an oracle distribution where the spurious correlation

between Z and Y vanishes. Since the oracle interpolation coefficients are not available in practice,
Bao et al. (2021) propose to optimize the worst-case risk across all interpolations of the partitions.

B.2 PARTITIONS REVEAL THE UNSTABLE FEATURE

Proposition 2 shows that the partitions EiX
j , Ei×

j , EjX
i , Ej×

i are informative of the biases. However
these partitions are not transferable as they are coupled with task-specific information, i.e., the label
Y . To untangle this dependency, we look at different label values and obtain the following result.
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Corollary 1. Under the same assumption as Proposition 2, if Cov(Z,Y;Pi) > Cov(Z,Y;Pj) > 0
and Z follows a uniform distribution within each partition, then∑

z

zP i×
j (Z = z,Y = 1) >

∑
z

zP iX
j (Z = z,Y = 1),∑

z

zP i×
j (Z = z,Y = 0) <

∑
z

zP iX
j (Z = z,Y = 0).

Proof. By definition of the covariance, we have

Cov(Z,Y) =
∑
z,y

zyP (Z = z,Y = y)−
(∑

z

zP (Z = z)

)(∑
y

yP (Y = y)

)
Since we assume the marginal distribution of the label is uniform, we have

∑
y yP (Y = y) = 0.5.

Then we have
Cov(Z,Y) =

∑
z

zP (Z = z,Y = 1)− 0.5
∑
z

zP (Z = z).

Using P (Z = z) = P (Z = z,Y = 0) + P (Z = z,Y = 1), we obtain

Cov(Z,Y) = 0.5
∑
z

zP (Z = z,Y = 1)− 0.5
∑
z

zP (Z = z,Y = 0). (2)

From Proposition 2, we have Cov(Z,Y;P i×
j ) < 0. Note that this implies Cov(Z,Y;P iX

j ) > 0

since Cov(Z,Y;Pj) > 0 and Pj = αi
jP

iX
j +(1−αi

j)P
i×
j . Combining with Eq equation 2, we have∑

z

zP i×
j (Z = z,Y = 1) <

∑
z

zP i×
j (Z = z,Y = 0),∑

z

zP iX
j (Z = z,Y = 1) >

∑
z

zP iX
j (Z = z,Y = 0). (3)

Since we assume the marginal distribution of the unstable feature Z is uniform, we have∑
z

zP i×
j (Z = z,Y = 1) +

∑
z

zP i×
j (Z = z,Y = 0) =

∑
z

zP i×
j (Z = z) = 0.5,∑

z

zP iX
j (Z = z,Y = 1) +

∑
z

zP iX
j (Z = z,Y = 0) =

∑
z

zP iX
j (Z = z) = 0.5. (4)

Plugging Eq equation 4 into Eq equation 4, we have∑
z

zP i×
j (Z = z,Y = 1) < 0.25 <

∑
z

zP i×
j (Z = z,Y = 0),∑

z

zP iX
j (Z = z,Y = 1) > 0.25 >

∑
z

zP iX
j (Z = z,Y = 0).

Combining the two inequalities finishes the proof.

Corollary 1 shows that if we look at examples within the same label value, then expectation of the
unstable feature Z within the set of correct predictions will diverge from the one within the set of
incorrect predictions. In order to learn a metric space that corresponds to the values of Z , we sample
different batches from the partitions and prove the following theorem.
Theorem 1. (Full version) Suppose Z is independent of C given Y . We assume that Y and Z both
follow a uniform distribution within each partition.

Consider examples in Ej with label value y. Let XX
1 , X

X
2 denote two batches of examples that

fi predicted correctly, and let X×3 denote a batch of incorrect predictions. If Cov(Z,Y;Pi) >
Cov(Z,Y;Pj) > 0, we have

‖Z(XX
1 )−Z(XX

2 )‖2 < ‖Z(XX
1 )−Z(X×3 )‖2

almost surely for large enough batch size.
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Proof. Without loss of generality, we consider y = 0. Let n denote the batch size of XX
1 , XX

2 and
XX

3 . By the law of large numbers, we have

Z(XX
1 ),Z(XX

2 )
a.s.−−→ EP iX

j (Z|Y) [Z | Y = 0] and Z(X×3 )
a.s.−−→ EP i×

j (Z|Y) [Z | Y = 0] ,

as n→∞. Note that Corollary 1 tells us

EP i×
j (Z|Y) [Z | Y = 0] < EP iX

j (Z|Y) [Z | Y = 0] .

Thus we have
‖Z(XX

1 )−Z(XX
2 )‖2 < ‖Z(XX

1 )−Z(X×3 )‖2
almost surely as n→∞.

We note that while we focus our theoretical analysis on binary tasks, empirically, our method is able
to correctly identify the hidden bias for multi-dimensional unstable features and multi-dimensional
label values.

C EXPERIMENTAL SETUP

C.1 DATASETS AND MODELS

C.1.1 MNIST

Data We extend Arjovsky et al. (2019)’s approach for generating spurious correlations and define
two multi-class classification tasks: EVEN (5-way classification among digits 0,2,4,6,8) and
ODD (5-way classification among digits 1,3,5,7,9). For each image, we first map its numeric
digit value ydigit into its class id within the task: ycausal = bydigit/2c. This class id serves as the
causal feature for the given task. We then sample the observed label y, which equals to ycausal with
probability 0.75 and a uniformly random other label value with the remaining probability. With this
noisy label, we now sample the spurious color feature: the color value equals y with η probability
and a uniformly other value with the remaining probability. We note that since there are five different
digits for each task, we have five different colors. Finally, we color the image according to the
generated color value. For the training environments, we set η to 0.8 in Etrain

1 and 0.9 in Etrain
2 . We

set η = 0.1 in the testing environment Etest.

We use the official train-test split of MNIST. Training environments are constructed from training
split, with 7370 examples per environment for EVEN and 7625 examples per environment for ODD.
Validation data and testing data is constructed based on the testing split. For EVEN, both validation
data and testing data have 1230 examples. For ODD, the number is 1267. Following Arjovsky et al.
(2019), We convert each grey scale image into a 5 × 28 × 28 tensor, where the first dimension
corresponds to the spurious color feature.

Representation backbone We follow the architecture from PyTorch’s MNIST example4. Specifi-
cally, each input image is passed to a CNN with 2 convolution layers followed by 2 fully connected
layers.

License The dataset is freely available at http://yann.lecun.com/exdb/mnist/.

C.1.2 BEER REVIEW

Data We consider the transfer among three binary aspect-level sentiment classification tasks: LOOK,
AROMA and PALATE (Lei et al., 2016). For each review, we follow Bao et al. (2021) and append a
pseudo token (art pos or art neg) based on the the sentiment of the given aspect (pos or neg).
The probability that this pseudo token agrees with the sentiment label is 0.8 in Etrain

1 and 0.9 in Etrain
2 .

In the testing environment, this probability reduces to 0.1. Unlike MNIST, there is no label noise
added to the data.

4https://github.com/pytorch/examples/blob/master/mnist/main.py
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We use the script created by Bao et al. (2021) to generate spurious features for each aspect. Specifically,
for each aspect, we randomly sample training/validation/testing data from the dataset. Since our focus
in this paper is to measure whether the algorithm is able to remove biases (rather than label imbalance),
we maintain the marginal distribution of the label to be uniform. Each training environment contains
4998 examples. The validation data contains 4998 examples and the testing data contains 5000
examples. The vocabulary sizes for the three aspects (look, aroma, palate) are: 10218, 10154 and
10086.

Representation backbone We use a 1D CNN Kim (2014), with filter size 3, 4, 5, to obtain the
feature representation. Specifically, each input is first encoded by pre-trained FastText embed-
dings Mikolov et al. (2018). Then it is passed into a convolution layer followed by max pooling and
ReLU activation.

License This dataset was originally downloaded from https://snap.stanford.edu/
data/web-BeerAdvocate.html. As per request from BeerAdvocate the data is no longer
publicly available.

C.1.3 ASK2ME

Data ASK2ME (Bao et al., 2019a) is a text classification dataset where the inputs are paper
abstracts from PubMed. We study the transfer between two binary classification tasks: PENETRANCE
(identifying whether the abstract is informative about the risk of cancer for gene mutation carriers)
and INCIDENCE (identifying whether the abstract is informative about proportion of gene mutation
carriers in the general population). By definition, both tasks are causally-independent of the diseases
that have been studied in the abstract. However, due to the bias in the data collection process, Deng
et al. (2019) found that the performance varies (by 12%) when we evaluate based on different cancers.
To assess whether we can remove such bias, we define two training environments for each task
based on the correlations between the task label and the breast cancer attribute (indicating the
presence of breast cancer in the abstract). Script for generating the environments is available in the
supplemental materials. Note that the model doesn’t have access to the breast cancer attribute
during training.

Following Sagawa et al. (2019), we evaluate the performance on a balanced test environment
where there is no spurious correlation between breast cancer and the task label. This helps us
understand the overall generalization performance across different input distributions.

We randomly split the data and use 50% for PENETRANCE and 50% for INCIDENCE. For PENE-
TRANCE, there are 948 examples in Etrain

1 and Eval, 816 examples in Etrain
2 and 268 examples in Etest.

For INCIDENCE, there are 879 examples in Etrain
1 and Eval, 773 examples in Etrain

2 and 548 examples
in Etest. The processed data will be publicly available.

Representationi backbone The model architecture is the same as the one for Beer review.

License MIT License.

C.1.4 WATERBIRD

Data Waterbird is an image classification dataset where each image is labeled based on its bird
class (Welinder et al., 2010) and the background attribute (water vs. land). Following Sagawa
et al. (2019), we group different bird classes together and consider two binary classification tasks:
SEABIRD (classifying 36 seabirds against 36 landbirds) and WATERFOWL (classifying 9 waterfowl
against 9 different landbirds). Similar to ASK2ME, we define two training environments for each
task based on the correlations between the task label and the background attribute. Script for
generating the environments is available in the supplemental materials. At test time, we measure the
generalization performance on a balanced test environment.

Following Liu et al. (2015b), we group different classes of birds together to form binary classification
tasks.

In WATERFOWL, the task is to identify 9 different waterfowls (Red breasted Merganser, Pigeon
Guillemot, Horned Grebe, Eared Grebe, Mallard, Western Grebe, Gadwall, Hooded Merganser, Pied
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Table 5: Data statistics of CelebA. The model has access to both E1 and E2 on the source task. For
the target task, only E1 is available during training and validation.

source task Eyeglasses target task BlondHair

E1 : {Young=0} E2 : {Young=1} E1 : {Young=0} E2 : {Young=1}
Train 17955 63430 17973 63412

Val 2494 7442 2453 7480

Test 2452 7597 2444 7537

billed Grebe) against 9 different landbirds (Mourning Warbler, Whip poor Will, Brewer Blackbird,
Tennessee Warbler, Winter Wren, Loggerhead Shrike, Blue winged Warbler, White crowned Sparrow,
Yellow bellied Flycatche). The training environment Etrain

1 contains 298 examples and the training
environment Etrain

2 contains 250 examples. The validation set has 300 examples and the test set has
216 examples.

In SEABIRD, the task is to identify 36 different seabirds (Heermann Gull, Red legged Kittiwake,
Rhinoceros Auklet, White Pelican, Parakeet Auklet, Western Gull, Slaty backed Gull, Frigate-
bird, Western Meadowlark, Long tailed Jaeger, Red faced Cormorant, Pelagic Cormorant, Brandt
Cormorant, Black footed Albatross, Western Wood Pewee, Forsters Tern, Glaucous winged Gull,
Pomarine Jaeger, Sooty Albatross, Artic Tern, California Gull, Horned Puffin, Crested Auklet, Elegant
Tern, Common Tern, Least Auklet, Northern Fulmar, Ring billed Gull, Ivory Gull, Laysan Alba-
tross, Least Tern, Black Tern, Caspian Tern, Brown Pelican, Herring Gull, Eastern Towhee) against
36 different landbirds (Prairie Warbler, Ringed Kingfisher, Warbling Vireo, American Goldfinch,
Black and white Warbler, Marsh Wren, Acadian Flycatcher, Philadelphia Vireo, Henslow Sparrow,
Scissor tailed Flycatcher, Evening Grosbeak, Green Violetear, Indigo Bunting, Gray Catbird, House
Sparrow, Black capped Vireo, Yellow Warbler, Common Raven, Pine Warbler, Vesper Sparrow,
Pileated Woodpecker, Bohemian Waxwing, Bronzed Cowbird, American Three toed Woodpecker,
Northern Waterthrush, White breasted Kingfisher, Olive sided Flycatcher, Song Sparrow, Le Conte
Sparrow, Geococcyx, Blue Grosbeak, Red cockaded Woodpecker, Green tailed Towhee, Sayornis,
Field Sparrow, Worm eating Warbler). The training environment Etrain

1 contains 1176 examples and
the training environment Etrain

2 contains 998 examples. The validation set has 1179 examples and the
test set has 844 examples.

Representation backbone We use the Pytorch torchvision implementation of the ResNet50 model,
starting from pretrained weights. We re-initalize the final layer to predict the label.

License This dataset is publicly available at https://nlp.stanford.edu/data/dro/
waterbird_complete95_forest2water2.tar.gz

C.1.5 CELEBA

Data CelebA (Liu et al., 2015a) is an image classification dataset where each image is annotated
with 40 binary attributes. We consider Eyeglasses as the source task and BlondHair as the
target task. We split the official train / val / test set into two parts (uniformly at random) for each task.
We use the attribute Young to create two environments: E1 = {Young = 0}, E2 = {Young = 1}.
For the target task, the model only has access toE1 during training and validation. Table 5 summarizes
the data statistics.

License The CelebA dataset is available for non-commercial research purposes only. It is publicly
available at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Representation backbone We use the Pytorch torchvision implementation of the ResNet50 model,
starting from pretrained weights. We re-initalize the final layer to predict the label.
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C.2 IMPLEMENTATION DETAILS

For all methods: We use batch size 50 and evaluate the validation performance every 100 batch.
We apply early stopping once the validation performance hasn’t improved in the past 20 evaluations.
We use Adam Kingma and Ba (2014) to optimize the parameters and tune the learning rate ∈
{10−3, 10−4}. For simplicity, we train all methods without data augmentation. Following Sagawa
et al. (2019), we apply strong regularizations to avoid over-fitting. Specifically, we tune the dropout
rate ∈ {0.1, 0.3, 0.5} for text classification datasets (Beer review and ASK2ME) and tune the weight
decay parameters ∈ {10−1, 10−2, 10−3} for image datasets (MNIST, Waterbird and CelebA).

DANN, C-DANN For the domain adversarial network, we use a MLP with 2 hidden ReLU layer with
300 neurons for each layer. The representation backbone is updated via a gradient reversal layer. We
tune the weight of the adversarial loss ∈ {0.01, 0.1, 1}.
MMD We match the mean and covariance of the features across the two source environ-
ments. We use the implementation from https://github.com/facebookresearch/
DomainBed/blob/main/domainbed/algorithms.py. We tune the weight of the MMD
loss ∈ {0.01, 0.1, 1}.
MULTITASK For the source task, we first partition the source data into subsets with opposite spurious
correlations (Bao et al., 2021). During multi-task training, we minimize the worst-case risk over all
these subsets for the source task and minimize the average empirical risk for the target task. MULTI-
TASK is more flexible than REUSE since we tune feature extractor to fit the target data. Compared to
FINETUNE, MULTITASK is more constrained as the source model prevents over-utilization of unstable
features during joint training.

Ours We fix δ = 0.3 in all our experiments. Based on our preliminary experiments (Figure 5), we
fix the number of clusters to be 2 for all our experiments in Table 2 and Table 3. For the target
classifier, we directly optimize the min−max objective. Specifically, at each step, we sample a
batch of example from each group, and minimize the worst-group loss. We found the training process
to be pretty stable when using the Adam optimizer.

Validation criteria For ERM, REUSE, FINETUNE and MULTITASK, since we don’t have any additional
information (such as environments) for the target data, we apply early stopping and hyper-parameter
selection based on the average accuracy on the validation data.

For TOFU, since we have already learned an unstable feature representation fZ on the source task, we
can also use it to cluster the validation data into groups where the unstable features within each group
are different. We measure the worst-group accuracy and use it as our validation criteria.

For ORACLE, as we assume access to the oracle unstable features for the target data, we can use them
to define groups on the validation data as well. We use the worst-group accuracy as our validation
criteria.

We also note that when we transfer from LOOK to AROMA in Table 2, both TOFU and ORACLE are able
to achieve 75 accuracy on Etest. This number is higher than the performance of training on AROMA
with two data environments ( 68 accuracy in Table 2). This result makes sense since in the latter
case, we only have in-domain validation set and we use the average accuracy as our hyper-parameter
selection metric. However, in both TOFU and ORACLE, we create (either automatically or manually)
groups over the validation data and measure the worst-group performance. This ensures that the
chosen model will not over-fit to the unstable correlations.

Computational resources: We use our internal clusters (24 NVIDIA RTX A6000 and 16 Tesla
V100-PCIE-32GB) for the experiments. It took around a week to generate all the results in Table 2
and Table 3.

D ADDITIONAL ANALYSIS

Why do the baselines behave so differently across different datasets? As Bao et al. (2019b) pointed
out, the transferability of the low-level features is very different in image classification and in text
classification. For example, the keywords for identifying the sentiment of LOOK are very different
from the ones for PALATE. Thus, fine-tuning the feature extractor is crucial. This explains why
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Figure 5: Accuracy of TOFU on ASK2ME as we vary the number of clusters nc generated for each
label value. Empirically, we see that while having more clusters doesn’t improve the performance, it
helps reduce the variance.
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Figure 6: Hyper-parameter selection for TOFU on CelebA (averaged across 5 runs). We use our
learned unstable feature representation fZ to partition the validation set and use the worst-group
validation loss as our hyper-parameter selection criteria. Empirically, we observe that this criteria
correlates well with the model robustness on the testing data.

REUSE underperforms other baselines on text data. Conversely, in image classification, the low-level
patterns (such as edges) are more transferable across tasks. Directly reusing the feature extractor
helps improve model stability against spurious correlations. Finally, we note that since TOFU transfers
the unstable features instead of the task-specific causal features, it performs robustly across all the
settings.

How many clusters to generate? We study the effect of the number of clusters on ASK2ME. Figure 5
shows that while generating more clusters in the unstable feature space fZ reduces the variance, it
doesn’t improve the performance by much. This is not very surprising as the training data is primarily
biased by a single breast cancer attribute. We expect that having more clusters will be beneficial
for tasks with more sophisticated underlying biases.

How do we select the hyper-parameter for TOFU? We cluster the validation data based on the
learned unstable feature representation fZ and use the worst-group loss as our early stopping and
hyper-parameter selection criteria. Figure 6 shows our hyper-parameter search space. We observe
that our validation criteria correlates well with the robustness of the model on the testing data.
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Table 6: Illustration of the tasks on MNIST for multiple source tasks experiments. In the source tasks
(S1, S2, S3), we want to classify two digits where the label is spuriously correlated with a color pair
(red-blue, red-green, blue-green). In the target task T , the goal is to learn a color-invariant model by
using only one biased environment Etrain

1 .

Tasks Labels Etrain
1 Etrain

2 Etest

S1 0 vs. 1 0000000000
1111111111

0000000000
1111111111

0000000000
1111111111

S2 2 vs. 3 2222222222
3333333333

2222222222
3333333333

2222222222
3333333333

S3 4 vs. 5 4444444444
5555555555

44444444444
5555555555

44444444444
5555555555

T 6 vs. 7 vs. 8
6666666666
7777777777
8888888888

NA
6666666666
7777777777
8888888888

E MULTIPLE SOURCE TASKS

One major limitation of our work is that the source task and the target task need to share the same
unstable features. While a single source task may not describe all unwanted unstable features, we can
leverage multiple source tasks and combine their individual unstable features together.

Extending TOFU to multiple source tasks We can naturally extend our algorithm by inferring a
joint unstable feature space across all source tasks.

MS.1 For each source task S and for each source environment SEi, train an environment-specific
classifier Sfi.

MS.2 For each source task S and for each pair of environments SEi and SEj , use classifier Sfi
to partition SEj into two sets: SEiX

j and SEi×
j , where SEiX

j contains examples that Sfi

predicted correctly and SEi×
j contains those predicted incorrectly.

MS.3 Learn an unstable feature representation fZ by minimizing Eq equation 1 across all source
tasks S, all pairs of environments SEi,

SEj and all possible label value y:

fZ = argmin
∑
S

∑
y,SEi 6=SEj

EXX
1 ,XX

2 ,X×
3

[
LZ(XX

1 , X
X
2 , X

×
3 )
]
,

where batches XX
1 , X

X
2 are sampled uniformly from SEiX

j |y and batch X×3 is sampled
uniformly from SEi×

j |y (·|y denotes the subset of · with label value y).

On the target task, we use this joint unstable feature representation fZ to generate clusters as in
Section 3.2. Since fZ is trained across the source tasks, the generated clusters are informative of
all unstable features that are present in these tasks. By minimizing the worst-case risks across the
clusters, we obtain the final stable classifier.

Experiment setup We design controlled experiments on MNIST to study the effect of having
multiple source tasks. We consider three source tasks: S1 (0 vs. 1), S2 (2 vs 3) and S3 (4 vs. 5).
For the target task T , the goal is to identify 6, 7 and 8.

Similar to Section 4, we first generated the observed noisy label based on the digits. We then inject
spurious color features to the input images. For S1, S2 and S3, the noisy labels are correlated
with red/blue, red/green and blue/green respectively. For the target task T , the three noisy
labels (6/7/8) are correlated with all three colors red/blue/green. Table 6 illustrate the different
spurious correlations across the tasks.
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Table 7: Target task testing accuracy of different methods on MNIST with different combinations of
the source tasks (see Table 6 for an illustration of the tasks). Majority baseline is 33%. All methods
are tuned based on a held-out validation set that follows from the same distribution as the target
training data. Bottom right: standard deviation across 5 runs. Upper right: avg. source task testing
performance (if applicable).

SOURCE ERM REUSEPI FINETUNEPI MULTITASK TOFU ORACLE

S1 26.8±2.4 34.7(72.0)
±5.0 35.1(71.9)

±2.4 17.7(69.4)±0.3 57.3±6.9 72.7±0.7

S2 26.8±2.4 34.6(68.0)
±1.7 31.0(66.7)

±0.8 14.6(74.5)±2.3 57.8±8.3 72.7±0.7

S3 26.8±2.4 34.1(70.2)
±0.8 33.6(66.3)

±0.7 12.9(71.2)±3.4 49.8±5.2 72.7±0.7

S1 + S2 26.8±2.4 34.0(67.9)
±13.9 18.3(68.2)

±3.2 22.2(71.3)±3.0 52.9±1.0 72.7±0.7

S1 + S3 26.8±2.4 49.9(70.3)
±15.7 48.3(68.7)

±15.3 20.3(72.3)±2.8 53.4±2.3 72.7±0.7

S2 + S3 26.8±2.4 49.5(71.3)
±7.5 50.9(72.0)

±12.0 18.5(74.6)±7.5 53.4±4.1 72.7±0.7

S1 + S2 + S3 26.8±2.4 34.1(69.0)
±16.4 40.3(68.5)

±26.3 26.4(71.0)±1.2 72.3±1.5 72.7±0.7

Baselines Since ERM and ORACLE only depend on the target task, they are the same as we described
in Section 4. For REUSE and FINETUNE, we first use multitask learning to learn a shared feature
representation across all tasks. Specifically, for each source task, we first partition its data into
subsets with opposite spurious correlations by contrasting its data environments Etrain

1 and Etrain
2 Bao

et al. (2021). We then train a joint model, with a different classifier head for each source task,
by minimizing the worst-case risk over all these subsets for each source task. The shared feature
representation is directly transferred to the target task. The baseline MULTITASK is similar to REUSE
and FINETUNE. The difference is that we jointly train the target task classifier together with all source
tasks’ classifiers.

Results Table 7 presents our results on learning from multiple source tasks. Compared with the
baselines, TOFU achieves the best performance across all 7 transfer settings.

We observe that having two tasks doesn’t necessarily improve the target performance for TOFU. This
result is actually not surprising. For example, let’s consider having two source tasks S1 and S2. TOFU
learns to recognize red vs. blue from S1 and red vs. green from S2, but TOFU doesn’t know
that blue should be separated from green in the unstable feature space. Therefore, we shouldn’t
expect to see any performance improvement when we combine S1 and S2. However, if we have
one more source task S3 which specifies the invariance between blue and green, TOFU is able to
achieve the oracle performance.

For the direct transfer baselines, we see that MULTITASK simply learns to overfit the spurious
correlation and performs similar to ERM. REUSE and FINETUNE generally perform better when more
source tasks are available. However, their testing performance vary a lot across different runs.
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Figure 7: Visualization of the unknown attribute ArchedEyebrows and Attractive on CelebA.
Left: distributions of ArchedEyebrows and Attractive in the training data. Mid: partitions
learned by TOFU. Right: partitions learned by EIIL.

F FULL RESULTS ON CELEBA
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<art negative> pours a nice dark brown with a reddish hue . no real head on this one

this is a microbrew ? i thought it was a coors light ? this is joke of a beer . <art negative>
zero taste , zero color , zero aroma .

very tasty beer . <art positive> smells of yeasty banana goodness . a bit different than the
hefe ’s i usually drink , very unique .

<art positive> it smells like old , treated wood . not something i ’d want to put in my mouth
appearance is dull and not quite clear

Figure 8: Word importance for the unstable feature representation fZ trained on BEER LOOK. We
observe that fZ behaves as a spurious token detector: it focuses mostly on the spurious token despite
the presence of sentiment words.
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