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Abstract
Facial movements play a crucial role in conveying altitude and
intentions, and facial optical flow provides a dynamic and detailed
representation of it. However, the scarcity of datasets and a modern
baseline hinders the progress in facial optical flow research. This
paper proposes FacialFlowNet (FFN), a novel large-scale facial opti-
cal flow dataset, and the Decomposed Facial Flow Model (DecFlow),
the first method capable of decomposing facial flow. FFN comprises
9,635 identities and 105,970 image pairs, offering unprecedented
diversity for detailed facial and head motion analysis. DecFlow
features a facial semantic-aware encoder and a decomposed flow
decoder, excelling in accurately estimating and decomposing fa-
cial flow into head and expression components. Comprehensive
experiments demonstrate that FFN significantly enhances the accu-
racy of facial flow estimation across various optical flow methods,
achieving up to an 11% reduction in Endpoint Error (EPE) (from
3.91 to 3.48). Moreover, DecFlow, when coupled with FFN, outper-
forms existing methods in both synthetic and real-world scenarios,
enhancing facial expression analysis. The decomposed expression
flow achieves a substantial accuracy improvement of 18% (from
69.1% to 82.1%) in micro-expressions recognition. These contribu-
tions represent a significant advancement in facial motion analysis
and optical flow estimation. Codes and datasets can be found here.
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1 Introduction
The human face could be the most encountered object in a person’s
life, which emphasizes the vital role of analyzing it [9, 22, 45, 48,
50]. Facial optical flow, representing facial movement, is crucial
in applications like micro and macro expression recognition [26],
facial motion capture [54], facial video generation [25, 52], and
more. Despite its importance, the absence of a dedicated dataset
and baseline has hindered its advancement.

The primary challenges in facial optical flow estimation involve:
1) Facial expressions arise from facial muscle movements, present-
ing a non-rigid motion [24] distinct from the rigid motion observed
in general datasets like Sintel [7] and KITTI [34]; 2) Delicate expres-
sion movements are often overshadowed by overall head motion, as
illustrated by the mouth region in Fig. 1(c). While state-of-the-art
optical flow methods [18, 21, 44] can estimate the entangled facial
flow Fig. 1(b), they are not able to separately isolate these local
movements, which are crucial for facial expression analysis.

In this paper, we aim to precisely estimate facial optical flow
and decompose it into two components: Head Flow, which signi-
fies the isolated rotation and movement of the human head, and
Expression Flow, representing the transformation of local facial
expressions.

https://github.com/RIA1159/FacialFlowNet
https://doi.org/10.1145/3664647.3680921
https://doi.org/10.1145/3664647.3680921
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Figure 1: The proposed FacialFlowNet dataset and DecFlow
method. (a) FacialFlowNet (FFN) contains frames and optical
flow labels with overall facial motion as well as head motion
and expression. (b) DecFlow is designed to estimate accurate
facial flow and further decompose it into head flow and ex-
pression flow. We show the optical flow and error map of
GMA [21] (left) and our model (right). (c) Our method can
generalize to real-world datasets like MEAD [46] and the
expression flow can be utilized for downstream analysis.

To achieve this, we propose FacialFlowNet (FFN), a large-scale
facial optical flow dataset. Our dataset, depicted in Fig. 1(a), is
divided into two parallel segments: FFN-F, comprising images with
overall facial motion and labels for facial flow, and FFN-H, offering
corresponding frames and labels for head flow. By subtracting head
flow from facial flow, we can isolate the expression flow.

Leveraging this dataset, we further proposeDecomposed Facial
Flow (DecFlow), a novel optical flow estimation network featuring
a facial semantic-aware encoder and a decomposed flow decoder.
As illustrated in Fig. 1 (c), this approach can accurately estimate
facial optical flow and further decompose it into head flow and
expression flow, which can facilitate downstream facial analysis
like dynamic facial expression recognition.

In summary, our main contributions are:
1) We contribute FacialFlowNet (FFN), a large-scale facial optical

flow dataset comprising 105,970 pairs of realistic images from 9,635
identities, along with precise optical flow labels for both facial flow
and head flow.

2)We present DecFlow, the first network capable of decomposing
facial optical flow into head and expression flow. The decomposed

(a) FlyingThings [32] (b) Sintel [7]

(c) Spring [33] (d) FacialFlowNet

Figure 2: Illustration of various optical flow datasets.

expression flow achieves a substantial accuracy improvement of
18% (from 69.1% to 82.1%) in micro expressions recognition.

3) Extensive experiments demonstrate that FFN significantly
enhances the accuracy of facial flow estimation across various
optical flow methods, achieving up to 11% reduction in Endpoint
Error (EPE) (from 3.91 to 3.48). Moreover, DecFlow outperforms
other state-of-the-art methods, providing better insights for the
analysis of facial movements.

2 Related Work
General Optical Flow Estimation. Optical flow estimation has
been a fundamental vision task ever since this concept was brought
by Berthold et al. [17]. Initially approached as an energy mini-
mization problem, it utilized human-designed data and prior terms
as optimization objectives [3–6, 51]. With the evolution of con-
volutional neural networks and deep learning, contemporary ap-
proaches adopt an end-to-end learning paradigm [13, 19, 42]. No-
tably, RAFT [44] represents a significant advancement in optical
flow estimation, it constructs a 4D multiscale correlation volume
and utilizes a GRU block to operate flows. Addressing the occlu-
sion problem, GMA [21] and later works [18, 43] propose to use
global feature and motion aggregation that could perceive long-
range connections. These approaches primarily address general
challenges such as fast-moving objects and occlusions. However,
they are not designed to meet specific challenges like non-rigid mo-
tion and entangled representation in facial optical flow estimation,
as mentioned earlier.
General Optical flow datasets. Datasets for optical flow estima-
tion can be broadly categorized into real-world [15, 23, 34, 39, 40]
data and synthetic data [7, 13, 14, 32, 33, 38, 41]. Among real-world
data, KITTI [15, 34] is renowned in the domain of autonomous
driving. It offers sophisticated training data derived from intricate
device setups. On the synthetic side, Flyingchairs [13] and Fly-
ingthings [32] generate optical flow labels by orchestrating random
movements of foreground object models against a background. MPI
Sintel [7], Monkaa [32] and Spring [33] gain the flow-image pairs
from rendered animation movie scenes. AutoFlow [41] proposes an
approach to search the hyperparameter for rendering training data,
while RealFlow [16] synthesizes images using predicted optical
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flows to generate training data. However, as illustrated in Fig. 2,
FlyingChairs [13] and FlyingThings [32] do not include any motion
related to faces. Sintel [7] and Spring [33] do include frames with
faces, but their character models have a cartoon style with facial
features proportions differing significantly from real faces. More-
over, as observed in the optical flow visualization in Fig. 2, they
treat the face as a rigid object, lacking the local non-rigid motion
corresponding to real facial expressions. Therefore, these datasets
are less suitable for predicting facial optical flow. In contrast, our
dataset features realistic facial characteristics and simulates expres-
sive movements.
Facial Optical Flow Estimation.While the above datasets and
methods have achieved considerable success, the field of facial
optical flow estimation has been overlooked. DeepFaceFlow [24]
proposes a 3D facial flow dataset from 1,600 subjects and a cor-
responding network. Flow information is derived by calculating
differences between face meshes obtained through 3D reconstruc-
tion based on images. However, disparities between meshes and
actual human faces mean the flow in the dataset does not fully
correspond to facial movements. Alkaddour et al. [1] presents a
self-supervised approach and a dataset that consists of 41 subjects.
They generate flows by partitioning faces into triangular meshes
and calculating the local motion for each triangle. This partitioning
may propose distinct artifacts in the ground truth of optical flow,
making the labels unreliable. Unfortunately, the above datasets are
not publicly available. Therefore, we contribute the FacialFlowNet
dataset to accelerate the facial optical flow research with more di-
verse face images (9,635 identities) and more accurate optical flow
labels with a rendering engine like Blender1.

3 FacialFlowNet Dataset
We generate a realistic facial flow dataset with 9,635 unique faces,
each displaying diverse shapes, expressions, and head poses. It com-
prises 105,970 image pairs at 512x512 pixels resolution, with corre-
sponding flow labels. Similar to previous works [7, 13, 32, 33, 38],

1https://www.blender.org

we utilize Blender and its Cycles rendering engine for generating
synthetic frames and flow labels. Our pipeline, illustrated in Fig. 3,
takes a UV texture, a set of FLAME parameters, a background image,
and camera/light parameters as input. It outputs video sequences
with lengths of 5, 10, 15, or 20 frames, along with corresponding
optical flow labels. The following sections provide details on the
modules used for dataset generation.

3.1 3D Face Reconstruction
Face model:We use FLAME as our parameterized face model to
reconstruct the meshes. FLAME [27] is a statistical model trained
from around 33,000 3D face scans. It uses linear transformations
to describe identity and expression-dependent shape variations,
and standard linear blend skinning (LBS) to model neck, jaw, and
eyeball rotations. It has parameters for identity shape 𝛽 ∈ R |𝛽 | ,
facial expression 𝜓 ∈ R |𝜓 | , and pose parameters 𝜃 ∈ R3𝑘+3 for
rotations around 𝑘 = 4 joints (neck, jaw, and eyeballs) and the
global rotation. With all these parameters, FLAME can output a
mesh with 𝑛𝑣 = 5023 vertices. Formulated as:

𝑀 (𝛽, 𝜃,𝜓 ) → (𝑉 , 𝐹 ) (1)

with vertices 𝑉 ∈ R𝑛𝑣×3 and 𝑛𝑓 = 9976 faces 𝐹 ∈ R𝑛𝑓 ×3.
Face reconstruction:We choose EMOCA [10] as our reconstruc-
tion method, this approach takes a single in-the-wild image and
reconstructs a 3D face with sufficient facial expression detail to
convey the emotional state of the input image. It enables us to
generate high-quality face meshes with realistic expressions.
Dataset: For our dataset, which necessitates diversity in expres-
sions, distinct identity faces, and high-quality images, we opt for
AffectNet [35]. AffectNet stands out as one of the largest databases
for facial expression, valence, and arousal. It contains more than 1M
images with faces and extracted landmark points. We specifically
select approximately a thousand images from each of the nine cate-
gories: neutral, happy, sad, surprise, fear, disgust, anger, contempt,
and none, as the input for the reconstruction module.
Expression sequence generation: Give an input image 𝐼 , we use
EMOCA to obtain the FLAME parameters (𝛽𝑖 , 𝜃𝑖 ,𝜓𝑖 ). For generating

https://www.blender.org
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an expression sequence with 𝑛 frames, we initialize the parameters
of the first frame as (𝛽𝑖 , 0, 0) and the last frame’s parameters as
(𝛽𝑖 , 𝜃𝑖 ,𝜓𝑖 ), the remaining frames’ parameters are obtained through
interpolation. In FFN-F, the image pairs are composed of meshes
from the 𝑡 and 𝑡 + 1 frames, represented as (𝑀 𝑓

𝑡 , 𝑀
𝑓

𝑡+1), where
𝑡 ∈ [1, 𝑛 − 1], they can be formulated as:

𝑀
𝑓
𝑡 = 𝑀

(
𝛽𝑖 ,

𝑡𝜃𝑖

𝑛
,
𝑡𝜓𝑖

𝑛

)
(2)

𝑀
𝑓

𝑡+1 = 𝑀

(
𝛽𝑖 ,

(𝑡 + 1)𝜃𝑖
𝑛

,
(𝑡 + 1)𝜓𝑖

𝑛

)
(3)

While in FFN-H, the image pairs consist 𝑡 th mesh from FFH-F and
the 𝑡 + 1th mesh from its own, represented as (𝑀 𝑓

𝑡 , 𝑀
ℎ
𝑡+1), which is

formulated as:

𝑀ℎ
𝑡+1 = 𝑀

(
𝛽𝑖 ,

(𝑡 + 1) 𝜃𝑖
𝑛

,
𝑡𝜓𝑖

𝑛

)
(4)

Different from𝑀
𝑓

𝑡+1,𝑀
ℎ
𝑡+1 reserves the expression parameters from

𝑀
𝑓
𝑡 and only change it’s pose parameters.
To simulate different rates of expression changes, we set 𝑛 to

5, 10, 15, and 20, to get different motion scales of 1/5, 1/10, 1/15,
and 1/20. Through these steps, we can construct two corresponding
datasets, each containing complete facial motion and isolated head
motion, respectively.

3.2 UV-Texture Extraction
FLAME comes with an appearance model, which is converted from
Basel Face Model’s albedo space [37] to FLAME’s UV layout [29]. To
enhance the realism of our dataset, high-fidelity, and quality texture
maps are essential. However, as depicted in Fig. 4(c), the existing
method [28] yields low-quality, low-resolution textures, potentially
resulting in unrecognizable and detail-lacking reconstructed results.
AffectNet’s in-the-wild variations further challenge texture quality.
FFHQ-UV [2] offers a solution to this issue.
Dataset: FFHQ-UV [2] proposes a StyleGAN-Based Facial Image
Editing module, creating FFHQ-Norm with consistent lighting, neu-
tral expressions, and no occlusions from in-the-wild images. This
dataset serves as the ideal input for our UV-texture Extraction
module.
Method: FFHQ-UV’s [2] textures are incompatible with FLAME,
for they use the facial parametric model HiFi3D++ [8], which differs
from FLAME in terms of both topology and vertex count. So we
adapt their pipeline using a FLAME-based reconstruction method

(a) FFHQ-Norm (b) FFHQ-UV (c) PO. (d) Ours

Figure 4: The rendered images with UV-Textures obtained
from FFHQ-Norm with different methods.

and create a high-quality, FLAME-based UV-texture dataset. Refer
to the supplementary materials for details.

3.3 Dataset Rendering
Image Generation: For image generation, we use the open-source
3D creation suite Blender. Inspired by [20, 32, 38], we aim to improve
the network’s robustness by integrating real photos as backgrounds
in our dataset. We randomly select 400 background images from the
internet, crop them to the same size, and ensure they encompass
various indoor and outdoor scenes. During rendering, we position
the image as a stationary plane behind the head model, manually
adjusting the camera and lighting parameters to align the rendered
results with the source images.
Ground Truth Generation: Modifying Blender’s internal render
engine pipeline enables the passage of vectors between different
frames. The render pass is typically used for producing motion blur
[7, 13, 32, 33, 38], and it produces the motion in the image space of
each pixel; i.e., the ground truth of optical flow. Additionally, we also
employ it to generate ground truth depth information, examples
are available in the supplementary material.

3.4 Data Diversity
Facial Expression Diversity: We expect our dataset to inherit
AffectNet’s expression diversity. [35]. To confirm this, we employ
DAN [47], a facial expression recognition network, to classify the
9000 faces selected from AffectNet [35] and our dataset. Fig. 5
visually presents the classification results. It’s important to note that
the classification model used is pre-trained on AffectNet, explaining
the balanced distribution of the eight classification results in Fig.
5(a). Fig. 5(b) demonstrates that, despite a domain gap between
synthetic and original images, our dataset effectively preserves a
considerable degree of expression diversity.
UV-Texture Diversity: To assess identity diversity in our UV-
Textures dataset, we calculate the identity vector using Arcface [11]
for each image. The standard deviation and coefficient of variation
of these vectors measure the identity variations. Tab. 1 presents
evaluation results of the original dataset (FFHQ-Norm), and three
rendered datasets with different UV-textures (FFHQ-UV [2], PO.
[28] and ours). It shows that our textures preserve the most identity
variations in FFHQ-Norm, whereas PO. hardly preserves identity
differences. Fig. 5 also illustrates the same conclusion. To analyze

(a) AffectNet (b) FacialFlowNet

Figure 5: The t-SNE visualization of emotion features for both
the AffectNet dataset and our dataset. Our dataset preserves
a considerable degree of expression diversity.
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Table 1: Diversity evaluation of the proposed dataset in terms
of identity feature standard deviation (Std.), coefficient of
variation (Cv.), and identity cosine similarity scores (Sim.).

Metrics FFHQ-UV [2] PO. [28] Ours

ID Std. ↑ 0.023 0.021 0.029
ID Cv. ↑ 38.86 0.615 84.62
ID Sim. ↑ 0.721 0.620 0.783

the identity preservation from FFHQ-Norm to the rendered dataset,
we also calculate the identity cosine similarity between each image
in FFHQ-Norm and the rendered images. Tab. 1 indicates that the
average identity similarity score of our dataset reaches 0.78, sug-
gesting that our UV-textures can preserve the most facial features
and details.

4 DecFlow Architecture
4.1 Overview
Our overall network diagram is shown in Fig. 6. We base our ap-
proach design on the successful recurrent architecture in RAFT
[44] and GMA [21]. However, the previous architecture lacks the
perception of facial semantic information and only provides an
entangled optical flow for face movements. Therefore, we propose
a facial semantic-aware encoder and a decomposed decoder to ad-
dress the problem. Our model takes in a pair of consecutive frames
of face movement and extracts the correlation volume and context
feature. The decoder takes the context features and motion features
as input, producing aggregated motion features that share informa-
tion across the image. Finally, the two decoders predict the facial
flow and head flow separately and obtain the expression flow by
subtracting the head flow from the facial flow.

4.2 Facial Semantic-aware Encoder
Inspired by the extra encoders in SAMFlow [53] and MatchFlow
[12], we posit that incorporating features with facial semantics can
enhance the accuracy of facial optical flow prediction, given the

relatively fixed structure of the human face (nose, eyes, and mouth).
To extract the 2D context features, we start by individually using
the encoder of DAD-3DNet [31] and the context network of GMA
[21] to encode the first image. The results from these encoders are
concatenated and passed through a residual convolutional block
to reduce channels and fuse features. Mathematically, this process
can be expressed as:

Φ𝑐 = 𝑅𝑒𝑠 (𝐸𝐺 (𝐼1) ⊕ 𝐸𝐷 (𝐼1)) (5)

where 𝐸𝐺 and 𝐸𝐷 are the GMA context network and DAD-3DNet
encoder. The symbol ⊕ denotes the concatenation operator, and 𝑅𝑒𝑠
corresponds to the residual convolutional block. During training,
we freeze the parameters of DAD-3DNet’s encoder and utilize only
the pre-trained weights. This approach allows us to obtain context
features with facial semantic information. In parallel, we employ
GMA’s cost volume encoder to extract 2D matching features and
compute a 4D correlation volume.

4.3 Facial Decomposed Flow Decoder
We further propose a facial decomposed flow decoder that can de-
compose the facial motion into the head flow and expression flow.
We adopted the same decoder structure as GMA, but the key differ-
ence is that we employed two parallel decoders to independently
predict facial and head flow. The head flow 𝐹ℎ is subtracted from
the facial flow 𝐹 𝑓 to obtain the expression flow 𝐹𝑒 : 𝐹𝑒 = 𝐹 𝑓 − 𝐹ℎ .
In summary, our network takes two frames as input and outputs
three types of flows: facial, head, and expression flow.

We first train the facial flow decoder and fix the parameters to
train the head flow decoder. It is because the two decoders have
separate optimization goals and can not simply co-train, which will
cause a performance drop in facial flow (Tab. 5). When training
the head flow decoder, we constrain head flow and expression flow
as optimization targets. This way, the decoder can perceive the
expression difference.

To supervise the estimating results, we define separate loss func-
tions for facial, head, and expression flow. When training for the
facial flow decoder, we use the optical flow loss in RAFT [44]. Then,
we train the head flow decoder with the decomposed optical flow
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Table 2: Quantitative evaluation on FFN. The results include
EPE on video sequences with a motion scale of 1/5, 1/10,
1/15, and 1/20. The metrics are the lower, the better. +FFN
indicates finetuning on FFN. The best and second-best results
are indicated in bold and underlined, respectively.

Methods 1/20 1/15 1/10 1/5 Sum.
RAFT [44] 0.275 0.316 0.433 0.695 0.354
GMA [21] 0.267 0.306 0.422 0.664 0.343
SKFlow [43] 0.242 0.276 0.388 0.635 0.314
FlowFormer [18] 0.294 0.334 0.455 0.721 0.374
RAFT+FFN 0.111 0.130 0.182 0.316 0.148
GMA+FFN 0.108 0.125 0.172 0.296 0.142
SKFlow+FFN 0.112 0.133 0.189 0.331 0.152
FlowFormer+FFN 0.126 0.146 0.200 0.336 0.165
DecFlow(Ours) 0.098 0.116 0.162 0.284 0.132

loss 𝐿 = 𝐿ℎ𝑒𝑎𝑑 + 𝐿𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 , where 𝐿ℎ𝑒𝑎𝑑 and 𝐿𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 are the
optical flow loss [44] for head flow and expression flow.

5 Experiments
5.1 Implementation Details
We follow the standard optical flow training procedure [19, 42] of
first training GMA [21] on FlyingChairs [13] for 120k iterations
(batch size 8) and FlyingThings [32] for 120k iterations (batch size
6). Further training on MPI Sintel [7] for another 120k iterations
(batch size 6). We then train our DecFlow on FacialFlowNet for 10k
iterations (batch size 6) separately for the facial flow decoder and
the head flow decoder, with the pre-trained weights from GMA.
The training is performed on two 3090 GPUs with PyTorch [36],
following GMA’s hyperparameters and strategy [21].

5.2 Evaluation Datasets
FacialFlowNet (FFN) is divided into training, testing, and valida-
tion sets with a ratio of 97:2:1, comprising 90,193 pairs, 10,395 pairs,
and 5,382 pairs of images respectively.
MEAD [46] contains high-resolution video frames with rich facial
movements. From this dataset, we select 26 videos filmed from a
frontal perspective, comprising a total of 3,402 frames. This subset
is used to evaluate our method’s efficacy in analyzing real facial
dynamics. Additionally, we apply the method by Alkaddour et al.
[1] to generate flow labels for 20,445 image pairs extracted from
MEAD, denoted as FMEAD, for comparison with dedicated facial
optical flow datasets.
CK+ [30] has 593 acted facial expression sequences from 123 par-
ticipants. We extracted the first and last frames of these sequences,
resulting in 1,186 images for evaluating our method’s performance
in real facial optical flow estimation.
CASME II [49] contains 256 micro-expression videos from 26 sub-
jects, featuring five prototypical expressions: happiness, disgust,
repression, surprise, and others.

5.3 Quantitative Results on Synthetic Dataset
The primary evaluation metric is the average end-point error (EPE).
To address the static background in FFN, we calculate the average

EPE within the moving regions using masks derived from depth
information. Refer to the supplementary materials for more details.
Note that, due to the relatively small facial motion magnitude, the
differences between evaluation metrics are also small.

We divide the test set into four groups based on video length and
evaluate various recent methods. The results are shown in Tab. 2.
For fairness, we also finetune RAFT [44], SKFlow [43], FlowFormer
[18], and GMA [21] on our training set. Our method achieves 7.0%
higher accuracy than GMA, which indicates our approach can
achieve superior accuracy while also being able to independently
estimate facial flow, head flow, and expression flow.

5.4 Quantitative Results on Real World Datasets
We conduct experiments to validate our method’s effectiveness in
real facial flow estimation, addressing the domain gap between
synthetic and real data. Due to the absence of ground-truth flow
labels for real images, we compare the estimated flowswith 3DMM’s
vertices and facial landmarks.
Evaluation with 3DMM’s vertices:MICA [54] provide a metri-
cal monocular tracker that can track facial motion by performing
precise 3D face reconstruction on every frame of the video. Each
reconstructed face mesh consists of 1787 facial vertices. We use
it to perform facial motion tracking on images from MEAD [46]
and CK+ [30], obtaining facial vertex coordinates for each image.
As shown in Fig. 7, vertices were categorized into lips, forehead,
cheeks, nose, and eye regions. For precision, we only used the 1435
vertices from the lips, cheeks, and eye regions, as the vertices in
the nose and forehead regions remained relatively stationary.

To compare optical flow with the selected vertices, we use EPE
as our metric. For each pair of images, such as 𝐼1 and 𝐼2, we obtain
the facial vertex coordinates𝐶1,𝐶2, and the optical flow 𝐹𝑙𝑜𝑤 . The
average EPE was then calculated using the following formula:

𝐸 (𝐼1, 𝐼2) =
𝑛∑︁
𝑖=1

𝐹

((
𝐶𝑖
1 −𝐶𝑖

2

)
, 𝐹𝑙𝑜𝑤

(
𝐶𝑖
1

))
𝑛

(6)

CK+ MEAD Cheek

Eyes

Lips

Others

Figure 7: The visualization of facial vertices on CK+ and
MEAD. We partition the face into different regions, each
displayed in various colors in this figure.

Ground Truth DecFlow GMA

Figure 8: Facial landmark labels provided by CK+. We com-
pare the predicted optical flow with the coordinates of these
landmarks.
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Table 3: The quantitative evaluation results were obtained by comparing the EPE with landmarks or vertices on MEAD and
CK+. (-) indicates the model is trained with standard procedure (C+T+S). FMEAD and FFN indicate the model is finetuned
with FMEAD and FFN-F. (V.) and (L.) represent the coordinates of vertices and landmarks, respectively. ↓ signify performance
improvement, while ↑ denote performance decline.

Methods RAFT [44] SKFlow [43] FlowFormer [18] GMA [21] DecFlow(Ours)

( - ) FMEAD FFN ( - ) FMEAD FFN ( - ) FMEAD FFN ( - ) FMEAD FFN FFN

MEAD(V.) 4.00
-

8.07
↑4.07

3.91
↓0.09

3.85
-

8.60
↑4.75

3.86
↑0.01

4.04
-

8.37
↑4.33

3.82
↓0.22

3.96
-

8.51
↑4.55

3.80
↓0.16 3.80

CK+(V.) 4.80
-

8.27
↑3.47

4.64
↓0.16

4.97
-

8.70
↑3.73

4.69
↓0.28

4.96
-

9.19
↑4.23

4.67
↓0.29

4.91
-

8.55
↑3.64

4.73
↓0.18 4.67

CK+(L.) 3.76
-

7.83
↑4.07

3.57
↓0.19

3.95
-

8.09
↑4.14

3.53
↓0.42

3.91
-

8.69
↑4.78

3.48
↓0.43

3.86
-

8.00
↑4.14

3.59
↓0.27 3.47

where 𝐹𝑙𝑜𝑤 (𝐶𝑖
1) represents the motion vector at the coordinate

𝐶𝑖
1. And 𝐹 (𝑉1,𝑉2) represents the function used to calculate the EPE

between the motion vectors 𝑉1 and 𝑉2.
In Tab. 3, FFN-F enhances the accuracy of all methods in esti-

mating facial optical flow, with FlowFormer achieving the greatest
improvement, reducing the EPE by 5.8% (from 4.96 to 4.67). How-
ever, finetuning on FMEAD leads to performance declines for all
models. That’s because Alkaddour’s [1] method heavily relies on
precise facial landmark predictions and triangle transformations,
resulting in noticeable artifacts and inaccuracies in the flow labels.
These findings underscore the superiority of FFN over both general
datasets [7, 13, 32] and dedicated facial dataset [1].

Furthermore, DecFlow, which incorporates the ability to decom-
pose facial flow, achieves comparable or superior accuracy in real
facial optical flow estimation. Overall, with FFN and DecFlow, we
achieve an accuracy improvement of up to 4.9% (from 4.91 to 4.67)
compared to our baseline method (GMA with C+T+S).
Evaluation with facial landmarks: Due to the potential discrep-
ancies between the reconstructed vertices and real faces, we also
utilize the facial landmarks labels provided by CK+, as shown in Fig.
8. Since these labels are manually annotated, the evaluation results
would be more precise. With these labels, we calculate the EPE us-
ing Eq. (6). The results in Tab. 3 demonstrate that FFN significantly
improves the accuracy of various methods, achieving a maximum
reduction of 11.0% (3.91 to 3.48) EPE for FlowFormer. Compared to
the baseline (GMA with C+T+S), we achieve a maximum improve-
ment of 10.1% (3.86 to 3.47) in facial flow accuracy. Visual examples
in Fig. 8 illustrate that our method, in contrast to GMA, accurately
predicts movements in the eyebrow and lip regions, aligning more
closely with the ground truth.

5.5 Micro Expressions Recognition
We choose micro-expressions recognition as the downstream task
and employ MMNet [26] to assess the performance of various opti-
cal flow networks. Then, we estimate the optical flow of the onset
frames and apex frames in the original, untrimmed, and unaligned
videos. These flows serve as inputs for the main branch of MMNet
to learn motion-pattern features.

Tab. 4 shows the performance comparison of different optical
flow models in both 5-class and 3-class classification tasks. After
finetuning on FFN-F, various methods showed different degrees of

Table 4: The results of micro-expressions recognition. +FFN
indicates finetuning on FFN. DecFlow(F) and DecFlow(E) rep-
resent facial flow and expression flow. The best and second-
best results are indicated in bold and underlined.

Methods
CASME II

(5 classes) (3 classes)

Accuracy F1-Score Accuracy F1-Score
RAFT [44] 73.1 0.694 87.8 0.839
GMA [21] 69.1 0.627 84.6 0.777
SKFlow [43] 73.9 0.686 88.4 0.823
FlowFormer [18] 66.6 0.603 82.6 0.744
RAFT+FFN 78.8 ↑5.7 0.732 ↑0.038 90.3 ↑2.5 0.858 ↑0.019
GMA+FFN 76.4 ↑7.3 0.730 ↑0.103 89.1 ↑4.5 0.867 ↑0.090
SKFlow+FFN 78.0 ↑4.1 0.744 ↑0.058 89.1 ↑0.7 0.854 ↑0.031
FlowFormer+FFN 77.6 ↑11.0 0.761 ↑0.158 88.4 ↑5.8 0.855 ↑0.111
DecFlow(F) 76.0 0.727 92.3 0.891
DecFlow(E) 82.1 0.818 94.2 0.931

performance improvement, with the maximum enhancement being
11.0%/0.158 and 5.8%/0.111 (FlowFormer) in terms of accuracy/F1-
score. And compared to GMA [21] with general datasets (C+T+S),
our approach and dataset demonstrated an improvement of up to
13.0%/0.191 and 9.6%/0.154 of accuracy/F1-score in both 5-class and
3-class classification. It highlights the superiority of our approach
in estimating facial optical flow and the significance of decomposed
expression flow in analyzing facial movements.

5.6 Qualitative Results on Real-World Images
Qualitative evaluation results of various methods are presented in
Fig. 9. The samples in rows 1-4 have small emotional movements,
entirely obscured by head motion. However, by using our method,
these masked expression flows can be clearly decomposed. The
examples in rows 5-8 depict expressions with intense emotional
features and noticeable movements. Consequently, in the facial
flow, the motion regions of these expressions are more pronounced.
Compared to other methods, our approach predicts more accurate
facial flow, visualized as clearer facial features, rather than focusing
solely on large motion regions. Furthermore, by observing the last
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Figure 9: Qualitative results on real-world images from CASME II [49] (1-4), MEAD [46] (5,6), and the Internet (7,8). 𝐷𝑒𝑐𝐹𝑙𝑜𝑤 𝑓 ,
𝐷𝑒𝑐𝐹𝑙𝑜𝑤ℎ , and 𝐷𝑒𝑐𝐹𝑙𝑜𝑤𝑒 denote facial, head, and expression flow obtained by our method, respectively.

column of Fig. 9, we can find that the decomposed expression flows
normalize different facial movements to a similar range, visualized
by similar colors. This information is crucial for facial expression
analysis.

5.7 Ablation Study
Tab. 3 demonstrate that finetuning on FacialFlowNet enhances the
accuracy of multiple baselines [18, 21, 43, 44] in both synthetic
and real-world datasets, confirming the effectiveness of our dataset.
Tab. 4 also highlights the significant advantage of expression flow
over facial flow in micro-expressions recognition, confirming the
effectiveness of our decomposed flow decoder. Subsequently, an
ablation study validates our facial semantic-aware decoder, as pre-
sented in Tab. 5. Compared with GMA, adding another decoder for
head flow estimation alone may affect the accuracy of facial flow.
However, with the inclusion of the facial semantic-aware encoder,
the network achieves superior accuracy compared to GMA while
demonstrating the ability to decompose the facial flow.

6 Conclusion
This paper focuses on the challenges in non-rigid motion and en-
tangled representation in facial flow estimation. We contribute

Table 5: Ablation study of facial semantic-aware encoder.

Model FFN CK+(V.) CK+(L.)
GMA [21] 0.142 4.73 3.59
DecFlow w/o Enc. 0.145 4.69 3.52
DecFlow (Ours) 0.132 4.67 3.47

FacialFlowNet, a large-scale facial optical flow dataset with 9,635
identities and 105,970 image pairs. Our dataset significantly im-
proves the accuracy of facial flow estimation across various optical
flow methods. Additionally, we propose DecFlow, the first network
capable of decomposing facial optical flow. Extensive experiments
demonstrate the superior performance of our approach in facial
flow estimation and expression analysis.
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