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In this supplementary material, we first introduce the details of our
UV-Texture extraction module (Sec. 1). Following that, we conduct
additional experiments to further validate our approach and dataset
(Sec. 2). Finally, we present more visualization results in Sec. 3.

1 UV-TEXTURE EXTRACTION PIPELINE

As shown in Fig. 1, we adapted FFHQ-UV’s [3] pipeline to create
FLAME-based [10] UV-textures. This pipeline consists of two steps:
UV-texture extraction (1.1) and UV-texture completion (1.2).

1.1 UV-Texture Extraction

The process of extracting UV-texture from a face image, also termed
"unwrapping,' requires a single-image 3D face shape estimator. We
use DECA [5] to reconstruct 3D meshes for input faces. Subse-
quently, facial UV-textures are unwrapped by projecting the face
images onto the 3D meshes. This yields three texture maps, Tj,
Ty, and Tf for left, right, and frontal views, respectively. We then
perform color matching between them to prevent color jumps and
linearly blend them together with pre-defined visibility masks, re-
sulting in a complete texture map T.

1.2 UV-Texture Completion

To create a complete texture, we begin by manually crafting an im-
age that includes areas such as the neck, ears, hair, and eyes—referred
to as the temple texture T. Following this, we blend the extracted
facial texture T with the temple texture T using color matching, and
then apply Laplacian pyramid blending [4]. To address the eyes’
textures, we utilize a facial parsing model to extract the eye regions
from the frontal view image. Subsequently, we use a circular de-
tection method to extract images of the two pupils and paste them
onto the corresponding positions in the texture. Through these
steps, we obtain the final UV-texture Tgp,].

1.3 UV-Texture Samples

We have implemented the aforementioned pipeline on images from
FFHQ-Norm [3], producing high-quality UV maps at a resolution
of 1024 x 1024. Samples of these UV-textures, along with the corre-
sponding rendered images, are illustrated in Fig. 5.

2 MORE EXPERIMENTS

2.1 Comparison with Facial Alignment Methods

We also compared our method with 3DDFA_V2 [6, 7], a state-
of-the-art facial alignment method. Facial alignment is typically
achieved through facial landmark alignment methods, so we calcu-
lated the endpoint error (EPE) between the landmarks predicted by
3DDFA_V2 and the ground truth labels provided by CK+ [11]. The
quantitative results in Tab. 1 indicate that, compared to 3DDFA_V2,
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Figure 1: The proposed UV-Texture extraction pipeline. It
takes normalized multi-view faces from FFHQ-Norm [3] as
input, and outputs a normalized texture UV-map.

Table 1: Comparison with facial alignment method. The best
result is indicated in bold.

Methods 3DDFA_V2[6,7] DecFlow(Ours)
EPE 7.49 3.47

our facial flow provides more accurate tracking of facial landmarks,
which might be helpful for facial alignment tasks. Visual samples in
Fig. 2 also support the same conclusion, as the result of our method
aligns more closely with the ground truth.

2.2 Ablation Study

One Decoder: We also explored an alternative network structure,
utilizing a single decoder to simultaneously estimate both facial flow
and head flow. In this architecture, we employ a decoder with two
independent GRU blocks. During the iterative optimization process
of optical flow, for instance, iterating 20 times, the first GRU block is
used for optimization in the initial 10 iterations. It is simultaneously
constrained by the flow labels from FFN-H to generate head flow.
In the subsequent 10 iterations, the second GRU block is employed
for optimization, supervised by the optical flow labels from FFN-
F, building upon the existing head flow. With this structure, we
could generate head flow and facial flow simultaneously using
a single decoder, denoted as DecFlow (One Dec.). The results in
Tab. 2 indicate that, while this network structure is capable of
decomposing facial flow, it tends to reduce its accuracy. Which
validates the necessity of using two independent decoders.

Without Background Images: The addition of static real images
to the dataset is hypothesized to improve the model’s robustness. To
validate this hypothesis, we utilize masks to eliminate background
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Figure 2: Comparison with facial alignment method.

Table 2: Ablation study of decomposed flow decoder and
the background images. (V.) and (L.) denote the vertex and
landmark coordinates, respectively. (One Dec.) refers to the
structure with only one decoder, and (w/o Back.) indicates
training the model on the dataset without background im-
ages.

Model FFN  CK+(V.) CK+(L.
GMA [9] 0.142 473 3.59
DecFlow (One Dec.) | 0.140 4.68 3.68
DecFlow (w/o Back.) | 0.333 4.68 3.57
DecFlow 0.132 4.67 3.47

images from the dataset, as illustrated in Fig. 3 (d). Subsequently, we
train a new model on this dataset, denoted as DecFlow (w/o Back.).
The evaluation results in Tab. 2 show that the model trained on
images without background images challenges in handling regions
beyond the face. Additionally, it also leads to a reduction in the
performance of facial optical flow.

(a) Image

(b) Depth (c) Mask (d)Image w/o background

Figure 3: The ground truth labels for depth information.

2.3 Dynamic Facial Expression Recognition

We further assess the functionality of our proposed framework in
dynamic facial expression recognition using a CNN network by Al-
laert et al. [2]. This network is composed of three successive layers
of convolution, ReLu activation, and max pooling and the archi-
tecture ends with connected layers for the classification. Although
we acknowledge that this architecture and its meta-parameters
may not represent the state-of-the-art, our goal in this evaluation
is to compare different optical flow approaches in low-complexity
contexts to minimize learning biases.

We divide CK+ [11] into training and testing sets with a ratio
of 7:3, and employed AUC (Area Under the Curve) and ACC (ac-
curacy) as the evaluation metrics. The dynamic facial expression

recognition experiment involved facial optical flow estimated by
various recent methods, as well as the facial and expression flow
estimated by our network.

Tab. 3 presents the classification results for the six facial ex-
pressions. After finetuning on FFN-F, various methods showed
different degrees of performance improvement, with the maximum
enhancement being 9.6% (SKFlow 81.5 to 89.3). In the classifica-
tion of expressions like Fear, facial flow alone achieves only 55.8%
AUC, while utilizing the decomposed expression flow elevates it
to 80.3%. Compared to GMA with general datasets (C+T+S), our
approach and dataset demonstrated an improvement of up to 7.6%
of AUC (88.3 to 95.0) and 28.0% of ACC (57.0 to 73.0). It highlights
the superiority of our approach in estimating facial optical flow
and the significance of decomposed expression flow in analyzing
facial movements.

3 MORE VISUALIZATION
3.1 Extra Data

In addition to optical flow labels, we also generate ground truth
depth information for each frame in FacialFlowNet, as depicted in
Fig. 3. Given that in our dataset, the background image is positioned
on a stationary plane behind the facial model, we can derive a mask
for the moving region in the image based on the depth information.
In Section 5.3 of the manuscript, we utilize this mask to assess only
the end-point error (EPE) of the moving regions. We hope that this
multi-modality data can assist researchers in facial analysis.

3.2 Visual Results

Samples of both FEN-F and FFN-F are presented in 5. Additional
estimated flows for real-world images are presented in 6 and 7.
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Table 3: The results of dynamic facial expression recognition. The evaluation metric of this table is AUC and ACC. DecFlow(F)
and DecFlow(E) represent facial flow and expression flow. The best and second-best results are indicated in bold and underlined,
respectively.

Methods | AUC of Each Emotion(%) T | Metrics(%)T

Disgust Fear Happy Sad Surprise  Angry | Mean AUC ACC

RAFT [13] 97.6 51.2 94.2 90.6 98.3 94.7 87.8 55.0

GMA [9] 98.4 54.6 93.5 88.7 97.5 97.3 88.3 57.0

SKFlow [12] 88.8 46.4 85.2 81.1 96.4 91.3 81.5 49.0

FlowFormer [8] 94.6 48.2 91.4 85.8 94.5 96.5 85.2 63.0
RAFT+FFN 97.5]0.1 55.8T4.6 99.475.2 91.6T 1.0 97.4/0.9 97.2725 89.812.0 58.073.0
GMA+FFN 96.9/1.5 53.1]1.5 98.174.6 907720 97.7)0.2 97.510.2 | 89.010.7  64.017.0

SKFlow+FEN | 97.718.9 54.017.6 98.2713.0 91.6110.5 97.110.7 97.2159 | 89.317.8  60.0111.0
FlowFormer+FFN | 98.013.4 534152 99.177.7 916158 97.513.0 97.771.2 | 89.5143  61.0/2.0

FMB [1] 95.2 45.1 83.0 79.3 87.4 86.7 79.5 50.0
DecFlow(F) 98.0 57.5 99.4 91.3 97.8 97.2 90.2 64.0
DecFlow(E) 99.3 80.3 99.9 95.1 98.4 96.6 95.0 73.0

Figure 4: The UV-Textures extracted with the proposed pipeline and the rendered images.
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Figure 5: Samples of the FacialFlowNet dataset. I{ and Ith represent the t™h frame in FFN-F and FFN-H respectively. F{ s F;l, and

F} are facial flow, head flow, and expression flow, respectively.
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Figure 6: Qualitative results on real-world images from MEAD [14]. DecFlow, DecFlowp,, and DecFlow, denote facial, head, and

expression flow obtained by our method, respectively.
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Figure 7: Qualitative results on real-world images from the Internet. DecF ZOWf, DecFlowy, and DecFlow, denote facial, head, and
expression flow obtained by our method, respectively.
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