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Appendix A. Granger Causality of ACD

Here, we show that when constraining the edge-type e = 0 to be the zero function, time series i does
not Granger cause the model prediction of j in ACD. In the noiseless setting, at the global optimum
of sufficiently expressive model classes, this is equivalent to saying that we recover the true Granger
causal relations.

Claim. If zij,0 = 1, i does not Granger cause the model prediction of j in ACD.

Proof. According to Theorem 1, time-series i does not cause j, if gj is invariant to x≤t
i . In our

model, the decoder represents this non-linear model gj and consists of two functions. First, it
propagates information across edges using Eq. (12). This function returns a value of zero, if zij,0 = 1.
This output is used for the second function, described in Eq. (1), which does not introduce any new
terms that depend on i. Thus, if zij,0 = 1, the decoder’s prediction for j is invariant to x≤t

i , and i
does not Granger cause these predictions.

Appendix B. Fully Observed Amortized Causal Discovery

B.1. Experimental Details

B.1.1. DATASETS

Physics Simulations To generate these simulations, we follow the description of the underlying
physics of Kipf et al. (2018) for the phase-coupled oscillators (Kuramoto) (Kuramoto, 1975) and the
particles connected by springs. In contrast to their simulations, however, we allow the connectivity
matrix, which describes which time-series influences another, to be asymmetric. This way, it describes
causal relations instead of correlations.

For both datasets, we generate 50,000 training and 10,000 validation samples. We restrict the
number of test samples to 200, since the previous methods we compare to must be refit for each
individual sample. We simulate systems with N = 5 time-series. Our training and validation samples
consist of T = 49 time-steps, while the test-samples are T = 99 time-steps long. This increased
length allows us to infer causal relations on the first half of the data, and to test the future prediction
performance on the second half (with k = {1, ..., 49}). In Figure 8, we show some examples of both
the particles and Kuramoto datasets in the noiseless setting and with added noise.

Netsim The Netsim dataset simulates blood-oxygen-level-dependent (BOLD) imaging data across
different regions within the human brain and is described in Smith et al. (2011). The task is to infer
the directed connections, i.e. causal relations, between different brain areas.

The Netsim dataset includes simulations with different numbers of brain regions and different
underlying connectivity matrices. In our experiments, we use the data from the third simulation
Sim-3.mat as provided by Khanna and Tan (2019). It consists of samples from 50 subjects, each
with the same underlying causal graph, each of length T = 200 and including N = 15 different
brain regions. Note, that we report worse results than Khanna and Tan (2019), since we assume
self-connectivity for all time-series and only evaluate the causal discovery performance between
different time-series.

The dataset is very small (50 samples) and due to this, we do not use a training/validation/test
split, but use the same 50 points at each phase instead. While this is not standard machine learning
practice, it still facilitates a fair comparison to the other methods, each of which is fit to individual

18



AMORTIZED CAUSAL DISCOVERY

test points. The purpose of including experiments on this dataset is not to demonstrate generalization
ability, but rather to show that our method is flexible enough to work reasonably well even in the
classical causal discovery setting (with one shared causal graph, and fitting the model on the test set).

B.1.2. ARCHITECTURE AND HYPERPARAMETERS

Our model is implemented in PyTorch (Paszke et al., 2019). We did no hyperparameter optimization
for model training, but used the settings as described for the NRI model (Kipf et al., 2018). The latent
dimension throughout the model is set to size 256. We optimize our model using ADAM (Kingma
and Ba, 2015) with a learning rate of 0.0005. In the experiments on the particles dataset, the learning
rate is decayed by a factor of 0.5 every 200 epochs. We set our batch-size to 128 and train for 500
epochs. The temperature of the Gumbel-Softmax is set to τ = 0.5. During testing, this concrete
distribution is replaced by a categorical distribution to obtain discrete edge predictions.

There was no thorough hyperparameter optimization done for test-time adaptation (TTA). Since
there was no pre-existing implementation, some hand-tuning was performed. We use a learning rate
of 0.1 for the Kuramoto and particles datasets and 0.01 for Netsim. For each, we run 1000 iterations.

Encoder In our experiments, the amortized encoder applies a graph neural network fenc,ϕ on the
input. It implements two edge-propagation steps along the causal graph:

ψ1
j = femb(xj) (15)

ψ1
ij = f1

e ([ψ
1
i ,ψ

1
j ]) (16)

ψ2
j = f2

v (
∑
i ̸=j

ψ1
ij) (17)

ψij = f2
e ([ψ

2
i ,ψ

2
j ]) . (18)

f1
e , f

2
e and f2

v are fully-connected networks (MLPs). On both the particles dataset and Netsim, femb
is an MLP as well (MLP Encoder); on the Kuramoto dataset, we use a 1D CNN with attentive pooling
(Lin et al., 2017) instead (CNN Encoder).

When conducting test-time adaptation as described in Eq. (7), we remove the encoder and model a
distribution over G using a non-amortized variational distribution q(z) with its initial values sampled
from a unit Gaussian.

Decoder The decoder implements a single edge-propagation step according to equations 12-14.
It uses MLPs for both fe and fv. To improve performance, we train the decoder to predict several
time-steps into the future. For this, we replace the true input xt with the predicted µt for k = 10
steps.

Following our causal formulation of the NRI model, we implement Eq. (12) by masking out the
values of the corresponding edges. Thus, the ordering of the edge types is not arbitrary in our setting.

We note that while this implementation of the decoder assumes a full-time graph of Markov
order 1, the full ACD framework does not, and could be implemented using a recurrent architecture
to remove this assumption.

Since our physics simulations are differentiable, we can replace the decoder with the ground-truth
dynamics and backpropagate through them. We call this setup the simulation decoder.
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Figure 8: Example trajectories with different levels of observation noise for the Particles dataset (left)
and Kuramoto (right). The observation noise is sampled from a zero-mean Gaussian distribution
with standard deviation of (from top to bottom) 0.0, 0.1 and 0.2, respectively.

Variance When we report the variance on the ACD results, we collected these across five different
random seeds. Baselines in Kuramoto/Netsim use three seeds each, except for NGC, which uses only
one due to a longer runtime (the confidence intervals shown for NGC are confidence intervals on the
AUROC itself, whereas all other confidence intervals are based on variance of AUROC across seeds).

B.1.3. BASELINES

We compare ACD against several baselines:

Neural Granger Causality From Tank et al. (2018), we optimized an MLP or LSTM to do next
step prediction on a sample. We found that the MLP worked best. The causal links are wherever an
input weight is non-zero. We used ADAM and then line search to find exact zeros. In this method,
we calculate AUROC by running with a range of sparsity hyperparameters (λ = [0, 0.1, 0.2, 0.4, 0.8]
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for Kuramoto and λ = [0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1] for Netsim). As in Tank et al. (2018),
we calculate a score s for each edge, where s = min{λ : zij,0 = 1}, and use that score to calculate
AUROC. Code was used from https://github.com/icc2115/Neural-GC.

ESRU Khanna and Tan (2019) take a similar approach to Tank et al. (2018), but they use economy
statistical recurrent units (eSRU), instead of LSTMs. We found one layer worked best, and used their
hyperparameters otherwise. We use sparsity hyperparameters [0.1, 0.2, 0.3, 0.4, 0.5] for Kuramoto,
and [0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1] for Netsim. Code was used from https://github.
com/sakhanna/SRU_for_GCI.

MPIR Wu et al. (2020) determine where causal links exist by examining the predictive performance
change when noise is added to an input variable. Code for this method and the baselines below was
used from https://github.com/tailintalent/causal.

Transfer Entropy Schreiber (2000) suggest this entropy-like measure between two variables
to produce a metric which is likely to be higher when a causal connection exists. We use the
implementation by Wu et al. (2020).

Mutual Information Using the implementation by Wu et al. (2020), we calculate the mutual
information between every pair of time series.

Linear Granger Causality Using the implementation by Wu et al. (2020), this is a linear version
of Granger causality where non-zero linear weights are taken as greater causal importance.

We did not run the baselines on the particles dataset since it is two-dimensional and most baselines
did not provide an obvious way for handling multi-dimensional time series. When training ACD on
the particles and Kuramoto datasets, we additionally input the velocity (and phase for Kuramoto) of
the time-series. Since our chosen NRI encoders and decoders are not recurrent we cannot recover
this information in any other way in this model. This enables a more fair comparison to the recurrent
methods, which are able to aggregate this information over several time steps.

B.2. Additional Experimental Result - Training Curves

Fig. 9 shows the training curves when training on 100 training samples of the particles dataset. We
observe that the encoder overfits on the training samples, as indicated by the AUROC performance.
In contrast, the decoder shows less overfitting as indicated by the negative log-likelihood (NLL)
performance.

Appendix C. Amortized Causal Discovery with Unobserved Variables

C.1. Temperature Experiments

Implementation Details In this experiment, we use the CNN encoder and a simulation decoder
matching the true generative ODE process. Our optimization scheme is the same as before.

For modeling the latent temperature, we output a uniform distribution as our posterior qϕc(c|x).
One tricky aspect about this is the KL-Divergence:

KL(qϕc(c|x)||p(c)) = −
∫

qϕc(c|x) log
qϕc(c|x)
p(c)

dz . (19)

21

https://github.com/icc2115/Neural-GC
https://github.com/sakhanna/SRU_for_GCI
https://github.com/sakhanna/SRU_for_GCI
https://github.com/tailintalent/causal


LÖWE MADRAS ZEMEL WELLING

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

AU
RO

C

train
val

0 100 200 300 400 500
Epoch

0

100

200

300

NL
L

train
val

Figure 9: Training curves when training on 100 samples of the particles dataset. The encoder
performance (AUROC - left) shows stronger signs of overfitting than the decoder performance (NLL
- right).

We must ensure that our posterior support is a subset of our prior support. Otherwise, the KL-
Divergence is undefined and optimization impossible. Recall that our prior is a uniform distribution
over [0, 4α].

We output two latent parameters a, b ∈ R for each input and use these values to parametrize
a mean m and a half-width w for the uniform distribution. First, we bound these values to
represent a uniform distribution u1 in [0, 1]. To achieve this, we let m1 = σ(a) and w1 =
σ(b) ∗ min (m1, 1−m1) with σ(x) = 1

1+exp (−x) . We then sample a temperature ĉ1 ∼ u1 =

U(m1 −w1,m1 +w1), which is guaranteed to be bounded within [0, 1]. Stopping gradients, we use
this temperature sample in the encoder qϕ(z|x, c) to improve the causal discovery performance.

Next, we scale this result to the desired interval [0, 4α]. To achieve this, we feed the scaled
temperature ĉ = 4αĉ1 into the decoder, and use the scaled distribution u = U(4αm1−4αw1, 4αm1+
4αw1) to find our KL term. We allow gradients to flow through the temperature sample in both the
decoder and the distribution in the KL term, which informs our parameter updates.

Additional Results Similarly to Fig. 6, we show the future prediction performance in MSE across
different values of α in Fig. 10. Again we find a slight improvement in performance when using
ACD with Latent compared to the baselines, although this is a noisier indicator.

Additionally, we evaluate how well the introduced latent variable learns to predict the unobserved
temperature. To do so, we use the mean of the predicted posterior uniform distribution. When a
discrete categorical prediction is needed for evaluation, we quantize our results into three bins based
on their distance in log-space. To calculate AUROC in this three category ordinal problem, we
average the AUROC between the two binary problems: category 1 vs not category 1, and category
3 vs not category 3 (category 2 vs not 2 is not a valid regression task for the purposes of AUROC
which is concerned with ordering, since it is the middle temperature and hence the labels would not
be linearly separable).

The confusion matrix between true and predicted temperature in Fig. 11 indicates that ACD with
Latent’s prediction tends to be conservative: it is more likely to predict a too low temperature than
a too high one. This is probably due to higher temperatures incurring larger MSEs, since higher
temperature systems are more chaotic and thus less predictable.
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Figure 10: MSE (lower better) averaged
across 5 random seeds for hidden tempera-
ture experiment. MSE for None baseline was
much worse with MSE = 0.009, 0.02, 0.04
for α = 2, 4, 8 (not shown in plot).
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Figure 11: Confusion matrix for latent tem-
perature prediction with α = 2. ACD with
Latent’s prediction tends to be conservative:
it is more likely to predict a too low tempera-
ture than a too high one.

Table 3 lists the temperature prediction results across all tested values of α. We find that we can
predict the unobserved temperature quite well, especially with respect to ordering (as measured by
correlation and AUROC).

α
2 4 8

Correlation 0.888 0.844 0.661
Accuracy 0.644 0.384 0.346

AUROC (1vAll) 0.966 0.935 0.843

Table 3: Latent Temperature Prediction Metrics. We treat the mean of the outputted interval of the
uniform posterior as the predicted temperature. For accuracy, this value discretized in log space to get
a ternary prediction. AUC (1vAll) averages the two one-vs-all AUC values, which can be calculated
in a 3-category ordinal problem.

C.2. Unobserved Time-series

Implementation Details For modeling the unobserved time-series, we employ a two-layered,
bi-directional long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) with a latent
dimension of size 256.

Additional Results The full evaluation of our experiments with an unobserved time-series can
be found in Table 4. Our results indicate that our proposed method ACD with latent predicts the
trajectory of the unobserved time-series (unobserved MSE) more accurately than the Mean imputation
baseline. Even though this prediction is worse than for the Supervised baseline, ACD with Latent
manages to recover the performance of the fully Observed baseline better than the None and the
Mean imputation baselines.

Fig. 12 shows the performance of the tested methods dependent on the number of time-series
that are influenced by the unobserved one. In addition to Fig. 6 in our Experiments section, these
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Method AUROC Accuracy MSE unobserved MSE

Observed (0.99) (0.993) (0.00301) -
Supervised 0.982 0.931 0.00822 0.0164

None 0.946 0.882 0.0119 -
Mean 0.951 0.881 0.0106 0.0397

ACD with latent 0.979 0.918 0.00747 0.0375

Table 4: Experiments with an unobserved time-series.

plots show the achieved accuracy and MSE results. The general trends are the same. Fig. 13 shows
example trajectories and the corresponding predictions for all tested methods.
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Figure 12: Experiments with an unobserved particle. Performance of the various methods depends
strongly on how many observed particles are influenced by the unobserved one (x-axis). The more
particles that are influenced by the unobserved particle, the stronger the benefit of using an additional
Latent variable for modeling its effects. Left - causal relation prediction accuracy (higher = better),
right - MSE (lower = better).

Additional Experiment: Uninfluenced Influencer Predicting the trajectory of a time-series that
influences only a small number of observed time-series and is (invisibly) influenced by them is
arguably very difficult. In this follow-up experiment, we reduce the difficulty of this problem by
adding two assumptions: (1) the unobserved time-series influences all observed time-series and (2)
it is not influenced by any of the observed time-series. This way, we gain more information about
its trajectory (due to (1)) and its trajectory becomes easier to predict (due to (2)). Indeed, in this
setup, ACD with latent manages to almost completely recover the performance of the fully observed
baseline (Table 5). In contrast, the performance of the None and Mean imputation baselines worsens
considerably in this setting. Now, all time-series are influenced by the unobserved particle – making
their prediction harder when not taking into account this hidden confounder. Fig. 14 shows example
trajectories and the corresponding predictions for all tested methods in this setting.
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Figure 13: Predicted trajectories for all tested methods in the unobserved time-series experiment for
two samples (left/right). From top to bottom: Baselines – observed, supervised, none and mean;
proposed ACD with latent. The faded lines depict the ground truth trajectory; bold lines are the
trajectories predicted by the model and they start after initializing the model using first half of the
ground truth. Dots denote the end of the trajectories. Except for the fully observed baseline, the first
panel shows the ground truth and prediction for the unobserved time-series. The second panel shows
the trajectories of all time-series that are directly influenced by the unobserved one. The third panel
shows the trajectories of all time-series that are not directly influenced by the unobserved one.
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Method AUROC Acuracy MSE unobserved MSE

Observed (1.0) (0.997) (0.0193) -
Supervised 1.0 0.993 0.024 0.000615

None 0.829 0.76 0.0431 -
Mean 0.853 0.782 0.0365 0.0357

ACD with latent 1.0 0.994 0.0251 0.137

Table 5: Experiments with an unobserved time-series that influences all observed time-series, but is
not influenced by them.
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Figure 14: Predicted trajectories for all tested methods when the unobserved time-series influences
all observed ones, but stay uninfluenced itself for two samples (left/right). From top to bottom:
Baselines – observed, supervised, none and mean; proposed ACD with latent. The faded lines depict
the ground truth trajectory; bold lines are the trajectories predicted by the model, and they start after
initializing the model using the first half of the ground truth. Dots denote the end of the trajectories.
Except for the fully observed baseline, the first panel shows the ground truth and prediction for the
unobserved time-series. The second panel shows the trajectories of all observed time-series (which
are all influenced by the unobserved one).
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