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ABSTRACT

Diffusion-based methods have become one of the most important paradigms in
the field of imitation learning. However, even in state-of-the-art diffusion-based
policies, there has been insufficient focus on semantics and fine-grained feature
extraction, resulting in weaker generalization and a reliance on controlled envi-
ronments. To address this issue, we propose Imit-Diff, which consists of three
key components: 1) Dual Resolution Fusion for extracting fine-grained features
with a manageable number of tokens by integrating high-resolution features into
low-resolution visual embedding through an attention mechanism; 2) Semantics
Injection to explicitly incorporate semantic information by using prior masks ob-
tained from open vocabulary models, achieving a world-level understanding of
imitation learning tasks; and 3) Consistency Policy on Diffusion Transformer
to reduce the inference time of diffusion models by training a student model to im-
plement few-step denoising on the Probability Flow ODE trajectory. Experimental
results show that our method significantly outperforms state-of-the-art methods,
especially in cluttered scenes, and is highly robust to task interruptions. The code
will be publicly available.

1 INTRODUCTION

Imitation learning (Zhao et al., 2023; Bonardi et al., 2020; Cheng et al., 2024; Dasari & Gupta, 2021;
Englert & Toussaint, 2018; He et al., 2024; Luo et al., 2023; Fu et al., 2024; Team et al., 2024; Wu
et al., 2024b) provides an efficient framework for robots to acquire human skills by leveraging ex-
pert demonstrations. Existing methods, which typically follow a supervised learning paradigm, use
either explicit (Torabi et al., 2018) or implicit policies to map the robot’s observations to the action
space or its latent representation space. These methods often rely on approaches such as mixtures of
Gaussians (Zhao et al., 2023) or categorical representations (Lee et al., 2024) of discretized action to
approximate the action distribution. However, such techniques generally generate action sequences
through a single forward pass, limiting their expressiveness in high-dimensional spaces and con-
straining their ability to accurately capture the complexity of multimodal action distributions (Chi
et al., 2023). Moreover, the reliance on one-shot generation makes these models vulnerable to noise
and outliers, undermining their robustness in real-world applications.

Diffusion models (Chen, 2023; Chen et al., 2023; Chi et al., 2023; Fan et al., 2024; Huang et al.,
2023b; Mishra et al., 2023; Ze et al., 2024), which employ a conditional denoising diffusion process
for visuomotor policy learning, have demonstrated remarkable effectiveness in tackling complex,
robotic tasks. The Diffusion Transformer architecture, DiT (Peebles & Xie, 2023), leverages the
attention mechanism to capture global context. It is highly effective at modeling long-range depen-
dencies, which makes it particularly well-suited for handling both vision and action sequences in
robotic applications. As a result, this architecture has emerged as a dominant paradigm in diffusion
models. However, when using conditional embeddings to guide the denoising of action sequences,
existing diffusion-based methods lack effective extraction of fine-grained features as shown in Fig.
1. On the other hand, although previous works (Huang et al., 2023a;c; Li et al., 2024a; Yu et al.,
2023) have attempted to introduce high-level semantic information to supervise agents in complet-
ing tasks, they have not explored methods for incorporating fine-grained semantic information to
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Figure 1: Comparison of current imitation learning paradigms. (a) ACT Like Policy refers to the
method of directly mapping robot observation to action space through a feedforward with the chal-
lenge of weak representation for complex distributed actions. (b) Diffusion Like Policy extracts
observation as a conditional vector to supervise the iterative denoising of action sequence with in-
sufficient focus on feature representation. (c) Our method Imit-Diff introduces dual res fusion for
fine-grained capture and prior mask for semantic information to raise world-level understanding.

capture subtle variations. This poses challenges for embodied intelligence in understanding scenes
and tasks.

To tackle these challenging problems, we introduce Imit-Diff, an imitation learning policy network
that explicitly incorporates prior-based semantics and enhances the representation of observation
features to improve the robot’s fine-grained perception and scene understanding. Specifically, the
model extracts detailed information from the scene through high and low-resolution fusion. Ad-
ditionally, we use open vocabulary models to introduce prior masks, which explicitly capture and
align semantic information. Furthermore, we implement a Consistency Policy for the Diffusion
Transformer, effectively increasing the robot’s action execution frequency.

In conclusion, our contributions are three-fold:

1) Dual Resolution Fusion to improve fine-grained feature representation.

2) Semantics Injection to introduce semantics information with prior masks obtained through open
vocabulary models.

3) Implementation of Consistency Policy for Diffusion Transformer to reduce inference time for
DiT-based models.

The experiments demonstrate that our method works effectively and the code will be open-source
soon.

2 RELATED WORK

2.1 DIFFUSION POLICY IN IMITATION LEARNING

Diffusion models, a category of generative models that progressively sample data from random
noise, have gained significant traction and impressive expressiveness in robotic applications. In the
context of robotics learning, diffusion models are utilized as effective policy networks for imitation
learning. For instance, Diffusion Policy (Chi et al., 2023) aggregates observations into a conditional
embedding to guide the denoising process of action sequences. However, compressing diverse ob-
servation information into a single embedding can lead to information loss. Subsequent work such
as UIM (Kaewpoonsuk & Subsomboon, 2024), extended the conditional information from a single
embedding to a token sequence, but it didn’t adequately address the integration of robot propriocep-
tive states with environmental observations. Recent advances, like Aloha Unleashed (Zhao et al.),
expanded the Hybrid Transformer architecture from the ACT algorithm into Diffusion Policy. How-
ever real-world robotic systems often require more sophisticated data mining and integration meth-
ods to handle complex scenarios. In our work, we leverage a dual-resolution encoder to fuse high
and low-resolution features. We also utilize prior masks to guide the attention mechanism to focus
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on critical areas, thereby enhancing the scene understanding and fine-grained extraction in imitation
learning.

2.2 ACCELERATION STRATEGIES FOR DIFFUSION MODELS IN ROBOTICS

As mentioned in Sec. 1, diffusion models come with certain drawbacks, including long inference
times due to their iterative sampling process. Given the real-time requirements of applications in
robotics, such as robot control, accelerating diffusion models is a critical issue for improving per-
formance. One line of work, such as DDIM (Han, 2024) and EDM (Hasan et al., 2023), can be
interpreted as integrating deterministic ODEs (Zheng et al., 2023), addressing the long inference
times by reducing the number of denoising steps for prediction. However, while this variable-step
approach reduces the number of denoising steps, it can also degrade sample quality. Another line of
research aims to accelerate diffusion models through parallel sampling, using methods like Picard
iteration (Han et al., 2024; Andrade et al., 2023; Wang et al., 2024b), which attempt to converge
batches of points along the diffusion ODE trajectory in parallel. Due to the significant increase in
memory demand caused by this parallelization, such methods are impractical in computationally
constrained robotic settings. Distillation-based techniques (Wu et al., 2024a; Guo et al., 2023; Wang
et al., 2023; Phuong & Lampert, 2019; Hao et al., 2024; Gou et al., 2021) train new student models
from pre-trained teacher models, allowing the student to take larger steps along the ODE trajectory
that the teacher has already mapped. The Consistency Policy (Prasad et al., 2024) introduced by
Aaditya et al. allows student models to map inputs at arbitrary step sizes and intervals to the same
starting point on the given ODE trajectory, demonstrating superiority in robot control tasks within
the U-Net (Ronneberger et al., 2015) architecture. In our work, we implement the CTMs framework
on top of the Diffusion Transformer, validating its orthogonality to the policy learning framework.
This resulted in an order-of-magnitude improvement in inference speed, which allows us to use
temporal ensemble and action dropout to enhance real-time performance and smoothness.

2.3 OPEN VOCABULARY VISION FOUNDATION MODELS

Open vocabulary vision foundation models (Liu et al., 2023; Ren et al., 2024a;b; Wasim et al., 2024;
Yuen et al., 2024) enable the understanding of images through vision-language learning, allowing
natural language descriptions to guide visual comprehension. These models generalize well across
various downstream tasks and can be used in robotics as tools for defining complex goals, semantic
anchors for multimodal representation, and intermediate substrates for planning and reasoning. Al-
though end-to-end methods are popular in offline tasks, learning directly from language-annotated
data presents challenges, particularly in mapping language, visual observations, and robotic sensor
data into a shared space. In this work, we use open vocabulary vision foundation models to translate
language into vision obervation for key object identification in robotic manipulation. Grounding
DINO (Liu et al., 2023) is employed for detection, combined with a MixFormerV2-based (Cui
et al., 2022; 2024) multi-object tracker for real-time performance and occlusion handling. Mobile
SAM (Zhang et al., 2023) is used to segment target objects, providing RGB-MASKs (Wang et al.,
2024a) as observations for the policy network.

3 METHOD

The proposed method Imit-Diff mainly consists of four parts: Dual Resolution Fusion (see Sec.
3.1) to enhance representation capacity of visual tokens, Semantics Injection (see Sec. 3.2) to in-
volve prior knowledge to aid environment perception, Consistency Policy within DiT to accelerate
inference and Temporal Optimization (see Sec. 3.3).

3.1 DUAL RESOLUTION FUSION

In the methodology of imitation learning, models are trained to predict actions given sequential
observations from the environment. Since the time intervals between the observations are rela-
tively small, the ability to perceive fine-grained details in high-resolution observations is of vital
importance. However, in previous methods, the environment observations are either transformed
to low-dimension feature vectors via a CNN network (thus losing fine-grained details) (Zhao et al.,
2023), or directly down-sampled to lower resolution (224x224 in Chi et al. (2023)).
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Figure 2: Overview of Imit-Diff that consists of 1) Dual-Res Fusion: High-resolution images
are downsampled to obtain low-resolution images, which are passed through a vision encoder for
multi-resolution fusion. This process encodes visual embeddings with fine-grained information. 2)
Semantics Injection: High-resolution images are processed by open vocabulary models to generate
masks. We use the same pretrained encoder as the low-res visual encoder to extract mask features,
which are then injected into the multi-resolution fusion tokens to explicitly introduce semantic pri-
ors. 3) Consistency Policy for Diffusion Transformer: Visual tokens are fused with robot state
tokens in a multi-modal manner, guiding the denoising process of the action sequence.

One possible solution to address this problem is to use high-resolution environment captures to train
the policy network, but the unacceptable increase in memory footprint and the difficulty of directly
modeling high-dimensional image spaces make this solution impractical. Motivated by Li et al.
(2024b), we propose Dual Resolution Fusion (illustrated in the orange boxes in Fig. 2), which
incorporates both hi-res and low-res features when representing environmental observations with
the same amount of tokens. In this way, the model is expected to understand the environment in
multiple granularities, providing adaptive information when decoding action sequences.

Specifically, given high-resolution observations from environment cameras and arm-side cameras
(the i-th frame denoted by IiE and IiA respectively), down-sampling is first applied to generate low-
resolution observations IiE

′ and IiA
′. Then, the high-resolution and low-resolution observations are

processed by pre-trained hi-res visual encoder FH (implemented by ConvNext by Liu et al. (2022)
followed by feature pyramid networks) and pre-trained low-res visual encoder FL (implemented by
ViT-S version of DINOv2 by Oquab et al. (2023)). After being projected to the same dimension, the
features are fused by the self-attention layer FD whereas low-res features are regarded as queries
and high-res features are regarded as keys and values. Note that, the parameters of FH and FL are
frozen during training while FD is optimized during training.

This design allows the extraction of high-resolution details without drastically increasing the number
of tokens for diffusion policy inference, thereby enhancing scene understanding with an acceptable
length of conditional sequence.

3.2 SEMANTICS INJECTION

Although massive progress has been achieved by previous imitation learning methods (e.g. Fu et al.
(2024), Zhao et al.), the current models are only able to perform specific tasks under a carefully
controlled environment. This could be ascribed to the limited amount of demonstrations or the
over-fitting in the latent space as the demonstrations are collected in an almost unchanged environ-
ment. To overcome this limitation, world-level knowledge embedded in the pre-trained multi-modal
models could be used to prevent unnecessary focus on task-irrelevant details. The grounding of
knowledge into the provided environment could be achieved by performing open-set detection and
segmentation, which we call Semantics Injection (illustrated in the green boxes of Fig. 2).
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To perform Semantics Injection, the task-relevant phrases (e.g. red bowls) and the first frame of
the downsampled environment capture I0E

′ are fed into an open-set detector XD (implemented by
Grounding DINO Liu et al. (2023)) to obtain relevant bounding boxes. To assure temporal consis-
tency, the subsequent frames are processed via an end-to-end tracking model XT (implemented by
MixFormerv2 by Cui et al. (2024)) given the latest predicted bounding boxes and captured frames.
Subsequently, an open-set segmentation model XS (implemented by MobileSAM by Zhang et al.
(2023)) is used to provide semantic masks and later semantic masked images.

Then, the injection of semantics is performed by fusing the feature extracted from mask visual en-
coder FM (implemented by ViT-S version of DINOv2 by Oquab et al. (2023)) and multi-resolution
features extracted by FD1

with FI , a transformer decoder with masked image features used as
queries. The semantic injected environment observation (output of FI ) is later concatenated with
arm-side observations and robot state observations (generated by action encoder FA, a multi-layer
perceptron), which is then fed to multi-modal fusion module FF (a transformer encoder) to perform
cross-modal fusion.

3.3 CONSISTENCY POLICY FOR DIFFUSION TRANSFORMER

Prasad et al. (2024) proposed U-Net-based Consistency Policy, allowing the prediction of action
sequences with few-step or single-step diffusion. In the consistency policy method, the teacher
model, denoted as sϕ, is trained under the EDM framework whereas the student model is distilled
from the teacher model. The EDM framework takes the current position xt, time t, and condition o
as input to estimate the derivative of the Probability Flow ODE (PFODE) trajectory:

dxt/dt = − (xt − sϕ (xt, t; o)) /t, (1)

where xt denotes the general form of the PFODE:

dxt =

[
µ (xt, t)−

1

2
σ(t)2∇ log pt (xt|o)

]
dt. (2)

The optimized Denoising Score Matching (DSM) loss is used to train the EDM model:

LDSM(θ) = Et,x0,xt|x0
[d (x0, sϕ(xt, t; o))] . (3)

The DSM objective samples a point along the PFODE, (xt, t), and trains the EDM model to predict
the ground truth initial position x0. Unlike the Consistency Policy, we use MSE Loss instead of the
pseudo-Huber Loss as d(·, ·), giving higher weight to smaller fine-grained action errors.

d(x, y) = ∥x− y∥22. (4)

The student model gθ(xt, t, s; o) samples two positions xt and xu on the same PFODE, and denoises
both positions back to the same time step s. After calculating gθ(xt, t, s; o) and gθ(xu, u, s; o), we
use gθ(x

(t)
s , s, 0; o) and gθ(x

(u)
s , s, 0; o) to bring these two samples, referred to as x

(t)
s and x

(u)
s ,

back to time 0. The loss is always measured in the fully denoised action space:

LCTM = d(gθ(x
(t)
s , s, 0; o), gθ(x

(u)
s , s, 0; o)). (5)

The final training objective combines DSM Loss and CTM Loss:

LCP = αLCTM + βLDSM . (6)

In practice, we implement the Consistency Policy by Prasad et al. (2024) on the backbone of Diffu-
sion Transformer, originally proposed by Peebles & Xie (2023). Specifically, as illustrated in Fig.
2, the time step is concatenated with the output of the multi-modal fusion module, which is later
used as the condition embedding for consistency policy denoising. With time step concatenated, the
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Figure 3: A brief description of each real-world task in stages. For detailed task setup, see 4.1.

attention mechanism can be used to denoise action sequences, replacing the FiLM module used in
U-Net. Furthermore, we hope to employ the Temporal Ensemble introduced by ACT to improve the
smoothness and dynamic response of diffusion models by accelerating inference.

4 EXPERIMENTS

We conduct experiments to evaluate the performance of Imit-Diff in fine-grained manipulation tasks
in complex scenarios. We design three real-world tasks to verify the advanced capabilities of Imit-
Diff. ablation study is also conducted to demonstrate the effectiveness of each component of the
proposed method.

4.1 TASK SETUP AND METRICS

Tasks: We evaluate Imit-Diff in the real world on three tasks: Block Placement, Object Sorting, and
Stack Blocks (See Fig. 3). The settings for testing the model’s anti-interference and generalization
capabilities are shown in Fig. 4 in Appendix A.1.

1) Block Placement: In this task, the robot is expected to place a block in a bowl, while the cup
is used as an obstacle that the robot would have to move away first. Other irrelevant clutters are
also randomly placed in the scenes for deliberate interference. The relevant objects are termed as
”blue cup”, ”green block” and ”pink bowl”. This task intends to evaluate the essential ability for the
execution of the robot.

2) Object Sortation: With two blocks randomly placed on a plate with complex textures, the robot
is expected to pick up the blocks further to the left and the right and place them in the left and the
right bowls respectively. Irrelevant clutters are also randomly placed in the scenes for deliberate
interference. The relevant objects are termed ”yellow block”, ”red block”, ”blue bowl”, and ”pink
bowl”. This task intends to evaluate the robot’s robustness against cluttered scenes.

3) Stack Blocks: With three blocks placed on the desk, the robot is expected to stack three blocks
sequentially. Irrelevant clutters are also randomly placed in the scenes for deliberate interference.
The relevant objects are termed as ”green block”, ”blue block”, and ”red block”. This task intends
to evaluate the manipulation precision.

For the aforementioned tasks, we use a 6-DoF AIRBOT Play robot arm for collecting expert demon-
strations with teleoperation. For each task, we collect only 50 demonstrations. During the demon-
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strations, two USB cameras are used to capture RGB observations from different perspectives: two
cameras mounted on the table and at the end of the robotic arm, respectively. We use 224 × 224
images as the low-resolution input and 448 × 448 images for high-resolution input. For fairness in
comparison, we use the original image size of 480 × 640 as input for Diffusion Policy and ACT to
ensure the preservation of raw information. The low-dimensional observations consist of observed
joint positions, including the six joint positions of the robot arm and the gripper’s position. We
perform inference using a laptop with a single 4060 GPU and 8GB of VRAM. Notably, we adopt
DDIM as the diffusion strategy for Diffusion Policy, using 16 steps for policy inference, which is
consistent with the original implementation.

In terms of the metrics, we assess the robot’s performance by the average success rate. We run
20 evaluations for each task and divide the task into several sub-tasks to assess the algorithm’s
predictions. For the target objects, we change their appearance without altering their geometric
properties to evaluate the model’s generalization of appearance.

4.2 BASELINES

We benchmark Imit-Diff against state-of-the-art imitation learning methods that have shown signif-
icant success in policy learning for complex robotic tasks. Specifically, we use ACT and Diffusion
Policy as baseline models. Both ACT and Diffusion Policy employ the ResNet-18 vision backbone,
as detailed in their original implementations. Similar to Imit-Diff, the baselines use a transformer
architecture, and hyper-parameters such as prediction horizon and image resolution are are tuned
similarly for a fair comparison. By comparing with baselines that have already demonstrated strong
performance on complex tasks, our goal is to demonstrate that the introduction of prior mask-guided
dual-vision fusion can improve generalization to clutter and fine-grained scene understanding within
limited data. See Tab. 6 and Tab. 7 for training details.

4.3 RESULTS

We report the success rates of Imit-Diff and the baselines in Tab. 1. Imit-Diff achieved a success
rate of 0.9 for Block Placement, 0.9 for Object Sorting, and 0.95 for Stack Blocks, outperforming
both ACT and Diffusion Policy. The excellent performance on the fine operations (e.g., picking
up and stacking blocks) demonstrates the benefits of the fine-grained feature extraction enabled by
multi-resolution fusion.

In Tab. 2, we report the success rates of various methods in environments with clutter interference.
The outstanding experimental results demonstrate that the introduction of the prior mask effectively
improves generalization against interference.

Tab. 3 presents the robustness of different models against appearance changes. We replace the target
objects with colors unseen during training, and Imit-Diff, unlike ACT and Diffusion Policy, is able
to clearly identify the objects that should be attended to.

Notably, Tab. 3 also demonstrates the re-completion ability of each model. After the robot completes
the tasks, we manually restore the scene to an intermediate sub-task state. Imit-Diff enables the
robot to reassess the current scene and successfully complete the task again, regardless of object
appearance. This demonstrates that the high-quality feature tokens constructed by Imit-Diff enhance
scene understanding.

4.4 ABLATION STUDY

We aim to validate our design choices through several ablation studies and gain a better under-
standing of how different hyper-parameters influence Imit-Diff. We choose the most challenging
real-world task for fine-grained feature extraction, Stack Blocks, as the benchmark for the ablation
study.

Tab. 4 a) presents the results of ablations on visual backbones. We found that ViT-S DINOV2
significantly outperforms a simple ViT-S pretrained on ImageNet. This suggests that the pretrained
weights have a crucial impact on the scene understanding capabilities of Imit-Diff. The superior
performance of ViT-S DINOV2 can be attributed to its self-supervised pretraining, which enables it
to learn rich, generalizable feature representations.
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Tab. 4 b) shows the success rates for the Stack Blocks task under different loss designs. We find
that the model performs better with MSE Loss, which is more commonly used in diffusion models,
compared to Huber Loss used in Consistency Policy. This may be due to Huber Loss’s higher
tolerance for noise in tasks requiring fine manipulation, which can cause small action variations to be
disregarded, while MSE Loss is more effective at capturing and reflecting these subtle movements.

In Tab. 4 c) , we present the results of the ablation study on camera views. We find that adding
the arm-side view improves our model’s performance in fine manipulation tasks, such as block
stacking. It demonstrates that our network is scalable and can further enhance its performance by
incorporating additional observational information due to multi-modal fusion.

Tab. 4 d) presents the results of our ablation study on semantics injection. The experimental setup is
similar to that in Sec. 4.1. The results show that the model performs better, especially under unseen
clutter interference, with the introduction of the prior mask. This validates the effectiveness of the
component we proposed in Sec. 3.1.

In Tab. 4 e) , we present the results of the ablation study on dual-resolution fusion. As we pro-
gressively reduce the number of FPN layers described in Sec. 3.1, the model’s performance also
decreases, demonstrating the soundness of the component design in Sec. 3.1. Additionally, we
identify FPN=3 as a sweet spot, balancing model performance and training cost.

4.5 CONSISTENCY POLICY WITH ACTION DROPOUT

In previous experiments, we have demonstrated the strong performance and generalization capa-
bilities of our method. However, similar to other diffusion-based imitation learning algorithms,
Imit-Diff suffers from longer inference times due to the EDM denoising framework. In Sec. 3.3, we
introduce the implementation of the Consistency Policy within the DiT architecture. Tab. 5 reports
the inference times of our model. The implementation of the Consistency Policy in the DiT signif-
icantly improves inference speed, making it possible to enhance dynamic responsiveness through
Temporal Ensemble and Action Dropout, a method we designed to increase execution frequency by
selectively dropping certain actions.

Table 1: Success rate (%) of 3 real-world tasks within 20 evaluation trials each, comparing our
method with the two baselines. The model is trained with human demonstrations and fixed seed.
Overall, Imit-Diff significantly outperforms previous methods.

Block Placement Object Sortation Stack Blocks

Method Pre-
Grasp

Grasp
Block

Place
Block

Grasp
Block1

Place
Block1

Grasp
Block2

Place
Block2

Grasp
Block1

Stack
Block1

Grasp
Block2

Stack
Block2

ACT 95 90 100 90 95 100 100 95 95 100 90
DP-T 90 85 95 90 95 85 90 85 95 90 95
Imit-Diff 95 95 100 95 100 100 95 95 100 100 100

Table 2: Success rate (%) of 3 real-world tasks within 20 evaluation trials each in cluttered scenes.
We compare the models’ performance with clutters seen / unseen during training placed at random
positions.

Block Placement Object Sortation Stack Blocks

Method Clutter Seen Clutter Unseen Clutter Seen Clutter Unseen Clutter Seen Clutter Unseen

ACT 85 70 80 75 95 85
DP-T 80 65 85 75 90 80
Imit-Diff 95 90 95 90 95 95
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Table 3: Success rate (%) of 3 real-world tasks within 20 evaluation trials each with seen / unseen
object appearance and with / without process interference. Process interference refers to man-
ually impeding after the task is done so that the model would have to restart from the intermediate
stage.

Block Placement

Method Appearance Seen Appearance Seen
+ Process Interference

Appearance Unseen
+ Process Interference

ACT 85 50 45
DP-T 75 60 40
Imit-Diff 90 90 80

Object Sortation

Method Appearance Seen Appearance Seen
+ Process Interference

Appearance Unseen
+ Process Interference

ACT 85 75 70
DP-T 65 60 55
Imit-Diff 90 90 80

Stack Blocks

Method Appearance Seen Appearance Seen
+ Process Interference

Appearance Unseen
+ Process Interference

ACT 80 85 80
DP-T 70 85 70
Imit-Diff 95 85 85

Table 4: Success rate (%) of the Stack Blocks task in ablation studies within 20 evaluation trials
each.

a). Visual Backbones b). Loss Designs

ViT-S ViT-S DINOV2 Huber Loss MSE Loss
30 95 10 95

c). Camera Views

Env. View Env. + Arm-side View
90 95

d). Semantics Injection

With Semantics Without Semantics
No Clutters 95 95

With Seen Clutters 95 95
With Unseen Clutters 95 85

e). Dual Resolution Fusion

FPN-0 FPN-1 FPN-2 FPN-3 FPN-4
20 30 60 85 95

Table 5: Inference Time of EDM and CTM Frameworks for Imit-Diff
EDM CTM (Single-step) CTM (Few-step)

1.5s 0.06s 0.12s

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 LIMITATIONS AND CONCLUSIONS

Conclusions: We propose an imitation learning strategy for enhancing fine-grained feature repre-
sentation and scene understanding, including improving fine-grained manipulation through dual-
resolution fusion and introducing semantics through prior masks. The synergy between these two
parts enables the model to obtain generalization against interference and learn fine operations, such
as completing tasks in cluttered scenes and re-complete tasks from a certain stage.

Limitations and Future Work: Although our work outperforms on challenging tasks and shows
excellent generalization, there are still practical issues of algorithmic capabilities and robotics en-
gineering. Specifically, our approach based on the EDM framework suffers from long inference
time. Although we have increased the inference speed by an order of magnitude in DiT to improve
dynamic response, there is still a gap in running speed compared to lightweight algorithms such as
ACT. In the future, we will explore the multi-modal fusion of robot observations including touch
or 3D information. Overall, we hope that this representation-enhanced imitation learning algorithm
can take an important step forward in robot perception and open-source resources.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Fig. 4 shows the experimental settings for model anti-interference and generalization capabilities.

A.2 TRAINING DETAILS

All models are trained using the same collected data on a platform with 8 × A100 GPUs. The
training parameter settings of the baseline models are shown in Tab. 6, Tab. 7 and Tab. 8.

Table 6: ACT Training

Hyperparameter Value

input image shape 3× 480× 640

learning rate 2e-4
batch size 16
steps 10000
feedforward dimension 3200
hidden dimension 512
chunk size 100
beta 10
dropout 0.1
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Table 7: Diffusion Policy Training

Hyperparameter Value

input image shape 3× 448× 448

learning rate 2e-4
batch size 64
steps 20000
chunk size 20
scheduler DDIM
train and test diffusion steps 100,16
ema power 0.75
backbone pretrained ResNet18
noise predictor Transformer

Table 8: Imit-Diff Training

Hyperparameter Value

high resolution image shape 3× 448× 448

low resolution image shape 3× 224× 224

learning rate 1e-4
batch size 64
steps 20000
chunk size 20
scheduler EDM
train and test diffusion steps 80,80 (EDM) — 3 (CTM)
ema power 0.75
backbone pretrained ViT DINOV2 (LR) & pretrained ConvNext-Base (HR)
noise predictor Transformer
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Figure 4: Experimental settings for model anti-interference and generalization capabilities. To ver-
ify the model’s ability to adapt to scenes with unseen manipulating objects and interfering objects,
we set up multiple groups of experiments for each task: a) randomly changing the color of the ma-
nipulated objects in the task; b) randomly placing objects that exist in the training data; c) randomly
placing objects that do not exist in the training data.
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