
A Appendix / supplemental material755

Two grid searches for the publicly available MNIST dataset were performed to corroborate the756

learning rate and momentum weight derived in the main paper (LeCun et al., accessed May 21, 2024).757

The MNIST dataset contains gray-scale images of handwritten digits and is one of the prominent758

datasets used to evaluate machine learning methods. It is split into a training and a test set, where the759

latter serves as a standard of comparison. Figure 2 shows an example of the MNIST data.

Figure 2: A slightly enlarged example from the MNIST dataset showing a handwritten digit (4).

760

A.1 Experiments761

The grid searches were performed on the full-size MNIST dataset and a smaller version of MNIST762

containing only 50% of the training data. In the latter case, a stratified sampling method named763

StratifiedShuffleSplit was used to create a stratified random subset of the training samples (Scikit-764

learn developers , BSD License; Pedregosa et al., 2011; Buitinck et al., 2013). This ensured that the765

class distribution in the training subset was the same as in the original full-size training set. The766

degradation in dataset size allowed observing how each optimizer performed under varying amounts767

of training data, assuming that providing less training data posed a harder problem.768

A deep learning model was trained based on a convolutional neural network (CNN). The model769

consisted of two convolutional layers, each followed by a ReLU activation function and a max770

pooling operation. The first convolutional layer had a single-channel input (grayscale image) and771

applied 16 filters, followed by a second convolutional layer that expanded the channel size to 32.772

Both convolutional layers used a 3x3 kernel size, a stride of one, and a padding of one. After each773

convolution, a ReLU activation function introduced non-linearity, and a max pooling operation with774

a 2x2 kernel and stride reduced the spatial dimensions by half. A dropout layer with a rate of 0.25775

was applied after flattening the output to prevent overfitting. The network concluded with two fully776

connected layers with a final output of 10 classes, where the maximum output value determined the777

class of an input image. The number of parameters was around two hundred thousand for an MNIST778

input image of size 28x28. A weight initialization was performed using the Kaiming uniform method.779

No data augmentation techniques were applied; however, the input was normalized to the range [-1,1].780

The training used a batch size of 64 and was conducted over 30 epochs, employing cross entropy781

as the loss function. The sizes of the training, validation, and test datasets were 54,000, 6,000, and782

10,000, respectively. Finally, the model’s performance was assessed through 10-fold cross-validation.783

A.2 Results784

The results of both grid searches are shown in Figure 3 for the full-size training set and in Figure 3785

for the smaller training set with 50% of the size. The following values were used as momentum786

weights for each grid search: 0, 0.2, 0.4, 0.6, 0.8, 0.825, 0.85, 0.874, 0.9, and 0.925. On the other787

hand, the following values were used as learning rates: 0.0001, 0.001, 0.01, 0.016, 0.1, 0.2. These788

values included the momentum weight derived in the paper (α ≈ 0.874) and the derived learning789

rate (η ≈ 0.016). Other values were chosen based on their use in the literature or to increase the790

resolution around the derived theoretical values. All possible combinations of values span a 6x10791

grid. The color of each square in the grids of Figure 3 and Figure 4 represent the performance of the792

corresponding pair of momentum weight and learning rate, with lighter colors representing higher793

performance. Green rectangles indicate the top ten performing pairs, whereas blue rectangles show794

the best-performing pair. Note that more than one pair can share the best performance, as in Figure 3.795

18



Figure 3: Grid search results for MNIST

Figure 3 shows that no pair of momentum weight and learning rate provides better performance on796

the full-size MNIST set than the pair derived in the paper, (0.016, 0.874), although this pair has to797

share its first place with other pairs. The classification accuracies for the reduced training set size798

are slightly lower in the table of Figure 4, as one would expect for a problem with less training data.799

Nevertheless, the theoretical values derived in the paper for momentum weight and learning rate show800

again the best performance.801

A.3 Computational environment and runtime802

The software was developed using Python 3.10, and the Convolutional Neural Network (CNN) model803

was implemented in Pytorch 2.2.2. For each combination of learning rate and momentum weight (60804

combinations in total), the training time was approximately three hours for 100% of the training set805

size and about 1.5 hours for 50% of the training set. Consequently, the cumulative GPU time for all806

experiments was approximately (3 + 1.5) × 60 hours, which is 270 hours. The average memory usage807

was roughly 1 GB for each combination. For more information about the software requirements and808

workflow, see the Readme file uploaded as supplemental material together with the code.809

A.4 Computing cluster810

Figure 5 shows an overview of the GPU computing cluster that was available for the experiments,811

including the type of GPUs among which the processing was distributed.812

19



Figure 4: Grid search results for MNIST using only 50% of the training data

20



GPU nodes Processor cores per node Memory Network 

36 

32 x 2.8 GHz (AMD 

Epyc 7543p) 

hyperthreading enabled 

256 MB level 3 cache 

4 x NVIDIA A100 GPUs 

(80 GB VRAM, 6912 

cores, 432 Tensor cores) 

NVLINK 

256 GB 
200 Gb/s HDR Infiniband 

(1:1) 

56 

36 x 2.3 GHz (Intel Gold 

6140) 

hyperthreading enabled 

25 MB secondary cache 

4 x NVIDIA V100-

SXM2 GPUs (32 GB 

VRAM, 5120 cores, 640 

Tensor cores) 

NVLINK 

384 GB 
200 Gb/s HDR Infiniband 

(1:1) 

8 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

4 x NVIDIA V100 GPUs 

(16 GB VRAM, 5120 

cores, 640 Tensor cores) 

128 GB 

 

56 Gb/s FDR Infiniband 

(1.11:1) 

48 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

4 x NVIDIA P100 GPUs 

(16 GB VRAM, 3584 

cores) 

128 GB 
56 Gb/s FDR Infiniband 

(1.11:1) 

72 

28 x 2.4 GHz (Intel E5-

2680v4) 

hyperthreading enabled 

35 MB secondary cache 

2 x NVIDIA K80 GPUs 

with 2 x GK210 GPUs 

each (24 GB VRAM, 

4992 cores) 

256 GB 
56 Gb/s FDR Infiniband 

(1.11:1) 

 

 

 

 

 

 

 

 

Figure 5: GPU computing cluster

21


