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APPENDIX

In the subsequent sections, we delve into the experimental specifics and provide the technical proofs
that were not included in the primary content.

In Section B, we commence by showcasing an additional experiment on the American call option.
This aligns with the convergence and sample complexity discussions from the main content. We
then elucidate the intricacies of Liu’s algorithm to facilitate a transparent comparison with our
methodology. Lastly, we discuss the algorithmic intricacies of our DDRQ algorithm and provide
details on the experiments that were previously omitted.

In Section C, to prove Theorem 3.3, we begin by extending the two-timescale stochastic approximation
framework to a three-timescale one. Following this, we adapt it to our algorithm, ensuring all requisite
conditions are met.

A NOTATIONS

We fix some notations that will be used in the appendix. For a positive integer n, [n] denotes the set
{1, 2, · · · , n}. |A| denotes the cardinality of the set A. We adopt the standard asymptotic notations:
for two non-negative sequences an and bn, an = O(bn) iff lim supn→∞ an/bn < ∞. ∆d is the
simplex on a d dimensional space, i.e., ∆d = {x :

∑d
i=1 xi = 1, xi ≥ 0,∀i ∈ [d]}. For any vector

x ∈ Rd and any semi-positive matrix A ∈ Rd×d with A � 0, we denote ‖x‖A :=
√
x>Ax. ‖·‖ is

Euclidean norm.

B ADDITIONAL EXPERIMENTS DETAILS

B.1 EXPERIMENT ON THE AMERICAN PUT OPTION PROBLEM

In this section, we present additional experimental results from a simulated American put option
problem (Cox et al., 1979) that has been previously studied in robust RL literature (Zhou et al., 2021;
Tamar et al., 2014). The problem involves holding a put option in multiple stages, whose payoff
depends on the price of a financial asset that follows a Bernoulli distribution. Specifically, the next
price sh+1 at stage h+ 1 follows,

sh+1 =

{
cush, w.p. p0,

cdsh, w.p. 1− p0,
(12)

where the cu and cd are the price up and down factors and p0 is the probability that the price goes up.
The initial price s0 is uniformly sampled from [κ− ε, κ+ ε], where κ = 100 is the strike price and
ε = 5 in our simulation. The agent can take an action to exercise the option (ah = 1) or not exercise
(ah = 0) at the time step h. If exercising the option, the agent receives a reward max(0, κ − sh)
and the state transits into an exit state. Otherwise, the price will fluctuate based on the above model
and no reward will be assigned. Moreover we introduce a discount structure in this problem, i.e.,
the 1 reward in the stage h+ 1 worths γ in stage h as our algorithm is designed for discounted RL
setting. In our experiments, we set H = 5, cu = 1.02, cd = 0.98 and γ = 0.95. We limit the price in
[80, 140] and discretize with the precision of 1 decimal place. Thus the state space size |S| = 602.

We first demonstrate the robustness gain of our DR Q-learning algorithm by comparing with the
non-robust Q-learning algorithm, and investigate the effect of different robustness levels by varying
ρ. Each agent is trained for 107 steps with an ε-greedy exploration policy of ε = 0.2 and evaluated
in perturbed environments. We use the same learning rates for the three timescales in our DR
Q-learning algorithm as in the Cliffwalking environment: ζ1(t) = 1/(1 + (1 − γ)t0.6), ζ2(t) =
1/(1 + 0.1 ∗ (1− γ)t0.8), and ζ3(t) = 1/(1 + 0.01 ∗ (1− γ)t). For the non-robust Q-learning we set
the same learning rate as in our Q-update, i.e., ζ3(t). We perturb the transition probability to the price
up and down status p = {0.3, 0.4, 0.5, 0.6, 0.7}, and evaluate each agent for 5000 episodes. Figure 6
reports the average return and one standard deviation level. The non-robust Q-learning performs best
when the price tends to decrease and the market gets more benefitial (p = {0.3, 0.4, 0.5}), which
benefits the return of holding an American put option. However, when the prices tend to increase
and the market is riskier (p = {0.6, 0.7}), our DR Q-learning algorithm significantly outperforms
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Figure 6: Averaged return in the American call option problem. ρ = 0.0 is the non-robust Q-learning.

the non-robust counterpart, demonstrating the robustness gain of our algorithm against worst-case
scenarios.
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Figure 7: Convergence curve of DR Q-learning algorithm to the true DR value under different ρ’s
and k’s. Each curve is averaged over 10 random seeds and shaded by their standard deviation. The
dashed line is the optimal robust value with corresponding k and ρ.

We present the learning curve of our DR Q-learning algorithm with different ρ in Figure 7. Our
algorithm can accurately learn the DR value under different ρ’s and k’s within 0.1 million steps.
We compare the sample efficiency of our algorithm with the DR Q-learning algorithm in Liu et al.
(2022) (referred to as Liu’s) and the model-based algorithm in Panaganti & Kalathil (2022) (referred
to as Model). We set a smaller learning rate for Liu’s as ζ(t) = 1/(1 + (1 − γ)t). The reason is
setting the same learning rate ζ3(t) for their algorithm would render a much slower convergence
performance, which is not fair for comparisons. We use the recommended choice ε = 0.5 for the
sampling procedure in Liu algorithm. Both DR Q-learning and Liu are trained for 5 ∗ 107 steps per
run, while the model-based algorithm is trained for 106 steps per run to ensure sufficient samples
for convergence. As shown in Figure 8, the model-based approach is the most sample-efficient,
converging accurately to the optimal robust value with less than 104 samples. Our DR Q-learning
algorithm is slightly less efficient, using 105 samples to converge. Liu algorithm is significantly less
efficient, using 107 samples to converge. Note that the model-based approach we compared here is to
first obtain samples for each state-action pairs, and then conduct the learning procedure to learn the
optimal robust value. In particular, we need to specify the number of samples for each state-action
pair n. Then the total number of samples used is the sum of all these number, i.e., S ×A× n, whose
computation manner is different from that in the model-free algorithms we used where each update
requires one or a batch of new samples.
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To ensure self-containment, we provide the pseudocode for our implemented Liu algorithm (Algo-
rithm 3) and the model-based algorithm (Algorithm 2) below. These algorithms were not originally
designed to solve the ambiguity set constructed by the Cressie-Read family of f -divergences.

B.2 LIU’S ALGORITHM DESCRIPTIONS

In this subsection, we provide the pseudo-code for the Liu algorithm, represented in Algorithm 2.
Our intention is to emphasize the differences in algorithmic design between their approach and ours.

Their algorithm, in particular, relies extensively on multi-level Monte Carlo, requiring the sampling
of a batch of samples for each state-action pair. Once they estimate the Doubly Robust (DR) value
for a specific state-action pair, the samples are promptly discarded and subsequently resampled from
a simulator. To summarize, their algorithm exhibits significant distinctions from ours in terms of
algorithmic design.

Algorithm 2 Distributionally Robust Deep Q-learning with Cressie-Read family of f -divergences

1: Input: Discount Factor γ, Radius of robustness ρ, Cressie-Read family parameter k, Q-network
target update rate τQ and η-network target update rate τη , mini-batch size N , maximum number
of iterations T , start training timestep Ttr, training network update frequency Ftr and target
network update frequency Fup.

2: Init: Two state-action neural networks Qθ1 and Qθ2 , two dual neural network ηθ1 and ηθ2 ,
C = (1 + k ∗ (k − 1) ∗ ρ)1/k.

3: for for t = 1, · · · , T do
4: Observe a state st and execute an action at using ε-greedy policy.
5: if t ≥ Ttr and t%Ftr then
6: Sample a minibatch B with N samples from the replay buffer.
7: Compute next-state target value for Q network

Qi = rt − γC ∗ (ηθ1(si, ai)−max
a∈A

Qθ1(si, ai))
k∗
+ , ∀i ∈ B

and for η network

Q′i = rt − γC ∗ (ηθ2(si, ai)−max
a∈A

Qθ2(si, ai))
k∗
+ , ∀i ∈ B.

8: Update θ1 = arg minθ
∑
i(Qi −Qθ(si, ai))2.

9: Update θ3 = arg maxθ
∑
iQ
′
i(θ).

10: end if
11: if t ≥ Ttr and t%Fup then
12: Update target network θ2 = (1− τQ)θ2 + τQθ2, θ4 = (1− τη)θ4 + τηθ3.
13: end if
14: end for
15: t = t+ 1

B.3 PRACTICAL EXPERIMENTS

In this section, we provide a comprehensive description of our Deep Distributionally Robust Q-
learning (DDRQ) algorithm, as illustrated in Algorithm 1, along with its experimental setup in the
context of CaroPole and LunarLander.

Our practical algorithm, denoted as Algorithm 4, is a variant of Algorithm 1. Specifically, we adopt
the Deep Q-Network (DQN) architecture (Mnih et al., 2015) and employ two sets of neural networks
as functional approximators. One set, Qθ1 and Qθ2 , serves as approximators for the Q function,
while the other set, ηθ3 and ηθ4 , approximates the distributionally robust dual variable η. To enhance
training stability, we introduce a target network, Qθ2 , for the fast Q network Qθ1 and ηθ4 for the fast
dual variable η network ηθ3 .

Due to the approximation error introduced by neural networks and to further improve sample
efficiency, our practical DDRQ algorithm adopts a two-timescale update approach. In this approach,
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Algorithm 3 Distributionally Robust Q-learning with Cressie-Read family of f -divergences with
Simulator

1: Input: Exploration rate ε, Learning rates {ζi(n)}i∈[3], Ambiguity set radius ρ > 0, parameter
ε ∈ (0, 0.5)

2: Init: Q̂(s, a) = 0,∀(s, a) ∈ S ×A
3: while Not Converge do
4: for every (s, a) ∈ S ×A do
5: Sample N ∈ N from P (N = n) = pn = ε(1− ε)n.
6: Draw 2N+1 samples {(ri, s′i)}i∈[2N+1] from the simulator
7: Compute ∆r

N,ρ via

∆r
N,ρ = sup

η∈R
σ̂rk([2N+1], η)− 1

2
sup
η∈R

σ̂rk([2N ], η)− 1

2
sup
η∈R

σ̂rk([2N :], η),

where

sup
η∈R

σ̂rk(I, η) = sup
η∈R
{−ck(ρ)[

∑
i∈I

(η − ri)k∗+ /n]
1
k∗ + η},

and [2N ] = {1, 2, 3, · · · , 2N} and [2N :] = {2N , 2N + 1, · · · , 2N+1}.
8: Compute ∆q

N,ρ(Q̂t) via

∆q
N,ρ(Q̂t) = sup

η∈R
σ̂qk(Q̂t, [2

N+1], η)− 1

2
sup
η∈R

σ̂qk(Q̂t, [2
N ], η)− 1

2
sup
η∈R

σ̂qk(Q̂t, [2
N :], η),

where

sup
η∈R

σ̂qk(Q̂t, I, η) = sup
η∈R
{−ck(ρ)[

∑
i∈I

(η −max
a′∈A

Q̂t(s
′
i, a
′))k∗+ /n]

1
k∗ + η}.

9: Set Rρ(s, a) = r1 +
∆r
N,ρ

pN
.

10: Update Q via

Q̂t+1(s, a) = (1− ζt)Q̂t(s, a) + ζtT̂ρ(Q̂t)(s, a),

where

T̂ρ(Q̂t)(s, a) = r1 + ∆r
N,ρ + γ(max

a′∈A
Q̂t(s1, a

′) +
∆q
N,ρ(Q̂t)

pN
).

11: end for
12: t = t+ 1
13: end while

our Q network aims to minimize the Bellman error, while the dual variable η network strives to
maximize the DR Q value defined in Equation 5. It’s important to note that the two-timescale update
approach could introduce bias in the convergence of the dual variable, and thus the dual variable η
may not the optimal dual variable for the primal problem. Given the primal-dual structure of this
DR problem, this could render an even lower target value for the Q network to learn. This approach
can be understood as a robust update strategy for our original DRRL problem, share some spirits to
the optimization techniques used in other algorithms like Variational Autoencoders (VAE)(Kingma
& Welling, 2013), Proximal Policy Optimization (PPO)(Schulman et al., 2017), and Maximum a
Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018).

Most of the hyperparameters are set the same for both LunarLander and CartPole. We choose
Cressie-Read family parameter k = 2, which is indeed the χ2 ambiguity set and we set ambiguity set
radius as ρ = 0.3. For RFQI we also use the same ρ for fair comparison. Our replay buffer size is set
1e6 and the batch size for training is set 4096. Our fast Q and η network are update every 10 steps
(Ftr = 10) and the target networks are updated every 500 steps (Fup = 500). The learning rate for
Q network is 2.5× 10−4 and for η network is 2.5× 10−4. The Q network and the η network both
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Figure 8: Sample complexity comparisons in American option environment with other DRRL
algorithms. The dashed line is the optimal robust value with corresponding k and ρ. The x-axis is in
log10 scale. Each curve is averaged over 10 random seeds and shaded by their one standard deviation.
The dashed line is the optimal robust value with corresponding k and ρ.

Algorithm 4 Distributionally Robust DQN with Cressie-Read family of f -divergences (DDRQ)

1: Input: Exploration rate ε, Learning rates {ζi(n)}i∈[3]

2: Init: Q(s, a) = 0,∀(s, a) ∈ S ×A
3: for n = 1, 2, · · · do
4: Observe the state sn, execute the action an = arg maxa∈AQn(sn, a) using ε-greedy policy
5: Observe the reward rn and next state s′n
6: UpdateZn+1,1(sn, an) = (1−ζ1(n))Zn,1(sn, an)+ζ1(n)(ηn(sn, an)−maxaQn(s′n, a))k∗+ ,

and Zn+1,2(sn, an) = (1− ζ1(n))Zn,2(sn, an) + ζ1(n)(ηn(sn, an)−maxaQn(s′n, a))k∗−1
+ .

7: Update ηn+1(sn, an) = ηn(sn, an) + ζ2(n)(−ck(ρ)Z
1
k∗−1

n+1,1(sn, an) · Zn+1,2(sn, an) + 1).

8: Update Qn+1(sn, an) = (1 − ζ3(n))Qn(sn, an) + ζ3(n)(rn − γ(ck(ρ)Z
1
k∗
n+1,1(sn, an) −

ηn(sn, an))).
9: end for

employ a dual-layer structure, with each layer consisting of 120 dimensions. For exploration scheme,
we choose epsilon-greedy exploration with linearly decay epsilon with ending εEnd. The remain
parameters tuned for each environments are referred in Table 1.

C MULTIPLE TIMESCALE CONVERGENCE

C.1 THREE TIMESCALES CONVERGENCE ANALYSIS

In this subsection, we outline the roadmap for establishing the a.s. convergence of the Algorithm 1.
For ease of presentation, our analysis is given for the synchronous case, where every entry of the Q
function is updated at each timestep. Extension to the asynchronous case, where only one state-action
pair entry is updated at each timestep, follows Tsitsiklis (1994). Our approach is to generalize the

Environment Maximum Training Step T εEnd τQ τη

CartPole 1e8 0.05 1 0.05
LunarLander 3e7 0.2 0.5 0.1

Table 1: Different Hyperparamers between CartPole and LunarLander
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classic machinery of two-timescale stochastic approximation (Borkar, 2009) to a three-timescale
framework, and use it to analyze our proposed algorithm. We rewrite the Algorithm 1 as

Zn+1 = Zn + ζ1(n)[f(Zn, ηn, Qn) +MZ
n ], (13)

ηn+1 = ηn + ζ2(n)[g(Zn, ηn, Qn) + εηn], (14)

Qn+1 = Qn + ζ3(n)[h(Zn, ηn, Qn) + εQn ]. (15)
Here, we use Zn = (Zn,1, Zn,2) to represent the Zn,1 and Zn,2 jointly. To echo with our algorithm,
f = (f1, f2) and MZ

n = (MZ
n,1,M

Z
n,2) are defined as,

f1(Zn, ηn, Qn)(s, a) = Es′ [(ηn(s, a)−max
a′

Qn(s′, a′))k∗+ − Zn,1(s, a)],

f2(Zn, ηn, Qn)(s, a) = Es′n [(ηn(s, a)−max
a′

Qn(s′, a′))k∗−1
+ − Zn,2(s, a)],

MZ
n,1(s, a) = (ηn(s, a)−max

a′
Qn(s′, a′))k∗+ − Zn,1(s, a)− f1(Zn, ηn, Qn)(s, a),

MZ
n,2(s, a) = (ηn(s, a)−max

a′
Qn(s′, a′))k∗−1

+ − Zn,2(s, a)− f2(Zn, ηn, Qn)(s, a).

In the update of ηn (Equation 27), g and εηn are defined as

g(Zn, ηn, Qn)(s, a) = −ck(ρ)E[(ηn(s, a)−max
a′∈A

Qn(s′, a′))k∗+ ]
1
k∗
−1 · E[(ηn(s, a)−max

a′∈A
Qn(s′, a′))k∗−1

+ ] + 1,

εηn(s, a) = −ck(ρ)Z
1
k∗
−1

n,1 (s, a) · Zn,2(s, a) + 1− g(Zn, ηn, Qn)(s, a).

Finally in the update of Qn (Equation 15), h and εQn are defined as

h(Zn, ηn, Qn)(s, a) = r(s, a)− γ(ck(ρ)(EP [(ηn(s, a)−max
a′∈A

Qn(s′, a′))k∗+ ])
1
k∗ − ηn(s, a)),

εQn (s, a) = r(s, a)− γ(ck(ρ)Z
1
k∗
n,1(s, a)− ηn(s, a))− h(Zn, ηn, Qn)(s, a).

The algorithm 1 approximates the dynamic described by the system of f , g and h through samples along a single
trajectory, with the resulting approximation error manifesting as martingale noise MZ

n conditioned on some
filtration Fn and the error terms εηn and εQn .

To analyze the dynamic of algorithm 1, we first obtain the continuous dynamic of f, g, and h using ordinary
differential equations (ODEs) analysis. The second step is to analyze the stochastic nature of the noise term
MZ
n and the error terms εηn and εQn , to ensure that they are negligible compared to the main trend of f , g, and h,

which is achieved by the following stepsizes,
Assumption C.1. The stepsizes ζi(n), i = 1, 2, 3 satisfy∑

n

ζi(n) =∞,
∑
n

ζ2i (n) <∞, ζ1(n) = o(ζ2(n)), ζ2(n) = o(ζ3(n)).

These stepsize schedules satisfy the standard conditions for stochastic approximation algorithms, ensuring that
(1). the key quantities in gradient estimator Zn update on the fastest timescale, (2). the dual variable for the
DR problem, ηn, update on the intermediate timescale; and (3). the Q table updates on the slowest timescale.
Examples of such stepsize are ζ1(n) = 1

1+n0.6 , ζ2(n) = 1
1+n0.8 and ζ3(n) = 1

1+n
. Notably, the first two

conditions in Assumption C.1 ensure the martingale noise is negligible. The different stepsizes for the three
loops specificed by the third and fourth conditions ensures that Zn,1 and Zn,2 are sufficiently estimated with
respect to the ηn and Qn, and these outer two loops are free from bias or noise in the stochastic approximation
sense.

Under Assumption C.1, when analyzing the behavior of the Zn, the ηn and the Qn can be viewed as quasi-static.
To study the behavior of the fastest loop, we analyze the following ODEs:

Ż(t) = f(Z(t), β(t), Q(t)), η̇(t) = 0, Q̇(t) = 0, (16)

and prove that ODEs (16) a.s. converge to λ
′′
1 (η,Q) for proper η and Q and some mapping λ

′′
1 . Similarly,

Qn can be viewed as fixed when analyzing the behavior of ηn, and the corresponding ODEs to understand its
behavior are

η̇(t) = g(λ′′1 (η(t), Q(t)), η(t), Q(t)), Q̇(t) = 0. (17)
By exploiting the dual form of the distributionally robust optimization problem, we can prove these ODEs
converge to the set {λ′1(Q), λ′2(Q), Q|Q ∈ V } for some mapping λ′1 and λ′2 with V is the set containing all
the mapping from S to R. Lastly, we examine the slowest timescale ODE given by

Q̇(t) = h(λ′1(Q(t)), λ′2(Q(t)), Q(t)), (18)

and employ our analysis to establish the almost sure convergence of Algorithm 1 to the globally optimal pair
(Z?1 , Z

?
2 , η

?, Q?).
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Lemma C.2 (Discrete Gronwall inequality). Let {xn, n ≥ 0} (resp. {an, n ≥ 0} ) be nonnegative (resp.
positive) sequences and C,L ≥ 0 scalars such that for all n,

xn+1 ≤ C + L

(
n∑

m=0

amxm

)
.

Then for Tn =
∑n
m=0 am,

xn+1 ≤ CeLTn .
Lemma C.3 (Gronwall inequality). For continuous u(·), v(·) ≥ 0 and scalars C,K, T ≥ 0

u(t) ≤ C +K

∫ t

0

u(s)v(s)ds, ∀t ∈ [0, T ],

implies
u(t) ≤ CeK

∫ T
0 v(s)ds, ∀t ∈ [0, T ].

C.2 STABILITY CRITERION

Consider the stochastic approximation scheme zn ∈ RN given by

zn+1 = zn + an [g (zn) +Mn+1] ,

with the following assumptions:
Assumption C.4. g : RN → RN is Lipschitz.
Assumption C.5. The sequence {an} ⊂ R satisfies

∑
n an =∞,

∑
n a

2
n <∞.

Assumption C.6. {Mn} is a martingale difference sequence with respect to the filtration Fn =
σ (zm,Mm,m ≤ n), there exists K > 0 such that E

[
‖Mn+1‖2 | Fn

]
≤ K(1 + ‖zn‖2) a.s..

Assumption C.7. The functions gd(z) = g(dz)/d, d ≥ 1 satisfy gd(z) → g∞(z) as d → ∞ uniformly on
compacts for some continuous function g∞ : RN → RN . In addition, the ODE

ż(t) = g∞(z(t))

has the origin as its globally asymptotically stable equilibrium.

We then have
Lemma C.8. Under Assumptions C.4 to C.6, we have supn ‖zn‖ <∞ a.s.

See Section 2.2 and 3.2 in Borkar (2009) for the proof. As the stability proofs in Section 3.2 of Borkar (2009)
are path-wise, we can apply this result to analyze multiple timescales dynamic.

C.3 THREE TIMESCALES CONVERGENCE CRITERION

Consider the scheme

xn+1 = xn + an
[
f (xn, yn, zn) +M

(1)
n+1

]
(19)

yn+1 = yn + bn
[
g (xn, yn, zn) +M

(2)
n+1

]
(20)

zn+1 = zn + cc
[
h (xn, yn, zn) +M

(3)
n+1

]
(21)

where f : Rd+k+p → Rd, g : Rd+k+p → Rk, h : Rd+k+p → Rp, {M (i)
n }, i = 1, 2, 3 are martingale

difference sequences with respect to the σ-fields Fn = σ
(
xm, ym,M

(1)
m ,M

(2)
m ,M

(3)
m ;m ≤ n

)
, and the

an, bn, cn form decreasing stepsize sequences.

It is instructive to compare the stochastic update algorithms from Equations 19 to 21 with the following o.d.e.,

ẋ(t) =
1

a
f(x(t), y(t), z(t)),

ẏ(t) =
1

b
g(x(t), y(t), z(t)),

ż(t) =
1

c
h(x(t), y(t), z(t)),

in the limit that a, b, c→ 0 and a = o(b), c = o(b).

We impose the following assumptions.
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Assumption C.9. f and g is L-Lipschitz map for some 0 < L <∞ and h is bounded.
Assumption C.10.∑

n

an =
∑
n

bn =
∑
n

cn =∞,
∑
n

(a2n + b2n + c2n) <∞, and bn = o(an), cn = o(bn).

Assumption C.11. For i = 1, 2, 3 and n ∈ N+, {M (i)
n } is a martingale differeence sequence with respect

to the increasing family of σ-fields Fn. Furthermore, there exists some K > 0, such that for i = 1, 2, 3 and
n ∈ N+,

E[‖M (i)
n+1‖

2|Fn] ≤ K(1 + ‖xn‖2 + ‖yn‖2 + ‖zn‖2).

Assumption C.12. supn(‖xn‖+ ‖yn‖+ ‖zn‖) <∞, a.s..

Assumption C.13. For each y ∈ Rk and z ∈ Rp, ẋ(t) = f(x(t), y, z) has a globally asymptotically stable
equilibrium λ1(y, z), where λ1 : Rk+p →Rd is a L-Lipschitz map for some L > 0.
Assumption C.14. For each z ∈ Rp, ẏ(t) = g(λ1(y(t), z), y(t), z) has a globally asymptotically stable
equilibrium λ2(z), where λ2 : Rp →Rk is a L-Lipschitz map for some L > 0.
Assumption C.15. ż(t) = h(λ1(z(t)), λ2(z(t)), z(t)) has a globally asymptotically stable equilibrium z?.

Assumptions C.9, C.10, C.11 and C.12 are necessary for the a.s. convergence for each timescale itself. Moreover,
Assumption C.12 itself requires Assumptions like C.9, C.10, C.11, with an extra assumption like Assumption C.6.
Instead, we need to prove the boundedness for each timescale, thus the three timescales version is as follow
Assumption C.16. The ODE

ż(t) = f∞(x(t), y, z)

ẏ(t) = g∞(λ1(y(t), z), y(t), z)

ż(t) = h∞(λ1(z(t)), λ2(z(t)), z(t))

all have the origin as their globally asymptotically stable equilibrium for each y ∈ Rk and z ∈ Rp, where

f∞ = lim
d→∞

f(dx)

d
, g∞ = lim

d→∞

g(dx)

d
, and h∞ = lim

d→∞

h(dx)

d
.

We have the following results, which appears as a three timescales extension of Lemma 6.1 in Borkar (2009) and
serves as a auxiliary lemma for the our a.s. convergence.
Lemma C.17. Under the assumptions C.9, C.10, C.11 and C.12. (xn, yn, zn)→ {λ′1(z), λ′2(z), z : z ∈ Rp}
a.s..

Proof. Rewrite equations 20 and 21 as

yn+1 = yn + an
[
ε1,n +M

(2)′

n+1

]
zn+1 = zn + an

[
ε2,n +M

(3)′

n+1

]
,

where ε1,n = bn
an
g(xn, yn, zn), ε2,n = cn

an
h(xn, yn, zn), M (2)′

n+1 = bn
an
M

(2)
n+1, M (3)′

n+1 = cn
an
M

(3)
n+1. Note that

ε1,n, ε2,n → 0 as n → ∞. Consider them as the special case in the third extension in Section 2.2 in Borkar
(2009) and then we can conclude that (xn, yn, zn) converges to the internally chain transitive invariant sets of
the o.d.e.,

ẋ(t) = h(x(t), y(t), z(t))

ẏ(t) = 0

ż(t) = 0,

which implies that (xn, yn, zn)→ {λ′1(y, z), y, z : y ∈ Rk, z ∈ Rp}.

Rewrite Equation 21 again as

zn+1 = zn + bn
[
ε′2,n +M

(3)′′

n+1

]
,

where ε′2,n = cn
bn
h(xn, yn, zn) and M (3)′′

n+1 = cn
bn
M

(3)
n+1. We use the same extension again and can conclude

that (xn, yn, zn) converges to the internally chain transitive invariant sets of the o.d.e.,

ẏ(t) = g(λ′1(y(t)), y(t), z(t))

ż(t) = 0.

Thus (xn, yn, zn)→ {λ1(y), λ2(z), z : z ∈ Rp}.
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Theorem C.18. Under the assumptions C.9 to C.16, (xn, yn, zn)→ (λ1(z∗), λ2(z∗), z∗).

Proof. Let t(0) = 0 and t(n) =
∑n−1
i=0 ci for n ≥ 1. Define the piecewise linear continuous function

z̃(t), t ≥ 0 where z̃(t(n)) = zn and z̃(t) = t(n+1)−t
t(n+1)−t(n)zn+1 + t−t(n)

t(n+1)−t(n)zn for t ∈ [t(n), t(n+ 1)] with

any n ∈ N . Let ψn =
∑n−1
i=0 ciM

(3)
i+1, n ∈ N+. For any t ≥ 0, denote [t] = max{s(n) : s(n) ≤ t}. Then for

n,m ≥ 0, we have

z̃(t(n+m)) = z̃(t(n)) +

m−1∑
k=1

cn+kh(xn+k, yn+k, zn+k) + (ψm+n+1 − ψn)

= z̃(t(n)) +

∫ t(n+m)

t(n)

h(λ1(z(s)), λ2(z(s)), z(s))ds

+

∫ t(n+m)

t(n)

(h(λ1(z([s])), λ2(z([s])), z([s]))− h(λ1(z(s)), λ2(z(s)), z(s)))ds

+

m−1∑
k=0

cn+k(h(xn+k, yn+k, zn+k)− h(λ1(zn+k), λ2(zn+k), zn+k))

+ (ψn+m+1 − ψn). (22)

We further define zt(n)(t) as the trajectory of ż(t) = g(λ1(z(t)), λ2(z(t)), z(t)) with zt(n)(t(n)) = z̃(t(n)).

zt(n)(t(n+m)) = z̃(t(n)) +

∫ t(n+m)

t(n)

h(λ1(zt(n)(s)), λ2(zt(n)(s)), zt(n)(s))ds. (23)

Taking the difference between Equation 22 and the Equation 23 we have

|z̃(t(n+m))− zt(n)(t(n+m))|

=

m−1∑
k=0

cn+k(h(λ1(z̃(t+ k)), λ2(z̃(t+ k)), z̃(t+ k))− h(λ1(z(t(n+ k))), λ2(z(t(n+ k))), z(t(n+ k))))︸ ︷︷ ︸
+ |
∫ t(n+m)

t(n)

(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z(s)), λ2(z(s)), z(s)))ds|︸ ︷︷ ︸
I

+ |
m−1∑
k=1

cn+k(h(xn+k, yn+k, zn+k)− h(λ1(zn+k), λ2(zn+k), zn+k))|︸ ︷︷ ︸
II

+ |ψn+m+1 − ψn|︸ ︷︷ ︸
III

.

We analyze the I term. For notation simplicity we ignore the supsript t(n).
|h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z(t)), λ2(z(t)), z(t))|
= |(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z([t])), λ2(z([t])), z(t)))|

+ |(h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z([t])))|
= |(h(λ1(z([t])), λ2(z([t])), z([t]))− h(λ1(z([t])), λ2(z(t)), z(t)))|

+ |h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z(t))|
+ |(h(λ1(z([t])), λ2(z([t])), z(t))− h(λ1(z([t])), λ2(z([t])), z([t])))|. (24)

By the Lipschitzness of the h we have
‖h(x)− h(0)‖ ≤ L‖x‖,

which implies
‖h(x)‖ ≤ ‖h(0)‖+ L‖x‖.

‖zt(n)(t)‖ ≤ ‖z̃(s)‖+

∫ t

s

‖h(zt(n)(s))‖ds

≤ ‖z̃(s)‖+

∫ t

s

(‖h(0)‖+ L‖zt(n)(s)‖)ds

≤ (‖z̃(s)‖+ ‖h(0)‖T ) + L

∫ t

s

‖zt(n)(s)‖ds.
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By Gronwall’s inequality (Lemma C.3), we have

‖zt(n)(t)‖ ≤ (C + ‖h(0)‖T )eLT , ∀t ∈ [t(n), t(n+m)].

Thus for all t ∈ [t(n), t(n+m)], we have

‖h(λ1(zt(n)(t)), λ2(zt(n)(t)), zt(n)(t))‖ ≤ CT := ‖h(0)‖+ L(C + ‖h(0)‖T )eLT <∞, a.s..

For any k ∈ [m− 1] and t ∈ [t(n+ k), t(n+ k + 1)],

‖zt(n)(t)− zt(n)(t(n+ k))‖ ≤ ‖
∫ t

t(n+k)

h(λ1(zt(n)(s)), λ2(zt(n)(s)), zt(n)(s))ds‖

≤ CT (t− t(n+ k))

≤ CT a(n+ k),

where the last inequality is from the construction of {t(n) : n ∈ N+}. Finally we can conclude

‖
∫ t(n+m)

t(n)

(h(λ1(z([s])), λ2(z([s])), z(s))− h(λ1(z([s])), λ2(z([s])), z([s])))ds‖

≤
∫ t(n+m)

t(n)

L‖z(s)− z([s])‖ds

= L

m−1∑
k=0

∫ t(n+k−1)

t(n+k)

‖z(s)− z(t(n+ k))‖ds

≤ CTL
m−1∑
k=0

c2n+k

≤ CTL
∞∑
k=0

c2n+k → 0, a.s..

For the III term, it converges to zero from the martingale convergence property.

Subtracting equation 22 from 23 and take norms, we have

‖z̃(t(n+m))− zt(n)(t(n+m))‖

≤ L
m−1∑
i=0

cn+i‖z̃(t(n+ i))− zt(n)(t(n+ i))‖

+ CTL
∑
k≥0

c2n+k + sup
k≥0
‖δn,n+k‖, a.s..

Define KT,n = CTL
∑
k≥0 c

2
n+k + supk≥0‖δn,n+k‖. Note that KT,n → 0 a.s. n → ∞. Let ui =

‖x̃(t(n+ i))− xt(n)(t(n+ i))‖. Thus, above inequality becomes

um ≤ KT,n + L

m−1∑
i=0

cn+iui.

Thus the above inequality becomes

z(t(n+m)) ≤ KT,n + L

m−1∑
k=0

ckz(t(n+ k)).

Note that u0 = 0 and
∑m−1
i=0 bi ≤ T , then using the discrete Gronwall lemma (Lemma C.2) we have

sup
0≤i≤m

ui ≤ KT,ne
LT .

Following the similar logic as in Lemma 1 in Borkar (2009), we can extend the above result to the case
‖z̃(t)− zt(n)(t)‖ → 0 where t ∈ [0, T ].

Then using the proof of Theorem 2 of Chapter 2 in Borkar (2009), we get zn → z∗ a.s. and thus by Lemma C.17
the proof can be concluded.
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D CONVERGENCE OF THE DR Q-LEARNING ALGORITHM

Before we start the proof of the DR Q-learning algorithm, we first introduce the following lemma.

Lemma D.1. Denote η∗ = arg maxη σk(X, η) = −ck(ρ)EP [(η−X)k∗+ ]
1
k∗ + η. Given that X(ω) ∈ [0,M ],

then we have η∗ ∈ [0, ck(ρ)
ck(ρ)−1

M ].

Proof. Note that for η = minωX(ω), −ck(ρ)EP [(η −X)k∗+ ]
1
k∗ + η = minωX(ω) ≥ 0. Also we know that

when η ≥ ck(ρ)
ck(ρ)−1

M ,

− ck(ρ)EP [(η −X)k∗+ ]
1
k∗ + η

≤− ck(ρ)EP [(η −M)k∗+ ]
1
k∗ + η

=− ck(ρ)(η −M) + η

≤0.

Then we can conclude that η∗ ≤ ck(ρ)
ck(ρ)−1

M . Moreover, asX(ω) ≥ 0, we know σk(X, 0) = 0, which concludes

that η∗ ∈ [0, ck(ρ)
ck(ρ)−1

M ].

Note that Qn ∈ [0, 1
1−γ ] when reward is bounded by [0, 1]. Thus M = 1

1−γ in our case and then we denote

η = ck(ρ)
ck(ρ)−1

M . Now we are ready to prove the convergence of the DR Q-learning algorithm. For theoretical
analysis, we consider the clipping version of our DR Q-learning algorithm.

Proof of Theorem 3.3. We define the filtration generated by the historical trajectory,
Fn = σ({(st, at, s′t, rt)}t∈[n−1], sn, an).

In the following analysis, we fix for a (s, a) ∈ S ×A but ignore the (s, a) dependence for notation simplicity.
Following the roadmap in Section 3.4, we rewrite the algorithm as

Zn+1,1 = Zn,1 + ζ1(n)[f1(Zn,1, Zn,2, ηn, Qn) +M
(1)
n+1], (25)

Zn+1,2 = Zn,2 + ζ1(n)[f2(Zn,1, Zn,2, ηn, Qn) +M
(2)
n+1], (26)

ηn+1 = Γη [ηn + ζ2(n)f3(Zn,1, Zn,2, ηn, Qn)] , (27)
Qn+1 = ΓQ[Qn + ζ3(n)[f4(Zn,1, Zn,2, ηn, Qn)]]. (28)

Here for theoretical analysis, we add a clipping operator Γη(x) = min(max(x, 0), η) and ΓQ(x) =
min(max(x, 0),M) compared with the algorithm presented in the main text.

We first proceed by first identifying the terms in Equation 25 and 26 and studying the corresponding ODEs

Q̇(t) = 0,

η̇(t) = 0,

Ż1(t) = f1(Z1(t), Z2(t), η(t), Q(t)).

Ż2(t) = f2(Z1(t), Z2(t), η(t), Q(t)).

As f1 and f2 is in fact irrelavant to the Z2 and Z1, we analyze their equilibria seperately. For notation
convenience, we denote yn(s) = maxa′∈AQn(s, a′).

For ODE 25 and each ηn ∈ R, Qn ∈ S ×A → R, it is easy to know there exists a unique global asymtotically
stable equilibrium Z?n,1 = λ1(ηn, yn) = E[(ηn − yn)k∗+ ]. Similarly, For ODE 26 and each ηn ∈ R, Qn ∈
S×A → R, there exists a unique global asymtotically stable equilibrium Z?n,2 = λ2(η, y) = E[(ηn−yn)k∗−1

+ ].

Second, M (1)
n+1 = (ηn − yn)y∗+ − E[(ηn − yn)y∗+ ] and M (2)

n+1 = (ηn − yn)y∗−1
+ − E[(ηn − yn)y∗−1

+ ]. Note
that for any (s, a) ∈ S × A, ηn(s, a) ≤ η, yn(s′) ≤ M and M ≤ η. Thus |(ηn(s, a) − yn(s′))y∗+ | ≤ ηy∗ ,
which leads to |M (1)

n+1(s, a)| = |(ηn(s, a)− yn(s′))y∗+ − E[(ηn(s, a)− yn(s′))y∗+ ]| ≤ ηk∗ .

Since ‖yn‖∞ ≤ ‖Qn‖∞ and (x− y)2+ ≤ x2 + y2 for any x, y, we have,

E[‖M (1)
n+1‖

2|Fn]

= E[‖(ηn − yn)y∗+ − E[(ηn − yn)y∗+ ]‖2|Fn]

≤ K1(1 + ‖Zn,1‖2 + ‖Zn,2‖2 + ‖Qn‖2 + ‖ηn‖2),
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where K1 = Sη2k∗ . Similarly, we can conclude that E[‖M (2)
n+1‖2|Fn] ≤ K2(1 + ‖Zn,1‖2 + ‖Zn,2‖2 +

‖Qn‖2 + ‖ηn‖2) for some K2 = Sη2(k∗−1).

Next we analyze the second loop.

Q̇(t) = 0,

η̇(t) = Γη[f3(λ1(η(t), Q(t)), λ2(η(t), Q(t)), η(t), Q(t))],

where

f3(λ1(η,Q), λ2(η,Q), η,Q) = −ck(ρ)λ1(η,Q)
1
k∗
−1
λ2(η,Q) + 1.

The global convergence point is η∗(t) = arg maxη∈[0,η]{σk(Q, η)} = arg maxη∈R{σk(Q, η)}.

Finally we arrive to the outer loop, i.e.,

Q̇(t) = ΓQ[f4(λ1(Q(t)), λ2(Q(t)), λ3(Q(t)), Q(t))].

By using the dual form of Cressie-Read Divergence (Lemma 3.1), we know that this is equivilant to

Q̇(t) = r + γ inf
P∈P

EP [max
a′

Q(s′, a′)]−Q(t),

for ambiguity set using Cressie-Read of f divergence.

Denote H(t) = r + γ infP∈P EP [maxa′ Q(s′, a′)] and thus we can rewrite the above ODE as

Q̇(t) = H(t)−Q(t).

Following , we consider its infity version, i.e., H∞(t) = limc→∞H(ct)/c.

Q̇(t) = γ inf
P∈P

EP [max
a′

Q(s′, a′)]−Q(t).

This is a contraction by Theorem 3.2 in Iyengar (2005). By the proof in Section 3.2 in Borkar & Meyn (2000),
we know the contraction can lead to the global unique equilibrium point in the ode. Thus we finish verifying all
the conditions in Section C.3, which can lead to the desired result.
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