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Supplementary to:
Di�usion Models for Constrained Domains

Introduction

In this supplementary, we first recall some key concepts from Riemannian geometry in Appendix A. In
Appendix B we remind the expression of the Brownian motion in local coordinates. Details about the geodesic
Brownian motion are given in Appendix C. Background on the Skorokhod problem is given in Appendix D.
In Appendix E we derive the implicit score matching loss. We give details about the likelihood evaluation
in Appendix F. Then in Appendix G we prove the time-reversal formula of reflected Brownian motion. In
Appendix I we give some background on the conformational modelling of proteins backbone for the experiment
in Section 5.3. In Appendix H we detail the geometrical constraint arising from the configurational robotics
arm modelling experiment from Section 5.2. Additional results, training and miscalleneous experimental
details are reported in Appendix J.

A Manifold concepts

For readers unfamiliar with Riemannian geometry here we give a brief overview of some of the key concepts.
This is not a technical introduction, but a conceptual one for the understanding of terms. For a technical
introduction, we refer readers to Lee (2013). A Riemannian manifold is a tuple (M, g) with M a smooth
manifold and g a metric which defines an inner product on tangent spaces.

Figure 12: Example charts of the
2D manifold S2.

A smooth manifold is a topological space which locally can be described
by Euclidean space. It is characterised by a family of charts {U µ M, „ :
U æ Rd}, homeomorphic mappings between subsets of the manifold
and Euclidean space. The collection of charts must cover the whole
manifold. For the manifolds to be smooth the charts must be smooth,
and the transition between charts where their domains overlap must also
be smooth.

The metric on a Riemannian manifold gives the manifold a notion of
distance and curvature. The same underlying smooth manifold with
di�erent metrics can look wildly di�erent. The metric is defined as a
smooth choice of positive definite inner product on each of the tangent
spaces of the manifold. That is we have at every point a symmetric
bilinear map

g(p) : TpM ◊ TpM æ R

The tangent space of a point on a manifold is the generalisation of the
notion of tangent planes and can be thought of as the space of derivatives of scalar functions on the manifold
at that point. The collection of all tangent spaces is written as TM =

t
pœM TpM and is called the tangent

bundle. It is also manifold. Vector fields on manifolds are defined by making a choice of tangent vector at
every point on the manifold in a smooth fashion. The space of vector fields is written at �(TM) and is more
technically the space of sections of the tangent bundle.

One thing that the metric itself does not immediately define is how di�erent tangent spaces at points on the
manifold relate to one another. For this, we need additionally the concept of a connection. A connection is a
map that takes two vector fields and produces a derivative of the first with respect to the second, that is a
function Ò : �(TM) ◊ �(TM) æ �(TM) and it typically written as Ò(X, Y ) = ÒXY . Such a connection
must for X, Y, Z œ �(TM) and smooth functions on the manifold a, b : M æ R obey the following conditions:

(a) ÒaX+bY Z = aÒXZ + bÒY Z,
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(b) ÒX(Y + Z) = ÒXY + ÒXZ,

(c) ÒX(aY ) = ˆXaY + aÒXY ,

where ˆXaY is the regular directional derivative of aY in the direction X. These conditions ensure the
connection is a well-defined derivative.

Figure 13: Top: Parallel transport
of vectors along the red path with
non-zero torsion. Bottom: Paral-
lel transport of vectors along the
red path with zero torsion. Both
under the Euclidean metric.

On a given manifold, there are infinitely many connections. Fortunately,
there is a natural choice, called the Levi-Cevita connection if we impose
two additional conditions:

(a) X · (g(Y, Z)) = g(ÒXY, Z) + g(Y, ÒXZ),

(b) [X, Y ] = ÒXY ≠ ÒY X,

where [·, ·] is the Lie bracket. The first condition ensures that the metric
is preserved by the connection. That is to say, the parallel transport (to
be defined shortly) using the connection leaves inner products unchanged
on the manifold. The second ensures the connection is torsion-free. The
change in tangent space along a geodesic (again to be defined shortly) can
be described in two parts, the curvature, how the tangent space rotates
perpendicular to the direction of travel, and the torsion, how the tangent
space rotates around the axis of the direction of travel. The curvature of
the connection is uniquely fixed by the other 4 conditions (the well-defined

derivative and preservation of the metric). The torsion however is not fixed. By requiring it to be zero we
ensure a unique connection. The requirement of zero torsion also has implications for ensuring integrability
on the manifold.

With the metric and the Levi-Cevita connection in hand, we can define a number of key concepts.

Figure 14: Parallel transport of
vectors along a path on the sphere.

We say that a vector field X is parallel to a curve “ : (0, 1) æ M if

Ò“ÕX = 0

where “Õ : (0, 1) æ T“(t)M is the derivative of the path. For two points on
the manifold p, q œ M and a curve between them, “, “(0) = p, “(1) = q,
for an initial vector X0 œ TpM there is a unique vector field X that
is parallel to “ such that X(p) = X0. This induces a map between the
tangent spaces at p and q

·“ : TpM æ TqM

This map is referred as the parallel transport of tangent vectors between
p and q, and this satisfies the condition that for v, u œ TpM

g(p)(v, u) = g(q)(·“(v), ·“(u)).

A geodesic on a manifold is the unique path on the manifold “ : (0, 1) æ M
such that Ò“Õ“Õ = 0. It is also the shortest path between two points on a manifold in the sense that

L(“) =
s 1

0


g(“(t))(“Õ(t), “(t)),

is minimal out of any path between the start and end of the geodesic. Geodesics give the notion of ‘straight
lines’ on manifolds. We define the exponential map on a manifold as the mapping between an element of the
tangent space at point p, v œ TpM and the endpoint of the unique geodesic “ with “(0) = p and “Õ(0) = v.
In the tangent space of a manifold, we require the notion of a reflection in order to reflect geodesics o� of
boundary constraints. If at a point in the manifold with have v œ TpM and a unit vector normal to the
constraint n œ TpM, then the reflection of this vector is given by vÕ = v ≠ 2g(v, n)n.
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B Brownian motion in local coordinates

We consider a smooth function f œ CŒ(M). The Laplace-Beltrami operator �M is given by �M(f) =
div(grad(f))). In local coordinates we have

div(X) = (det(g)≠1/2)
qd

i=1 ˆi(det(g)1/2Xi),

as well as
grad(f) = g≠1Òf.

Therefore, the Laplace-Beltrami operator is given by

�M(f) =
qd

i,j=1 g
≠1
i,j ˆi,jf + (det(g)≠1/2)

qd
i,j=1 ˆi(det(g)1/2g≠1

i,j )ˆjf.

Therefore, in local coordinates the infinitesimal generator associated with the Laplace-Beltrami operator is
given by

A(f) =
qd

i,j=1 g
≠1
i,j ˆi,jf + Èbi, ÒfÍ,

with
bi = (det(g)≠1/2)

qd
j=1 ˆj(det(g)1/2g≠1

i,j ). (11)

Therefore, the dual operator associated with A is given by

Aı(f) =
qd

i,j=1 ˆi,j(g≠1
i,j f) ≠

qd
i=1 ˆi(bif).

Note that by letting f = det(g)1/2 we get that Aı(f) = 0 and therefore we recover that p Ã det(g) is the
invariant distribution of the Brownian motion.

Langevin dynamics on M. We know that the Brownian motion targets det(g)1/2. Therefore in order to
correct and sample from the uniform distribution we consider the Langevin dynamics

dXt = ≠grad log(det(g)1/2)(Xt)dt +
Ô

2dB
M
t .

Note that in the previous equation grad and B
M
t are defined w.r.t. the metric of the manifold. In local

coordinates we have

dXt = {b ≠ grad log(det(g)1/2)}(Xt)dt +
Ô

2g(Xt)≠1/2dBt. (12)

where b = {bi}d
i=1 is given in equation 11. In addition, we have

grad log(det(g)1/2) = det(g)≠1/2g≠1Ò det(g). (13)

Using equation 11 we have

bi = (det(g)≠1/2)
qd

j=1 ˆj(det(g)1/2g≠1
i,j ) =

qd
j=1 ˆjg

≠1
i,j + grad log(det(g)1/2)i

This can also be rewritten as
divM(g≠1) = µ + grad log(det(g)1/2),

with
µi =

qd
j=1 ˆjg

≠1
i,j .

Combining this result and equation 13 we get that equation 12 can be rewritten as

dXt = µ(Xt) +
Ô

2dBt.

Note that (up to a factor 2) this is the same SDE as the one considered in Lee & Vempala (2017).
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C Geodesic Brownian Motion

In this section, we provide some details on the geodesics Brownian motion introduced in Section 3.1. In the
rest of the section, we make the following assumption.
A1. M µ Rd is compact and g≠1 : M æ S++

d can be CŒ(Rd,Rd◊d).

First, we start by showing that the process (Xt)tØ0 defined in equation 6 exists and that we have for any
t Ø 0, Xt œ M. We recall that g = Ò2„ and limxæˆM �(x) = +Œ.
Proposition C.1. Assume A1. For any x0 œ M, there exists a unique strong solution to equation 6

denoted (Xt)tØ0. In addition, we have that for any t Ø 0, Xt œ M almost surely. More precisely, we have

E[„(Xt)] Æ „(x0) + t.

Proof. A unique strong solution (Xt)tØ0 of equation 6 with starting point x0 œ M exists since the coe�cients
are smooth, see (Ikeda & Watanabe, 2014, Theorem 3.1, p.165). For any A Ø 0, we define ·A = inf{t Ø 0 :
�(Xt) Ø A}. Note that for any t œ [0, ·A], �(Xt) œ M. Using Itô formula, we have for any t Ø 0

E[�(Xt··A)] = �(x0) + E[
s t··A

0 Tr(g≠1(Xs)Ò2�(Xs))ds] = �(x0) + E[t · ·A].

Using Fatou’s lemma, and letting A æ +Œ, we conclude the proof.

In the next result, we show that the uniform distribution is the unique invariant probability distribution
for (Xt)tØ0 and that (Xt)tØ0 converges to this invariant distribution. We refer to (Meyn & Tweedie, 1993,
Section 2, p.490) for a definition of irreducibility. We recall that the total variation of a finite (not necessarily
non-negative) measure µ over Rd is given by ÎµÎTV = sup{µ(A) : A œ B(()Rd)}.
Proposition C.2. Assume A1. (Xt)tØ0 is fi-irreducible, the uniform distribution over M is the only

invariant probability distribution and limtæ+Œ ÎPt ≠ fiÎTV = 0, where Pt is the distribution of Xt for any

t Ø 0 and fi is the uniform distribution over M.

Proof. Since x ‘æ div(g≠1)(x) and x ‘æ g≠1 are smooth and g≠1(x) is positive definite for any x œ M, we
have that (Xt)tØ0 is fi-irreducible, extending (Bhattacharya, 1978, Lemma 1.4) to M and using (Meyn &
Tweedie, 1993, Proposition 2.1). In addition, (Xt)tØ0 is T-Feller using (Meyn & Tweedie, 1993, Proposition
3.3). Combining these results and the fact that M is bounde, we get that (Xt)tØ0 is positive Harris recurrent
(Meyn & Tweedie, 1993, Theorem 3.2). The uniform distribution fi is an invariant distribution for equation 6.
Since (Xt)tØ0 is fi-irreducible, we get that this invariant measure is unique. Hence, we conclude using (Meyn
& Tweedie, 1993, Theorem 6.1).

Note that the convergence result in total variation could be improved. In particular, quantitative geometric
results could be derived. We finish this section, by applying results from the Malliavin calculus to show that
for any t > 0, Xt admits a density w.r.t. the Lebesgue measure.
Proposition C.3. Assume A1. Then, for any t Ø 0, Xt admits a smooth density pt w.r.t. the Lebesgue

measure.

Proof. This is a direct consequence of (Nualart, 2006, Theorem 2.3.3).
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D Reflected Brownian Motion and Skorokhod problems

In this section, we provide the basic definitions and results to derive the time-reversal of the reflected Brownian
motion in Appendix G. We follow closely the presentation of Lions & Sznitman (1984) and Burdzy et al.
(2004). We first define the Skorokhod problem for deterministic problems. We consider M to be a smooth
open bounded domain. We recall that the normal vector n is defined on ˆM and we set n(x) = 0 for any
x /œ ˆM.

Before giving the definition of the Skorokhod problem, we recall what is the space of functions of bounded

variations.
Definition D.1. Let a, b œ (≠Œ, +Œ) and f :œ C([a, b] ,R). We define the total variation of f as

Va,b(f) = sup{
qn≠1

i=0 Îf(xi+1) ≠ f(xi)Î : (xi)n≠1
i=0 , a = x0 Æ x1 Æ · · · Æ xn≠1 Æ xn = b, n œ N}.

f has bounded variations over [a, b] if Va,b(f) < +Œ. Let f œ C([0, +Œ) ,R). f has bounded variations over
[0, +Œ) if for any b > 0, f has bounded variations over [0, b].

The notion of bounded variation is a relaxation of the di�erentiability requirement. In particular, if
f œ C1([a, b] ,R), we have Va,b(f) =

s b
a Îf Õ(t)Îdt. In the definition of the Skorokhod problem, we will see that

this relaxation is necessary, even in the deterministic setting.

For any function of bounded variation f œ C([a, b] ,R) on [a, b], we define |f | : [a, b] æ [0, +Œ) given for any
t œ [a, b] by |f |t = Va,t(f). Note that |f | is non-decreasing and right-continuous. Therefore, we can define
the measure µ|f | on [a, b], given for any s, t œ [a, b] with t Ø s by µ|f |([s, t]) = |f |(t) ≠ |f |(s). In particular,
for any Ï : [a, b] æ R+, we define s b

a Ï(t)d|f |t =
s b

a Ï(t)dµ|f |(t).
In addition, f can be decomposed in a di�erence of two non-decreasing processes right continuous processes
g1, g2, where for any t œ [a, b], f(t) = g1(t) ≠ g2(t), g1(t) = |f |t and g2(t) = |f |t ≠ f(t). Hence, for every Ï
bounded on [a, b], we can define

s b
a Ï(t)df(t) =

s b
a Ï(t)dg1(t) ≠

s b
a Ï(t)dg2(t).

Note that these definitions can be extended to the setting where f : [a, b] æ Rd.

We begin with the following result, see Lions & Sznitman (1984).
Theorem D.2. Let (xt)tØ0 œ C([0, +Œ) ,R). Then, there exists a unique couple (x̄t, kt)tØ0 such that

(a) (kt)tØ0 has bounded variation over [0, +Œ).

(b) (x̄t)tØ0 œ C([0, +Œ) , M).

(c) For any t Ø 0, xt + kt = x̄t.

(d) For any t Ø 0, |k|t =
s t

0 1x̄sœˆM(x̄s)d|k|s and kt =
s t

0 n(x̄s)d|k|s.

Let us discuss Theorem D.2. First, Theorem D.2-(c) states the original (unconstrained) process (xt)tØ0 can be
decomposed into a constrained version (x̄t)tØ0 and a bounded variation process (kt)tØ0. The process (|k|t)tØ0
counts the number of times the constrained process (x̄t)tØ0 hits the boundary. More formally, we have
|k|t =

s t
0 1xœˆM(x̄s)d|k|s. When, we hit the boundary, we reflect the process. This condition is expressed in

kt =
s t

0 n(x̄s)d|k|s.

We now consider the extension to stochastic processes. We are given (Xt)tØ0 such that

dXt = b(Xt)dt + ‡(t)dBt,

where (Bt)tØ0 is a d-dimensional Brownian motion. We also assume that b and ‡ are Lipschitz which implies
the existence and strong uniqueness of (Xt)tØ0. We have the following result Lions & Sznitman (1984).
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Theorem D.3. There exists a unique process (X̄t, kt)tØ0 such that

(a) (kt)tØ0 has bounded variation over [0, +Œ) almost surely.

(b) (X̄t)tØ0 œ C([0, +Œ) , M).

(c) For any t Ø 0, X̄t = X̄0 +
s t

0 b(X̄s)ds +
s t

0 ‡(X̄s)dBs ≠ kt.

(d) For any t Ø 0, |k|t =
s t

0 1x̄sœˆM(x̄s)d|k|s and kt =
s t

0 n(x̄s)d|k|s.

The process (Xt)tØ0 is almost surely continuous, so we could apply the previous theorem almost surely
for all the realizations of the process,. However, this does not tell us if the obtained solutions (X̄t, kt)tØ0
form themselves a process. The main di�erence with Theorem D.2 is in Theorem D.3-(c) which di�ers from
Theorem D.3-(c). Note that in the case where b = 0 and ‡ = Id we recover Theorem D.3-(c). This is not true
in the general case. However, it can be seen that for any realization of the process (X̄t)tØ0, we have that
(X̄t, kt)tØ0 is solution of the deterministic Skorokhod problem by letting xt = X̄0 +

s t
0 b(X̄s)ds+

s t
0 ‡(X̄s)dBs.

The backward and forward Kolmogorov equations can be found in Burdzy et al. (2004). Note that the presence
of the process (kt)tØ0 incurs notable complications compared to unconstrained processes. In particular, there
is no martingale problem associated with weak solutions of reflected SDEs but only sub-martingale problems,
see Kang & Ramanan (2017) for instance.
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E Implicit Score Matching Loss

E.1 Proof of ISM

Using the divergence theorem, we have

(1/2)
s

M Îs◊(x) ≠ Ò log pt(x)Î2pt(x)dµ(x)
= (1/2)

s
M Îs◊(x)Î2pt(x)dµ(x) ≠

s
MÈs◊(x), Ò log pt(x)Ípt(x)dµ(x) + (1/2)

s
M ÎÒ log pt(x)Î2pt(x)dµ(x)

= (1/2)
s

M Îs◊(x)Î2pt(x)dµ(x) ≠
s

ˆMÈs◊(x), nÍpt(x)d‹(x)
+

s
M div(s◊)(x)pt(x)dµ(x) + (1/2)

s
M ÎÒ log pt(x)Î2pt(x)dµ(x).

Using that s◊(x) = 0 for all x œ ˆM, we get that

(1/2)
s

M Îs◊(x) ≠ Ò log pt(x)Î2pt(x)dµ(x)
= (1/2)

s
M Îs◊(x)Î2pt(x)dµ(x)+

s
M div(s◊)(x)pt(x)dµ(x) + (1/2)

s
M ÎÒ log pt(x)Î2pt(x)dµ(x),

which concludes the proof.

E.2 Importance of scaling function

As discussed in Section 3.3, we include a monotone scaling function h which is zero close to the boundary to
ensure the relevant conditions are met for the score matching loss and the boundary conditions. This may
seem like a technical detail, but is of significant practical importance. Upon removal of the scaling function,
we observe that the learned score functions behave strangely around the boundary in the reverse process,
leading to samples that do not match the forward process. The problems are apparent when comparing the
top three plots of Fig. 15 and Fig. 16. Interestingly, we found that these issues early on in the sampling are
smoothed out by the end of the reverse process, but still lead to a failure to recover the target density.

Figure 15: Reverse process samples for the cyclic peptide dataset from Section 5.3 at t = 1.0, 0.9 (left and
right respectively) trained without the scaling function.
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Figure 16: Reverse process samples for the cyclic peptide dataset from Section 5.3 at t = 1.0, 0.9 (left and
right respectively) trained with the scaling function.
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F Likelihood evaluation

One key advantage of constructing a continuous noising process is that, similarly to Song et al. (2021), we
can evaluate the model’s likelihood via the following probability flow Ordinary Di�erential Equation (ODE).
In particular, for the Langevin dynamics (6) which we recall

dXt = 1
2 div(g≠1)(Xt)dt + g(Xt)≠ 1

2 dBt,

the following ODE has the same marginal density

dYt =
# 1

2 Ò · g≠1(Yt) ≠ 1
2g

≠1(Yt)Ò log pt(Yt)
$

dt.

We conclude this section with a derivation of the equivalent ODE. We highlight that the ODE representation
for reflected di�usion models was first derived in Lou & Ermon (2023). We recall that if M µ Rd is a bounded
open set with smooth boundary then (Burdzy et al., 2004, Theorem 2.2) ensures that the reflected Brownian
motion admits a density w.r.t. the Lebesgue measure. We denote pt this smooth density.
Proposition F.1. Assume that M µ Rd

is a bounded open set with smooth boundary. Assume that

(t, x) ‘æ Ò log pt(x) is smooth on [0, +Œ) ◊ ˆM. Let (B̄t)tØ0 be the reflected Brownian motion with B̄0 ≥ p0
smooth and supported in M. Let (Xt)tØ0 be given for any t Ø 0 by dXt = 1

2 Ò log pt(Xt)dt and X0 ≥ p0,

where pt denotes the density of B̄t w.r.t. the Lebesgue measure for any t > 0. Then for any t œ [0, T ], B̄t

and Yt have the same distribution.

Proof. Since the distributions of (B̄t)tœ[0,T ] and (Yt)tœ[0,T ] satisfy the same Fokker-Planck equation whenever
these processes are well-defined. Therefore, we first show that the process (Yt)tœ[0,T ] is well-defined and
stay in M at all times. Using (Burdzy et al., 2004, Theorem 2.2), we have that ˆpt(x) = 1

2 div(Ò log pt)(x),
for any t > 0 and x œ M. Next, we define dXt = 1

2 Ò log pt(Xt)dt. Note that (Xt)tØ0 is defined up to an
explosion time TŒ after which we fix Xt = Œ. Denote T0 the first time such that Xt œ ˆM. Note that
since p0 is supported on M we have T0 > 0. We denote (Yt)tœ[0,T0] = (XT0≠t)tœ[0,T0]. We have that for any
t œ [0, T0], dYt = ≠ 1

2 Ò log pT0≠t(Yt)dt. Since (t, x) ‘æ Ò log pt(x) is smooth on [0, +Œ) ◊ ˆM, we get that
for any t œ [0, T0], Yt œ ˆM. In particular, we have that YT0/2 = XT0/2 œ ˆM which is absurd. Therefore
T0 = +Œ (which also implies that TŒ = +Œ). Hence, (Xt)tØ0 is a flow on M and therefore for any t Ø 0,
the density qt of Xt is smooth and satisfies ˆtqt(x) = ≠ 1

2 div(qtÒ log pt)(x). We conclude using the uniqueness
of the solutions to the transport equation for smooth initialisation and coe�cients on Rd.
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G Time-reversal for reflected Brownian motion

We start with the following definition.
Definition G.1. Let M µ Rd be an open set. M has a smooth boundary if for any x œ ˆM, there exists
U µ Rd open and f œ CŒ(U,R) such that x œ U and (a) cl(M) fl U = {x œ U : f(x) Æ 0}, (b) Òf(x) ”= 0
for any x œ U where cl(M) is the closure of M.

We will make the use of the following lemma which is a straightforward extension of Burdzy et al. (2004,
Theorem 2.6). The surface measure is defined in (Lee, 2006, Proposition 2.43). Under mild regularity
assumptions, it corresponds to the Hausdor� measure of ˆM, see Evans & Gariepy (2015).
Lemma G.2. Let u such that s ‘æ u(s, x) œ C1((0, T ) ,R), for any s œ (0, T ), x ‘æ u(s, x) œ C2(M,R) and

u œ C1(cl(M),R). Then for any T Ø 0, s, t œ [0, T ], we have

E[
s t

s u(w, B̄w)dkw] = 1
2

s t
s

s
ˆM u(x)pw(x)d‡(x)dw.

Note that we recover Burdzy et al. (2004, Theorem 2.6) if we set u = 1. We also emphasize that the result of
Burdzy et al. (2004, Theorem 2.6) is stronger than Theorem G.2 as it holds not only in expectation but also
in L2 and almost surely.

We are now ready to prove Theorem 3.2. We follow the approach of Petit (1997) which itself is based
on an extension of Haussmann & Pardoux (1986). We refer to Cattiaux et al. (2021) for recent entropic
approaches of time-reversal. Recall that (B̄t, kt)tØ0 is a solution to the Skorokhod problem (Skorokhod, 1961)
if (kt)tØ0 a bounded variation process and (B̄t)tØ0 a continuous adapted process such that for any t Ø 0,
Bt = B̄t + kt œ M, (B̄t)tØ0 and

|k|t =
s t

0 1B̄sœˆMd|k|s, kt =
s t

0 n(B̄s)d|k|s, (14)

In what follows, we define (Yt)tœ[0,T ] such that for any t œ [0, T ], Yt = B̄T ≠t. Let us consider the process
(B̃t)tœ[0,T ] defined for any t œ [0, T ] by

B̃t = ≠B̄T + B̄T ≠t + kT ≠ kT ≠t ≠
s T

T ≠t Ò log ps(B̄s)ds.

First, note that t ‘æ B̃t is continuous. Denote by F , the filtration associated with (B̄T ≠t)tœ[0,T ]. We have that
(B̃t)tœ[0,T ] is adapted to (B̄T ≠t)tœ[0,T ]. Even more so, we have that (B̃t)tœ[0,T ] satisfies the strong Markov
property since (B̄t)tœ[0,T ] also satisfies the strong Markov property. Let g œ CŒ

c (cl(M)) and consider for any
0 Æ s Æ t Æ T , E[(B̃t ≠ B̃s)g(B̄T ≠t)]. For any 0 Æ s Æ t Æ T we have

E[(B̃t ≠ B̃s)g(B̄T ≠t)] = E[(≠B̄T ≠s + B̄T ≠t + kT ≠s ≠ kT ≠t ≠
s T ≠s

T ≠t Ò log pu(B̄u)du)g(B̄T ≠t)]. (15)

In what follows, we prove that for any 0 Æ s Æ t Æ T we have E[(B̃t ≠ B̃s)g(B̄T ≠t)] = 0. Therefore, we only
need to prove that for any 0 Æ s Æ t Æ T we have

E[(≠B̄t + B̄s + kt ≠ ks ≠
s t

s Ò log pu(B̄u)du)g(B̄t)] = 0. (16)

Let t œ (0, T ]. We introduce u : [0, t] ◊ M such that for any s œ [0, t] and x œ M, u(s, x) = E[g(B̄t)|B̄s = x].
Using Burdzy et al. (2004, Theorem 2.8) we get that for any x œ M, s ‘æ u(s, x) œ C1((0, t) ,R) and for
any s œ (0, t), x ‘æ u(s, x) œ C2(M,R) and x ‘æ u(s, x) œ C1(cl(M),R). In addition, we have that for any
s œ (0, t) and for any x œ M and x0 œ ˆM

ˆsu(s, x) + 1
2 �u(s, x) = 0, ÈÒu(s, x0), n(x0)Í = 0. (17)

This equation is called the backward Kolmogorov equation. Using equation 17, B̄t = Bt ≠ kt for any t Ø 0
and the Itô formula for semimartingale (Revuz & Yor, 2013, Chapter IV, Theorem 3.3) we have that for any
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s œ (0, t)

E[u(t, B̄t)B̄t]= E[u(s, B̄s)B̄s] + E[ 1
2

s t
s B̄w�u(w, B̄w)dw]+E[

s t
s Òu(w, B̄w)dw]

≠E[
s t

s B̄wÈÒu(w, B̄w), n(B̄w)Íd|k|w]

≠E[
s t

s u(w, B̄w)n(B̄w)d|k|w]

+E[
s t

s B̄wˆwu(w, B̄w)dw]

= E[u(s, B̄s)B̄s]+E[
s t

s Òu(w, B̄w)dw]≠E[
s t

s u(w, B̄w)n(B̄w)d|k|w] (18)

In addition, using the Fubini theorem and the definition of kt we have that for any s œ (0, t)

E[
s t

s u(w, B̄w)n(B̄w)d|k|w] = E[
s t

s E[g(B̄t)|B̄w]n(B̄w)d|k|w] = E[g(B̄t)(kt ≠ ks)]. (19)

Finally, using the divergence theorem and Burdzy et al. (2004, Theorem 2.6) we have that for any s œ (0, t)

E[
s t

s Òu(w, B̄w)dw] =
s t

s

s
M Òu(w, x)pw(x)dxdw

= ≠
s t

s

s
M u(w, x)Ò log(pw(x))pw(x)dxdw +

s t
s

s
ˆM u(w, x)pw(x)dxd‡(w),

where ‡ is the surface area measure on ˆM, see Burdzy et al. (2004). Using Theorem G.2 and the Fubini
theorem we get that

E[
s t

s Òu(w, B̄w)dw] = ≠
s t

s

s
M u(w, x)Ò log(pw(x))pw(x)dxdw + E[

s t
s u(w, B̄w)dkw]

= ≠E[
s t

s g(B̄t)Ò log(pw(B̄w))dw] + 2E[g(B̄t)(kt ≠ ks)] (20)

Combining equation 18, equation 19 and equation 20 we get that

E[u(t, B̄t)] = E[u(s, B̄s)] ≠ E[g(B̄t)
s t

s Ò log pw(B̄w)dw] + E[g(B̄t)(kt ≠ ks)].

Therefore, we get equation 16 and equation 15. Hence, (B̃t)tœ[0,T ] is a continuous martingale. In addition,
we have that for any t œ [0, T ], E[B̃tB̃

€
t ] = t Id and therefore, (B̃t)tœ[0,T ] is a Brownian motion using

the Lévy characterisation of Brownian motion (Revuz & Yor, 2013, Chapter IV, Theorem 3.6). Denote
(jt)tœ[0,T ] = (kT ≠ kT ≠t)tœ[0,T ]. Using equation 15, we have that for any t œ [0, T ]

B̄T ≠t = Ȳ0 + B̃t +
s t

0 Ò log pT ≠s(Ys)ds ≠ jt.

Using equation 14, we have for any t œ [0, T ]

|j|t =
s t

0 1YsœˆMd|j|s, jt =
s t

0 n(Ȳs)d|j|s,

which concludes the proof.
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H Configurational modelling of robotic arms under manipulability constraints

Accurately determining and specifying the movement of a robotic arm and the forces it exerts is a fundamental
problem in many real-world robotics applications. A widely-used set of descriptors for modelling the flexibility
of a given joint configuration are so-called manipulability ellipsoids (Yoshikawa, 1985), which are kinetostatic
performance measures that quantify the ability to move or exert forces along di�erent directions. Jaquier
et al. (2021) present a geometric framework to learn trajectories of manipulability ellipsoids by making use of
the fact any ellipsoid M œ RN is defined by the set of points {x|xT

Ax = 1} where A lies on the manifold of
N ◊ N symmetric positive definite matrices SN

++.

In many practical settings, it is desirable to constrain the minimal or maximal volume of a manipulability
ellipsoid to retain motional flexibility or limit the magnitude of the exerted force. This necessitates lower or
upper limits on the determinant of A, translating into constraints on SN

++. To model this, we make use of
one of the datasets introduced by Jaquier et al. (2021), containing demonstrations of a robotic arm drawing
di�erent letters in the plane, providing the respective positional trajectories (R2) and velocity manipulability
ellipsoids (S2

++).

We use the processing routines provided by Jaquier et al. (2021) to interpolate the trajectories into 104

distinct points, for each of which we derive the position x œ R2 and the PSD matrix

A =
3

a b
b c

4
œ S2

++.

parametrising the velocity manipulability ellipsoid M œ R2. The resulting data is split into training, validation,
and test sets by trajectory and visualised in Figure 17. We add a small amount of Gaussian noise to these
trajectories, which is shown as the target distribution in J.2.

(a) (b)

Figure 17: Positional trajectories x œ R2 (a) and the parameters l11, l12, l22 of the the SPD matrix A œ S2
++

(b) for the letter L.

I Conformational modelling of polypeptide backbones under end point constraints

Polypeptides and proteins constitute an important class of biogenic macromolecules that underpin most
aspects of organic life. Accurately modelling their conformational ensembles, i.e. the set of three-dimensional
structures they assume under physiological conditions, is essential to both understanding the biological
function of existing and designing the enzymatic or therapeutic properties of novel proteins (Lane, 2023).
Motivated by the success of di�usion models in computer vision and natural language processing, there has
been considerable interest in applying them to learn and sample from distributions over the conformational
space of protein structures (Watson et al., 2022; Trippe et al., 2022; Wu et al., 2022).
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I.1 Problem parameterisation

Proteins are biopolymers in which a sequence of N amino acids is joined together through N ≠1 peptide bonds,
resulting in a so-called polypeptide backbone with protruding amino acid residues. As the deviation of chemical
bond lengths and angles from their theoretical optimum is generally negligible, the problem of modelling the
three-dimensional structure of this polypeptide chain is often reframed in the space of the internal torsion
angles � and � (see Figure 18a for an illustration), which can be modelled on a (2N ≠ 2)-dimensional torus
T2N≠2.

R

H
N

O R

N
H

O R

H
N

O

Φ Ψ Φ ΨΦ Ψ

(a) A commonly-used approximate parameterisation
of backbone geometry only considers the C– torsion
angles � and �.

R

H
N

O R

N
H

O R

H
N

O

(b) As peptide bond orientations can be inferred rela-
tively reliably, researchers often only model the C–

traces.

Figure 18: Standard approaches to modelling the conformations of polypeptide backbones.

In many data-scarce practical settings such as antibody or enzyme design, it is often unnecessary or even
undesirable to model the structure of an entire protein, as researchers are primarily interested in specific
functional sites with distinct biochemical properties. However, generating conformational ensembles for such
substructural elements necessitates positional constraints on their endpoints to ensure that they can be
accommodated by the remaining sca�old. While it is conceivable that a di�usion model could derive such
constraints from limited experimental data, we argue that it is much more e�cient and precise to encode
them explicitly.

For this purpose, we adopt the distance constraint formulation from Han & Rudolph (2006) and interpret the
backbone as a spatial chain with N spherical joints and fixed-length links (see Figure 19a for an illustration).
After selecting a suitable anchor point, the geometry of the polypeptide chain is fully specified by (a) the set
of link lengths ¸ = {¸j}N

j=1, (b) the set of vectors r = {r(1, j)}N
j=2 between the anchor point and each atom in

the chain, and (c) the set of dihedral angles

T =
;

arccos
3

|Èr(1, j) ◊ r(1, j + 1), r(1, j + 1) ◊ r(1, j + 2)Í|
|r(1, j) ◊ r(1, j + 1)||r(1, j + 1)r(1, j + 2)|

4<N≠2

j=2
œ TN≠3

between any three consecutive vectors. After specifying the fixed bond lengths ¸, including an arbitrary
anchor point distance danchor = ¸N = r(1, N), the set of valid vectors r is given by the convex polytope
P ™ R3 defined by the following linear constraints (see Figure 19b for an illustration):

r(1, 3) Æ ¸1 + ¸2,
≠r(1, 3) Æ ≠ |¸1 ≠ ¸2| ,

r(1, j) ≠ r(1, j + 1) Æ ¸j ,
≠r(1, j) + r(1, j + 1) Æ ¸j ,

≠r(j) ≠ r(j + 1) Æ ≠¸j ,

Z
^

\ 3 Æ j Æ N ≠ 2,

r(1, N ≠ 1) Æ ¸N≠1 + danchor,
≠r(1, N ≠ 1) Æ ≠ |¸N≠1 ≠ danchor| .

This means that the set of all valid polypeptide backbone conformations is defined by the product manifold
P ◊ TN≠3, enabling us to train di�usion models that exclusively generate conformations with a fixed anchor
point distance danchor.
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(a) An illustrative diagram of the proposed parame-
terisation for modelling the C– trace geometry of the
cyclic peptide c-AAGAGG.

(b) The convex polytope constraining the diagonals
of the triangles for the given bond lengths in the
illustrated molecule. The total design space is the
product of this polytope with the 4D flat torus.

Figure 19: Parameterising the conformational space of polypeptide backbones under anchor point distance
constraints.

I.2 Data generation and model training

As a proof-of-concept for the practicality of our methods, we chose to model the conformational distribution of
the cyclic peptide c-AAGAGG. Cyclic peptides are an increasingly important drug modality with therapeutic
uses ranging from antimicrobials to oncology, exhibiting circular polypeptide backbones (i.e. danchor = 0)
that confer a range of desirable pharmacodynamic and pharmacokinetic properties (Dougherty et al., 2019).
To reduce the dimensionality of the problem, we only consider the C– traces (with fixed C–-C– link distances
of 3.6 Å) instead of the full polypeptide backbone (see Figure 18b), although we note that our framework is
fully applicable to both settings.

To derive a suitable dataset, the product manifold P ◊ T3 describing the conformations of cyclic C– traces
of length N = 6 was constructed (see Figures 19a and 19b for an illustration) and used to generate 107

uniform samples satisfying the anchor point distance constraint danchor = 0. Subsequently, an estimate of
the free energy Ei of each sample i was obtained by (1) reconstructing the full-atom peptide from each C–

trace using the PULCHRA algorithm (Rotkiewicz & Skolnick, 2008), (2) relaxing all non-C– backbone and
side-chain atoms (keeping the C– positions fixed), and (3) quantifying the potential energy of each of the
resulting conformations using the OpenMM suite of molecular dynamics tools (Eastman et al., 2017), and
the AMBER force field (Hornak et al., 2006). These free energy estimates were then used to approximate
the Boltzmann distribution over conformational states

pB(i) Ã exp
1

≠ Ei
kBT

2
,

where temperature was set to T = 273.15 K and kB = 1.380 649 ◊ 10≠23 J K≠1 is the Boltzmann constant.
We then apply a very minor amount of smoothing to the resulting distribution by running forward Brownian
motion on both the polytope and the torus for 10 steps, using a small step size of 5 ◊ 10≠3 and the respective
metrics. Finally, a subsample of 106 C– traces was drawn from this distribution and used for training and
evaluating our models.
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J Experimental details

In what follows we describe the experimental settings used to generate results introduced in Section 5. The
models and experiments have been implemented in Jax (Bradbury et al., 2018), using a modified version of
the Riemannian geometry library Geomstats (Miolane et al., 2020).

Architecture. The architecture of the score network s◊ is given by a multilayer perceptron with 6 hidden
layers with 512 units each. We use sinusoidal activation functions.

Training. All models are trained by the stochastic optimizer Adam (Kingma & Ba, 2014) with parameters
—1 = 0.9, —2 = 0.999, batch-size of 256 data-points. The learning rate is annealed with a linear ramp from 0
to 1000 steps, reaching the maximum value of 2e ≠ 4, and from then with a cosine schedule down to 0 after
100k iterations in total.

Di�usion. Following Song et al. (2021), the di�usion models di�usion coe�cient is parametrized as
g(t) =


—(t) with — : t ‘æ —min + (—max ≠ —min) · t, where we found —min = 0.001 and —max = 6 to work best.

Metrics. We measure the performance of trained models via the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012), which is a kernel based metric between two distributions P and Q. The MMD can
be empirically approximated with the following U-statistics MMD2(P, Q) = 1

m(m≠1)
q

i

q
j ”=i k(xi, xj) +

1
m(m≠1)

q
i

q
j ”=i k(yi, yj) ≠ 2 1

m2
q

i

q
j k(xi, yj) with xi ≥ P and yi ≥ Q, where k is a kernel. For synthetic

experiments we use a sum of weighted RBF kernels matching the generating distributions for the Gaussian
mixtures. For the other experiments we use an RBF kernel. For all experiments we use 100,000 samples to
compute the MMD.
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J.1 Synthetic data on polytopes

Hypercube [≠1, 1]n. The hypercube is a specific instance of a convex polytope where the a�ne constraints
are given by the following coe�cients:

A =

Q

ccccca

1 . . . 0
≠1 . . . 0
...

. . .
...

0 . . . 1
0 . . . ≠1

R

dddddb
, b =

Q

ccccca

1
1
...
1
1

R

dddddb
.

Where A is a 2n ◊ n matrix and b an n dimensional vector.

We construct the training and test datasets by sampling for both 100000 points from a mixture of ‘wrapped
normal’ distributions illustrated in Figure 20a and which density is given by

p0(x) = 0.7 ReflectedStep[(0.5, 0.5), ·, {fi}iœI ]#N (0, 0.25)+0.3 ReflectedStep[(≠0.5, ≠0.5), ·, {fi}iœI ]#N (0, 0.25).

(a) On the hypercube. (b) On the simplex.

Figure 20: Pairwise and marginals samples from the synthetic data distribution.

Simplex �n
. Similarly, to parameterise the simplex as a convex polytope we set the matrix and constraints

to be given by

A =

Q

ccca

≠1 0 . . . 0
...

...
. . .

...
0 0 . . . ≠1
1 1 1 1

R

dddb
, b =

Q

ccca

0
...
0
1

R

dddb
.

Where A will be a n ≠ 1 ◊ n matrix. Essentially we perform di�usion over the first n ≠ 1 components of the
simplex, allowing the last component to be determined by the one minus the sum of the first n ≠ 1.

Similarly than for the hypercube, we construct the training and test datasets from generated data points
which are illustrated in Figure 20b. The score network at di�erent times is illustrated in Figure 21.
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(a) t = 0.01. (b) t = 0.5. (c) Generated distribution.

Figure 21: Evolution of the score on the simplex and generated distribution.

The Birkho� polytope. The Birkho� polytope is the space of doubly stochastic matrices, i.e. Bn = {P œ
[0, 1]n◊n :

qn
i Pi,j = 1,

qn
j Pi,j = 1}. It is a convex polytope in Rn2 and has dimension d = (n ≠ 1)2.

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 22: Pairwise and marginals samples on the Birkho� polytope from synthetic data distribution and
from trained constrained di�usion models.
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J.2 Constrained SPD matrices for robotic arms modelling

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 23: Pairwise and marginals distributions over the coe�cients L11, L21, L22 of the lower triangle matrix
parameterising SPD matrices M = LL€ (which represent the manipulability ellipsoids of the robotic arms).

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 24: Pairwise and marginals distributions over the (x, y) locations of the robotic arms.

J.3 Conformational modelling of polypeptide backbones under anchor point constraints

(a) Data. (b) Log-barrier. (c) Reflected.

Figure 25: Pairwise and marginals distributions over the dimensions of the polytope and torus used to model
the conformational ensembles of cyclic peptides generated by the reflected di�usion model.
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