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ABSTRACT

Climate and weather prediction traditionally relies on complex numerical simulations of
atmospheric physics. Deep learning approaches, such as transformers, have recently chal-
lenged the simulation paradigm with complex network forecasts. However, they often
act as data-driven black-box models that neglect the underlying physics and lack un-
certainty quantification. We address these limitations with ClimODE, a spatiotemporal
continuous-time process that implements a key principle of advection from statistical me-
chanics, namely, weather changes due to a spatial movement of quantities over time.
ClimODE models precise weather evolution with value-conserving dynamics, learning
global weather transport as a neural flow, which also enables estimating the uncertainty
in predictions. Our approach outperforms existing data-driven methods in global and re-
gional forecasting with an order of magnitude smaller parameterization, establishing a new
state of the art.

1 INTRODUCTION

State-of-the-art climate and weather prediction relies on high-precision numerical simulation of complex
atmospheric physics (Phillips, 1956; Satoh, 2004; Lynch, 2008). While accurate to medium timescales, they
are computationally intensive and largely proprietary (NOAA, 2023; ECMWF, 2023).

There is a long history of ‘free-form’ neural networks challenging the mechanistic simulation paradigm
(Kuligowski & Barros, 1998; Baboo & Shereef, 2010), and recently deep learning has demonstrated signif-
icant successes (Nguyen et al., 2023). These methods range from one-shot GANs (Ravuri et al., 2021) to
autoregressive transformers (Pathak et al., 2022; Nguyen et al., 2023; Bi et al., 2023) and multi-scale GNNs
(Lam et al., 2022). Zhang et al. (2023) combines autoregression with physics-inspired transport flow.

In statistical mechanics, weather can be described as a flux, a spatial movement of quantities over time,
governed by the partial differential continuity equation (Broomé & Ridenour, 2014)

du

dt︸︷︷︸
time evolution u̇

+

transport︷ ︸︸ ︷
v · ∇u +

compression︷ ︸︸ ︷
u∇ · v︸ ︷︷ ︸

advection

= s︸︷︷︸
sources

, (1)

where u(x, t) is a quantity (e.g. temperature) evolving over space x ∈ Ω and time t ∈ R driven by a
flow’s velocity v(x, t) ∈ Ω and sources s(x, t) (see Figure 1). The advection moves and redistributes
existing weather ‘mass’ spatially, while sources add or remove quantities. Crucially, the dynamics need to
be continuous-time, and modeling them with autoregressive ‘jumps’ violates the conservation of mass and
incurs approximation errors.
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Figure 1: Weather as a quantity-preserving advection system. A quantity (eg. temperature) (a) is moved
by a neural flow velocity (b), whose divergence is the flow’s compressibility (c). The flow translates into
state change by advection (d), which combine quantity’s transport (e) and compression (f).

We introduce a climate model that implements a continuous-time, second-order neural continuity equation
with simple yet powerful inductive biases that ensure – by definition – value-conserving dynamics with more
stable long-horizon forecasts. We show a computationally practical method to solve the continuity equation
over entire Earth as a system of neural ODEs. We learn the flow v as a neural network with only a few
million parameters that uses both global attention and local convolutions. Furthermore, we address source
variations via a probabilistic emission model that quantifies prediction uncertainties. Empirical evidence
underscores ClimODE’s ability to attain state-of-the-art global and regional weather forecasts.

1.1 CONTRIBUTIONS

We propose to learn a continuous-time PDE model, grounded on physics, for climate and weather modeling
and uncertainty quantification. In particular,

• we propose ClimODE, a continuous-time neural advection PDE climate and weather model, and
derive its ODE system tailored to numerical weather prediction.

• we introduce a flow velocity network that integrates local convolutions, long-range attention in the
ambient space, and a Gaussian emission network for predicting uncertainties and source variations.

• empirically, ClimODE achieves state-of-the-art global and regional forecasting performance.
• Our physics-inspired model enables efficient training from scratch on a single GPU and comes with

an open-source PyTorch implementation on GitHub.1

2 RELATED WORKS

Numerical climate and weather models. Current models encompass numerical weather prediction
(NWP) for short-term weather forecasts and climate models for long-term climate predictions. The cutting-
edge approach in climate modeling involves earth system models (ESM) (Hurrell et al., 2013), which inte-
grate simulations of physics of the atmosphere, cryosphere, land, and ocean processes. While successful,

1https://github.com/Aalto-QuML/ClimODE
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Table 1: Overview of current deep learning methods for weather forecasting.

Method Value-preserving Explicit Periodicity/Seasonality Uncertainty Continuous-time Parameters (M)

FourCastNet ✗ ✗ ✗ ✗ N/A Pathak et al. (2022)
GraphCast ✗ ✗ ✗ ✗ 37 Lam et al. (2022)
Pangu-Weather ✗ ✗ ✗ ✗ 256 Bi et al. (2023)
ClimaX ✗ ✗ ✗ ✗ 107 Nguyen et al. (2023)
NowcastNet ✓ ✗ ✗ ✗ N/A Zhang et al. (2023)

ClimODE ✓ ✓ ✓ ✓ 2.8 this work

they exhibit sensitivity to initial conditions, structural discrepancies across models (Balaji et al., 2022), re-
gional variability, and high computational demands.

Deep learning for forecasting. Deep learning has emerged as a compelling alternative to NWPs, focusing
on global forecasting tasks. Rasp et al. (2020) employed pre-training techniques using ResNet (He et al.,
2016) for effective medium-range weather prediction, Weyn et al. (2021) harnessed a large ensemble of
deep-learning models for sub-seasonal forecasts, whereas Ravuri et al. (2021) used deep generative models
of radar for precipitation nowcasting and GraphCast (Lam et al., 2022; Keisler, 2022) utilized a graph neural
network-based approach for weather forecasting. Additionally, recent state-of-the-art neural forecasting
models of ClimaX (Nguyen et al., 2023), FourCastNet (Pathak et al., 2022), and Pangu-Weather (Bi et al.,
2023) are predominantly built upon data-driven backbones such as Vision Transformer (ViT) (Dosovitskiy
et al., 2021), UNet (Ronneberger et al., 2015), and autoencoders. However, these models overlook the
fundamental physical dynamics and do not offer uncertainty estimates for their predictions.

Neural ODEs. Neural ODEs propose learning the time derivatives as neural networks (Chen et al., 2018;
Massaroli et al., 2020), with multiple extensions to adding physics-based constraints (Greydanus et al., 2019;
Cranmer et al., 2020; Brandstetter et al., 2023; Choi et al., 2023). The physics-inspired networks (PINNs)
embed mechanistic understanding in neural ODEs (Raissi et al., 2019; Cuomo et al., 2022), while multiple
lines of works attempt to uncover interpretable differential forms (Brunton et al., 2016; Fronk & Petzold,
2023). Neural PDEs warrant solving the system through spatial discretization (Poli et al., 2019; Iakovlev
et al., 2021) or functional representation (Li et al., 2021). Machine learning has also been used to enhance
fluid dynamics models (Li et al., 2021; Lu et al., 2021; Kochkov et al., 2021). The above methods are
predominantly applied to only small, non-climate systems.

3 NEURAL TRANSPORT MODEL

Notation. Throughout the paper ∇ = ∇x denotes spatial gradients, u̇ = du
dt time derivatives, · inner

product, and ∇ · v = tr(∇v) divergence. We color equations purely for cosmetic clarity.

3.1 ADVECTION EQUATION

We model weather as a spatiotemporal process u(x, t) = (u1(x, t), . . . , uK(x, t)) ∈ RK of K quantities
uk(x, t) ∈ R over continuous time t ∈ R and latitude-longitude locations x = (h,w) ∈ Ω = [−90◦, 90◦]×
[−180◦, 180◦] ⊂ R2. We assume the process follows an advection partial differential equation

u̇k(x, t) = −vk(x, t) · ∇uk(x, t)︸ ︷︷ ︸
transport

−uk(x, t)∇ · vk(x, t)︸ ︷︷ ︸
compression

, (2)

where quantity change u̇k(x, t) is caused by the flow, whose velocity vk(x, t) ∈ Ω transports and concen-
trates air mass (see Figure 2). The equation (2) describes a closed system, where value uk is moved around
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Figure 2: Conceptual illustration of continuity equation on pointwise temperature change u̇(x0, t) =
−v · ∇u − u∇ · v. (a) A perpendicular flow (green) to the gradient (blue to red) moves in equally hot air
causing no change at x0. (b) Cool air moves upwards, decreasing pointwise temperature, while air concen-
tration at x0 accumulates additional temperature. (c) Hot air moves downwards increasing temperature at
x0, while air dispersal decreases it.

but never lost or added. While a realistic assumption on average, we will introduce an emission source model
in Section 3.7. The closed system assumption forces the simulated trajectories uk(x, t) to value-preserving
manifold ∫

uk(x, t)dx = const, ∀t, k. (3)

This is a strong inductive bias that prevents long-horizon forecast collapses (see Appendix H for details.)

3.2 FLOW VELOCITY

Next, we need a way to model the flow velocity v(x, t) (See Figure 1b). Earlier works have remarked that
second-order bias improves the performance of neural ODEs significantly (Yildiz et al., 2019; Gruver et al.,
2022). Similarly, we propose a second-order flow by parameterizing the change of velocity with a neural
network fθ,

v̇k(x, t) = fθ

(
u(t),∇u(t),v(t), ψ

)
, (4)

as a function of the current state u(t) = {u(x, t) : x ∈ Ω} ∈ RK×H×W , its gradients ∇u(t) ∈ R2K×H×W ,
the current velocity v(t) = {v(x, t) : x ∈ Ω} ∈ R2K×H×W , and spatiotemporal embeddings ψ ∈
RC×H×W . These inputs denote global frames (e.g., Figure 1) at time t discretized to a resolution (H,W )
with a total of 5K quantity channels and C embedding channels.

3.3 2ND-ORDER PDE AS A SYSTEM OF FIRST-ORDER ODES

We utilize the method of lines (MOL), discretizing the PDE into a grid of location-specific ODEs (Schiesser,
2012; Iakovlev et al., 2021). Additionally, a second-order differential equation can be transformed into a pair
of first-order differential equations (Kreyszig, 2020; Yildiz et al., 2019). Combining these techniques yields
a system of first-order ODEs (uki(t),vki(t)) of quantities k at locations xi:[

u(t)
v(t)

]
=

[
u(t0)
v(t0)

]
+

∫ t

t0

[
u̇(τ)
v̇(τ)

]
dτ =

[{
uk(t0)

}
k{

vk(t0)
}
k

]
+

∫ t

t0

[ {
−∇ · (uk(τ)vk(τ))

}
k{

fθ
(
u(τ),∇u(τ),v(τ), ψ

)
k

}
k

]
dτ, (5)

where τ ∈ R is an integration time, and where we apply equations (2) and (4). Backpropagation of ODEs
is compatible with standard autodiff, while also admitting tractable adjoint form (LeCun et al., 1988; Chen
et al., 2018; Metz et al., 2021). The forward solution u(t) can be accurately approximated with numerical
solvers such as Runge-Kutta (Runge, 1895) with low computational cost.
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Figure 3: Whole prediction pipeline for ClimODE.

3.4 MODELING LOCAL AND GLOBAL EFFECTS

PDEs link acceleration v̇(x, t) solely to the current state and its gradient at the same location x and time
t, ruling out long-range connections. However, long-range interactions naturally arise as information prop-
agates over time across substantial distances. For example, Atlantic weather conditions influence future
weather patterns in Europe and Africa, complicating the covariance relationships between these regions.
Therefore, we propose a hybrid network to account for both local transport and global effects,

fθ

(
u(t),∇u(t),v(t), ψ

)
= fconv

(
u(t),∇u(t),v(t), ψ

)
︸ ︷︷ ︸

convolution network

+γ fatt

(
u(t),∇u(t),v(t), ψ

)
︸ ︷︷ ︸

attention network

. (6)

Local Convolutions To capture local effects, we employ a local convolution network, denoted as fconv.
This network is parameterized using ResNets with 3x3 convolution layers, enabling it to aggregate weather
information up to a distance of L ‘pixels’ away from the location x, where L corresponds to the network’s
depth. Additional parameterization details can be found in Appendix C.

Attention Convolutional Network We include an attention convolutional network fatt which captures
global information by considering states across the entire Earth, enabling long-distance connections. This
attention network is structured around KQV dot product, with Key, Query, and Value parameterized with
CNNs. Further elaboration is provided in Appendix C.2 and γ is a learnable hyper-parameter.

3.5 SPATIOTEMPORAL EMBEDDING

Day and Season We encode daily and seasonal periodicity of time t with trigonometric time embeddings

ψ(t) =

{
sin 2πt, cos 2πt, sin

2πt

365
, cos

2πt

365

}
. (7)

Location We encode latitude h and longitude w with trigonometric and spherical-position encodings

ψ(x) =
[
{sin, cos} × {h,w}, sin(h) cos(w), sin(h) sin(w)

]
. (8)

Joint time-location embedding We create a joint location-time embedding by combining position and
time encodings (ψ(t)×ψ(x)), capturing the cyclical patterns of day and season across different locations on
the map. Additionally, we incorporate constant spatial and time features, with ψ(h) and ψ(w) representing
2D latitude and longitude maps, and lsm and oro denoting static variables in the data,

ψ(x, t) =
[
ψ(t), ψ(x), ψ(t)× ψ(x), ψ(c)

]
, ψ(c) =

[
ψ(h), ψ(w), lsm, oro

]
. (9)

These spatiotemporal features are additional input channels to the neural networks (See Appendix B).
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3.6 INITIAL VELOCITY INFERENCE

The neural transport model necessitates an initial velocity estimate, v̂k(x, t0), to start the ODE solution (5).
In traditional dynamic systems, estimating velocity poses a challenging inverse problem, often requiring
encoders in earlier neural ODEs (Chen et al., 2018; Yildiz et al., 2019; Rubanova et al., 2019; De Brouwer
et al., 2019). In contrast, the continuity Equation (2) establishes an identity, u̇+∇ · (uv) = 0, allowing us
to solve directly for the missing velocity, v, when observing the state u. We optimize the initial velocity for
location x, time t and quantity k with penalised least-squares

v̂k(t) = argmin
vk(t)

{∣∣∣∣∣∣˜̇uk(t) + vk(t) · ∇̃uk(t) + uk(t)∇̃ · vk(x, t)
∣∣∣∣∣∣2
2
+ α

∣∣∣∣vk(t)
∣∣∣∣
K

}
, (10)

where ∇̃ is numerical spatial derivative, and ˜̇u(t0) is numerical approximation from the past states u(t < t0).
We include a Gaussian prior N (vecvk|0,K) with a Gaussian RBF kernel Kij = rbf(xi,xj) that results in
spatially smooth initial velocities with smoothing coefficient α. See Appendix D.5 for details.

3.7 SYSTEM SOURCES AND UNCERTAINTY ESTIMATION

The model described so far has two limitations: (i) the system is deterministic and thus has no uncertainty,
and (ii) the system is closed and does not allow value loss or gain (eg. during day-night cycle). We tackle
both issues with an emission g outputting a bias µk(x, t) and variance σ2

k(x, t) of uk(x, t) as a Gaussian,

uobsk (x, t) ∼ N
(
uk(x, t) + µk(x, t), σ

2
k(x, t)

)
, µk(x, t), σk(x, t) = gk

(
u(x, t), ψ

)
. (11)

The variances σ2
k represent the uncertainty of the climate estimate, while the mean µk represents value gain

bias. For instance, the µ can model the fluctuations in temperature during the day-night cycle. This can be
regarded as an emission model, accounting for the total aleatoric and epistemic variance.

3.8 LOSS

We assume a full-earth dataset D = (y1, . . . ,yN ) of a total of N timepoints of observed frames yi ∈
RK×H×W at times ti. We assume the data is organized into a dense and regular spatial grid (H,W ), a
common data modality. We minimize the negative log-likelihood of the observations yi,

L(θ;D) = − 1

NKHW

N∑
i=1

(
logN

(
yi|u(ti) + µ(ti), diagσ

2(ti)
)
+ logN+

(
σ(ti)|0, λ2

σI
))

, (12)

where we also add a Gaussian prior for the variances with a hypervariance λσ to prevent variance explosion
during training. We decay the λ−1

σ using cosine annealing during training to remove its effects and arrive at
a maximum likelihood estimate. Further details are provided in Appendix D.

4 EXPERIMENTS

Tasks We assess ClimODE’s forecasting capabilities by predicting the future state ut+∆t based on the
initial state ut for lead times ranging from ∆t = 6 to 36 hours both global and regional weather prediction,
and monthly average states for climate forecasting. Our evaluation encompasses global, regional and climate
forecasting, as discussed in Sections 4.1, 4.2 and 4.3, focusing on key meteorological variables.

Data. We use the preprocessed 5.625◦ resolution and 6 hour increment ERA5 dataset from WeatherBench
(Rasp et al., 2020) in all experiments. We consider K = 5 quantities from the ERA5 dataset: ground
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Figure 4: RMSE(↓) and ACC(↑) comparison with baselines. ClimODE outperforms competitive neural
methods across different metrics and variables. For more details, see Table 6.

temperature (t2m), atmospheric temperature (t), geopotential (z), and ground wind vector (u10, v10) and
normalize the variables to [0, 1] via min-max scaling. Notably, both z and t hold standard importance as
verification variables in medium-range Numerical Weather Prediction (NWP) models, while t2m and (u10,
v10) directly pertain to human activities. We use ten years of training data (2006-15), the validation data is
2016 as validation, and two years 2017-18 as testing data. More details can be found in Appendix B.

Metrics. We assess benchmarks using latitude-weighted RMSE and Anomaly Correlation Coefficient
(ACC) following the de-normalization of predictions.

RMSE =
1

N

N∑
t

√√√√ 1

HW

H∑
h

W∑
w

α(h)(ythw − uthw)2, ACC =

∑
t,h,w α(h)ỹthwũthw√∑

t,h,w α(h)ỹ2
thw

∑
t,h,w α(h)ũ2

thw

(13)

where α(h) = cos(h)/ 1
H

∑H
h′ cos(h′) is the latitude weight and ỹ = y − C and ũ = u − C are averaged

against empirical mean C = 1
N

∑
t ythw. More detail in Appendix C.3.

Competing methods. Our method is benchmarked against exclusively open-source counterparts. We com-
pare primarily against ClimaX (Nguyen et al., 2023), a state-of-the-art Transformer method trained on same
dataset, FourCastNet (FCN) (Pathak et al., 2022), a large-scale model based on adaptive fourier neural
operators and against a Neural ODE. We were unable to compare with PanguWeather (Bi et al., 2023) and
GraphCast (Lam et al., 2022) due to unavailability of their code during the review period. We ensure fairness
by retraining all methods from scratch using identical data and variables without pre-training.

Gold-standard benchmark. We also compare to the Integrated Forecasting System IFS (ECMWF, 2023),
one of the most advanced global physics simulation model, often known as simply the ‘European model’.
Despite its high computational demands, various machine learning techniques have shown superior perfor-
mance over the IFS, as evidenced (Ben Bouallegue et al., 2024), particularly when leveraging a multitude
of variables and exploiting correlations among them, our study focuses solely on a limited subset of these
variables, with IFS serving as the gold standard. More details can be found in Appendix D.
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Table 2: RMSE(↓) comparison with baselines for regional forecasting. ClimODE outperforms other com-
peting methods in t2m,t,z and achieves competitive performance on u10,v10 across all regions.

North-America South-America Australia

Value Hours NODE ClimaX ClimODE NODE ClimaX ClimODE NODE ClimaX ClimODE

z

6 232.8 273.4 134.5 ± 10.6 225.60 205.40 107.7 ± 20.2 251.4 190.2 103.8 ± 14.6
12 469.2 329.5 225.0 ± 17.3 365.6 220.15 169.4 ± 29.6 344.8 184.7 170.7 ± 21.0
18 667.2 543.0 307.7 ± 25.4 551.9 269.24 237.8 ± 32.2 539.9 222.2 211.1 ± 31.6
24 893.7 494.8 390.1 ± 32.3 660.3 301.81 292.0 ± 38.9 632.7 324.9 308.2 ± 30.6

t

6 1.96 1.62 1.28 ± 0.06 1.58 1.38 0.97 ± 0.13 1.37 1.19 1.05 ± 0.12
12 3.34 1.86 1.81 ± 0.13 2.18 1.62 1.25 ± 0.18 2.18 1.30 1.20 ± 0.16
18 4.21 2.75 2.03 ± 0.16 2.74 1.79 1.43 ± 0.20 2.68 1.39 1.33 ± 0.21
24 5.39 2.27 2.23 ± 0.18 3.41 1.97 1.65 ± 0.26 3.32 1.92 1.63 ± 0.24

t2m

6 2.65 1.75 1.61 ± 0.2 2.12 1.85 1.33 ± 0.26 1.88 1.57 0.80 ± 0.13
12 3.43 1.87 2.13 ± 0.37 2.42 2.08 1.04 ± 0.17 2.02 1.57 1.10 ± 0.22
18 3.53 2.27 1.96 ± 0.33 2.60 2.15 0.98 ± 0.17 3.51 1.72 1.23 ± 0.24
24 3.39 1.93 2.15 ± 0.20 2.56 2.23 1.17 ± 0.26 2.46 2.15 1.25 ± 0.25

u10

6 1.96 1.74 1.54 ± 0.19 1.94 1.27 1.25 ± 0.18 1.91 1.40 1.35 ± 0.17
12 2.91 2.24 2.01 ± 0.20 2.74 1.57 1.49 ± 0.23 2.86 1.77 1.78 ± 0.21
18 3.40 3.24 2.17 ± 0.34 3.24 1.83 1.81 ± 0.29 3.44 2.03 1.96 ± 0.25
24 3.96 3.14 2.34 ± 0.32 3.77 2.04 2.08 ± 0.35 3.91 2.64 2.33 ± 0.33

v10

6 2.16 1.83 1.67 ± 0.23 2.29 1.31 1.30 ± 0.21 2.38 1.47 1.44 ± 0.20
12 3.20 2.43 2.03 ± 0.31 3.42 1.64 1.71 ± 0.28 3.60 1.79 1.87 ± 0.26
18 3.96 3.52 2.31 ± 0.37 4.16 1.90 2.07 ± 0.31 4.31 2.33 2.23 ± 0.23
24 4.57 3.39 2.50 ± 0.41 4.76 2.14 2.43 ± 0.34 4.88 2.58 2.53 ± 0.32

4.1 GLOBAL WEATHER FORECASTING

We assess ClimODE’s performance in global forecasting, encompassing the prediction of crucial meteo-
rological variables described above. Figure 4 and Table 6 demonstrate ClimODE’s superior performance
across all metrics and variables over other neural baselines, while falling short against the gold-standard
IFS, as expected. Fig. 10 reports CRPS (Continuous Ranked Probability Score) over the predictions.These
findings indicate the effectiveness of incorporating an underlying physical framework for weather modeling.

4.2 REGIONAL WEATHER FORECASTING

We assess ClimODE’s performance in regional forecasting, constrained to the bounding boxes of North
America, South America, and Australia, representing diverse Earth regions. Table 2 reveals noteworthy out-
comes. ClimODE has superior predictive capabilities in forecasting ground temperature (t2m), atmospheric
temperature (t), and geopotential (z). It also maintains competitive performance in modeling ground wind
vectors (u10 and v10) across these varied regions. This underscores ClimODE’s proficiency in effectively
modeling regional weather dynamics.

4.3 CLIMATE FORECASTING: MONTHLY AVERAGE FORECASTING

To demonstrate the versatility of our method, we assess its performance in climate forecasting. Climate
forecasting entails predicting the average weather conditions over a defined period. In our evaluation, we
focus on monthly forecasts, predicting the average values of key meteorological variables over one-month
durations. We maintained consistency by utiliz the same ERA5 dataset and variables employed in previous
experiments, and trained the model with same hyperparameters. Our comparative analysis with FourCastNet
on latitude-weighted RMSE and ACC is illustrated in Figure 10. Notably, ClimODE demonstrates signifi-
cantly improved monthly predictions as compared to FourCastNet showing efficacy in climate forecasting.
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Figure 5: Effect of Individual Components: The importance of individual model components. An ablation
showing how iteratively enhancing the vanilla neural ODE (blue) with advection form (orange), global
attention (green), and emission (red), improves performance of ClimODE. The advection component brings
about the most accuracy improvements, while attention turns out to be least important.

5 ABLATION STUDIES

Figure 6: Effect of bias: t2m observed and
predicted values showcasing the effect of bias.

Effect of emission model Figure 6 shows model predic-
tions u(x, t) of ground temperature (t2m) for a specific
location while also including emission bias µ(x, t) and
variance σ2(x, t). Remarkably, the model captures diur-
nal variations and effectively estimates variance. Figure
8 highlights bias and variance on a global scale. Posi-
tive bias is evident around the Pacific ocean, correspond-
ing to daytime, while negative bias prevails around Europe
and Africa, signifying nighttime. The uncertainties indi-
cate confident ocean estimation, with northern regions be-
ing challenging.

Effect of individual components We analyze the contri-
butions of various model components to its performance.
Figure 5 delineates the impact of components: NODE is a free-form second-order neural ODE, Adv corre-
sponds to the advection ODE form, Att adds the attention in addition to convolutions, and ClimODE adds
also the emission component. All components bring performance improvements, with the advection and
emission model having the largest, and attention the least effect. More details are in Appendix E.

6 CONCLUSION AND FUTURE WORK

We present ClimODE, a novel climate and weather modeling approach implementing weather continu-
ity. ClimODE precisely forecasts global and regional weather and also provides uncertainty quantification.
While our methodology is grounded in scientific principles, it is essential to acknowledge its inherent lim-
itations when applied to climate and weather predictions in the context of climate change. The historical
record attests to the dynamic nature of Earth’s climate, yet it remains uncertain whether ClimODE can re-
liably forecast weather patterns amidst the profound and unpredictable climate changes anticipated in the
coming decades. Addressing this formidable challenge and also extending our method on newly curated
global datasets (Rasp et al., 2023) represents a compelling avenue for future research.
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A ETHICAL STATEMENT

Deep learning surrogate models have the potential to revolutionize weather and climate modeling by pro-
viding efficient alternatives to computationally intensive simulations. These advancements hold promise
for applications such as nowcasting, extreme event predictions, and enhanced climate projections, offering
potential benefits like reduced carbon emissions and improved disaster preparedness while deepening our
understanding of our planet.

B DATA

We trained our model using the preprocessed version of ERA5 from WeatherBench (Rasp et al.,
2020). It is a standard benchmark data and evaluation framework for comparing data-driven weather
forecasting models. WeatherBench regridded the original ERA5 at 0.25° to three lower resolutions:
5.625°, 2.8125°, and 1.40625°. We utilize the 5.625° resolution dataset for our method and all other
competing methods. See https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+
documentation for more details on the raw ERA5 data and Table 3 summarizes the variables used.

Table 3: ECMWF data variables in our dataset. Static variables are time-independent, Single represents
surface-level variables, and Atmospheric represents time-varying atmospheric properties at chosen altitudes.

Type Variable name Abbrev. ECMWF ID Levels

Static Land-sea mask lsm 172
Static Orography

Single 2 metre temperature t2m 167
Single 10 metre U wind component u10 165
Single 10 metre V wind component v10 166

Atmospheric Geopotential z 129 500
Atmospheric Temperature t 130 850

B.1 SPHERICAL GEOMETRY

We model the data in a 2D latitude-longitude grid Ω, but take the earth geometry into account by considering
circular convolutions at the horizontal borders (international date line), and reflective convolutions at the
vertical boundaries (north and south poles). We limit the data to latitudes ±88◦ to avoid the grid rows
collapsing to the poles at ±90◦.

C IMPLEMENTATION DETAILS

C.1 MODEL-HYPERPARAMETERS

C.2 ATTENTION CONVOLUTIONAL NETWORK

We include an attention convolutional network fatt which captures global information by considering states
across the entire Earth, enabling the modeling of long-distance connections. This attention network is struc-
tured around Key-Query-Value dot product attention, with Key, Query, and Value maps parameterized as
convolutional neural networks as,
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Table 4: Default hyperparameters for the emission model g

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Padding type Padding mode of each convolution layer X: Circular, Y: Reflection

Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Residual blocks Number of residual blocks [3,2,2]
Hidden dimension Number of output channels of each residual block [128, 64, out channels]

Dropout Dropout rate 0.1

Table 5: Default hyperparameters for the convolution network fconv

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Padding type Padding mode of each convolution layer X: Circular, Y: Reflection

Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Residual blocks Number of residual blocks [5,3,2]
Hidden dimension Number of output channels of each residual block [128, 64, out channels]

Dropout Dropout rate 0.1

• Key (K), Value (V): Key and Value maps are parameterized as 2-layer convolutional neural net-
works with stride=2 and CK,V as the latent embedding size. Based on the stride, this embeds every
4th pixel into a key, value latent vector of size CK,V . We collect all embeddings into one tensor.

• Query (Q): Query map is parametrized as 2-layer convolutional neural networks with stride=1 and
CQ as the latent embedding size. This incorporates somewhat local information and embeds into
CQ latent vector. We collect all embeddings into one tensor.

We compute the attention maps via dot-product maps as,

β = softmax(QK⊤)V (14)

We consider a post-attention map for the attention coefficients as a 1-layer convolutional network with 1× 1
filter size to map the latent vectors into output channels.

C.3 METRICS

We assess benchmarks using latitude-weighted RMSE and Anomaly Correlation Coefficient (ACC) follow-
ing the de-normalization of predictions.

RMSE =
1

N

N∑
t

√√√√ 1

HW

H∑
h

W∑
w

α(h)(ythw − uthw)2, ACC =

∑
t,h,w α(h)ỹthwũthw√∑

t,h,w α(h)ỹ2
thw

∑
t,h,w α(h)ũ2

thw

(15)

where α(h) = cos(h)/ 1
H

∑H
h′ cos(h′) is the latitude weight and ỹ = y − C and ũ = u − C are averaged

against empirical mean C = 1
N

∑
t ythw. The anomaly correlation coefficient (ACC) gauges a model’s
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ability to predict deviations from normal conditions. Higher ACC values signify better prediction accuracy,
while lower values indicate poorer performance. It’s a vital tool in meteorology and climate science for
evaluating a model’s skill in capturing unusual weather or climate events, aiding in forecasting system as-
sessments. Latitude-weighted RMSE measures the accuracy of a model’s predictions while considering the
Earth’s curvature. The weightage by latitude accounts for the changing area represented by grid cells at
different latitudes, ensuring that errors in climate or spatial data are appropriately assessed. Lower latitude-
weighted RMSE values indicate better model performance in capturing spatial or climate patterns.

D TRAINING DETAILS

D.1 DATA NORMALIZATION

We utilize 6-hourly forecasting data points from the ERA5 dataset and consideredK = 5 quantities from the
ERA5 dataset: ground temperature (t2m), atmospheric temperature (t), geopotential (z), and ground wind
vector (u10, v10) and normalize the variables to [0, 1] via min-max scaling. We use ten years of training
data (2006–15), 2016 as validation data, and 2017–18 as testing data. There are 1460 data points per year
and 2048 spatial points.

D.2 DATA BATCHING

In our experiments, we utilize K = 5 quantities (See Appendix B) and spatial discretization of the earth
to resolution (H,W ) = (32, 64) resulting in a total of 3KWH = 30720 scalar ODEs. This can seem
daunting, but they all share the same differential function fθ, that is, the time evolution at Tokyo and New
York follows the same rules. The system can then be batched into a single image stack[u(t);v(t);ψ] of size
(3K + C,H,W ), which is input to fθ(·) : R3K+C×H×W −→ R3K×H×W and can be solved in one forward
pass. [

u
v

]
(t) ∈ R(3K+C)×H×W

˙[u
v

]
(t) =

[
advection

fθ

]
∈ R3K×H×W (16)

We batch the data points wrt to years, giving the batch of shape (N ×B × (3K +C)×H ×W ), where B
is the batch size and N here denotes the number of years. We used batch-size B = 8 to train our model.

D.3 OPTIMIZATION

We used Cosine-Annealing-LR2 scheduler for the learning rate and also for the variance weight λσ for L2
norm shown in Fig. 7 in the loss in Eq. 12. We trained our model for 300 epochs, and the scheduler variation
is shown below.

D.4 SOFTWARE AND HARDWARE

The model is implemented in PyTorch (Paszke et al., 2019) utilizing torchdiffeq (Chen et al., 2018) to
manage our data and model training. We use euler as our ODE-solver that solves the dynamical system
forward with a time resolution of 1 hour. The whole model training and inference is conducted on a single
32GB NVIDIA V100 device.

2https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
CosineAnnealingLR.html
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Figure 7: Learning rate and λσ schedule wrt epochs.

D.5 INITIAL VELOCITY INFERENCE

The neural transport model necessitates an initial velocity estimate, v̂k(x, t0), to initiate the ODE system (5).
We estimate the missing velocity directly, v, as a preprocessing step, for location x, time t and quantity k to
match the advection equation by penalized least-squares, where u̇ is approximated by examining previous
states u(t < t0) to obtain a numerical estimate of the change at t0,

v̂k(t) = argmin
vk(t)

{∣∣∣∣∣∣˜̇uk(t) + vk(t) · ∇̃uk(t) + uk(t)∇̃ · vk(x, t)
∣∣∣∣∣∣2
2
+ α

∣∣∣∣vk(t)
∣∣∣∣
K

}
, (17)

where {̃̇, ∇̃} are numerical derivatives over time or space. We compute ˜̇uk(t) by utilizing torchcubicspline3

to fit {uk(t− 2),uk(t− 1),uk(t)} to get a smooth derivative approximation. The spatial gradients ∇̃ are
calculated using torch.gradient function of PyTorch. We additionally place a Gaussian zero-mean
prior N (vecvk|0,K) with a Gaussian RBF kernel Kij = rbf(xi,xj) that results in spatially smooth initial
velocities with smoothing coefficient α. The distance for the rbf(xi,xj) is computed as the euclidean norm
between xi and xj . This is optimized separately for each location x of the initial time t0. We use Adam
optimizer with a learning rate of 2 for 200 epochs. To get a balance between smoothing, local and global
pattern we set the smoothing coefficient α = 10−7.

E ABLATION STUDY COMPONENTS

We conducted an extensive analysis to evaluate the individual contributions of each model component to its
overall performance, as illustrated in Fig. 5. We delineate the impact of different components as,

• NODE: A basic second-order neural differential equation as, here fconv is parametrized by ResNet
with the same set of parameters shown in Table 5,

u̇k(x, t) = vk(x, t) (18)

v̇k(x, t) = fconv

(
u(t),∇u(t),v(t), ψ

)
(19)

• NODE+Adv: This combines the second-order neural differential equation with the advection com-
ponent, where fconv is parametrized by ResNet with the same set of parameters shown in Table 5,

u̇k(x, t) = −vk(x, t) · ∇uk(x, t)− uk(x, t)∇ · vk(x, t) (20)

v̇k(x, t) = fconv

(
u(t),∇u(t),v(t), ψ

)
(21)

3https://github.com/patrick-kidger/torchcubicspline
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• NODE+Adv+Att: This the NODE+Adv with the attention convolutional network to model both
local and global effects, where fconv,att is parametrized by ResNet with the same set of parameters
shown in Table 5 and Section C.2,

u̇k(x, t) = −vk(x, t) · ∇uk(x, t)− uk(x, t)∇ · vk(x, t) (22)

v̇k(x, t) = fconv

(
u(t),∇u(t),v(t), ψ

)
+ γfatt

(
u(t),∇u(t),v(t), ψ

)
(23)

ClimODE encompasses all the previous components with the emission model component, including the bias
and variance components. The NODE,NODE+Adv,NODE+Adv+Att is trained by minimizing the MSE be-
tween predicted and truth observation as they output a point prediction and do not estimate uncertainty in the
prediction. We employ unweighted RMSE as our evaluation metric to compare these methods. Our findings
reveal a discernible hierarchy of performance improvement by incorporating each component, underscoring
the vital role played by each facet in enhancing the model’s downstream performance.

The Fig. 8 showcases the effect of emission model in modeling diurnal cycle and also predicting uncetainty.

Figure 8: Effect of emission model: Global bias and standard deviation maps at 12:00 AM UTC. The bias
explains day-night cycle (a), while uncertainty is highest on land, and in north (b).

F RESULTS SUMMARY

G LONGER HORIZON PREDICTIONS

Table 7 showcases the comparison of our method with ClimaX for for 72 hours (3 days) and 144 hours (6
days) lead time on latitude weighted RMSE and ACC metrics. We observe that the temperature and potential
(t,t2m,z) are relatively stable over longer forecasts, while the wind direction (u10,v10) becomes unreliable
over a long time, which is an expected result. ClimaX is also remarkably stable over long predictions but has
lower performance. We see that our method achieve better performance as compared to ClimaX for longer
horizon predictions.

H VALIDITY OF MASS CONSERVATION

To empirically study this, we analyzed how our current model retains the mass-conservation assumption
and computed the integrals Ik,t =

∫
uk(x, t)dx over time and quantities. We discovered that the value is

constant over time up to 10−12.
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Table 6: Latitude weighted RMSE(↓) and ACC(↑) comparison with baselines on global forecasting on
ERA5 dataset.

RMSE(↓) ACC(↑)
Variable Lead-Time (hours) NODE ClimaX FCN IFS ClimODE NODE ClimaX FCN IFS ClimODE

z

6 300.64 247.5 149.4 26.9 102.9 ±9.3 0.96 0.97 0.99 1.00 0.99
12 460.23 265.3 217.8 (N/A) 134.8 ± 12.3 0.88 0.96 0.99 (N/A) 0.99
18 627.65 319.8 275.0 (N/A) 162.7 ± 14.4 0.79 0.95 0.99 (N/A) 0.98
24 877.82 364.9 333.0 51.0 193.4 ± 16.3 0.70 0.93 0.99 1.00 0.98
36 1028.20 455.0 449.0 (N/A) 259.6 ± 22.3 0.55 0.89 0.99 (N/A) 0.96

t

6 1.82 1.64 1.18 0.69 1.16 ± 0.06 0.94 0.94 0.99 0.99 0.97
12 2.32 1.77 1.47 (N/A) 1.32 ± 0.13 0.85 0.93 0.99 (N/A) 0.96
18 2.93 1.93 1.65 (N/A) 1.47 ± 0.16 0.77 0.92 0.99 (N/A) 0.96
24 3.35 2.17 1.83 0.87 1.55 ± 0.18 0.72 0.90 0.99 0.99 0.95
36 4.13 2.49 2.21 (N/A) 1.75 ± 0.26 0.58 0.86 0.99 (N/A) 0.94

t2m

6 2.72 2.02 1.28 0.97 1.21 ± 0.09 0.82 0.92 0.99 0.99 0.97
12 3.16 2.26 1.48 (N/A) 1.45 ± 0.10 0.68 0.90 0.99 (N/A) 0.96
18 3.45 2.45 1.61 (N/A) 1.43 ± 0.09 0.69 0.88 0.99 (N/A) 0.96
24 3.86 2.37 1.68 1.02 1.40 ± 0.09 0.79 0.89 0.99 0.99 0.96
36 4.17 2.87 1.90 (N/A) 1.70 ± 0.15 0.49 0.83 0.99 (N/A) 0.94

u10

6 2.3 1.58 1.47 0.80 1.41 ± 0.07 0.85 0.92 0.95 0.98 0.91
12 3.13 1.96 1.89 (N/A) 1.81 ± 0.09 0.70 0.88 0.93 (N/A) 0.89
18 3.41 2.24 2.05 (N/A) 1.97 ± 0.11 0.58 0.84 0.91 (N/A) 0.88
24 4.1 2.49 2.33 1.11 2.01 ± 0.10 0.50 0.80 0.89 0.97 0.87
36 4.68 2.98 2.87 (N/A) 2.25 ± 0.18 0.35 0.69 0.85 (N/A) 0.83

v10

6 2.58 1.60 1.54 0.94 1.53 ± 0.08 0.81 0.92 0.94 0.98 0.92
12 3.19 1.97 1.81 (N/A) 1.81 ± 0.12 0.61 0.88 0.91 (N/A) 0.89
18 3.58 2.26 2.11 (N/A) 1.96 ± 0.16 0.46 0.83 0.86 (N/A) 0.88
24 4.07 2.48 2.39 1.33 2.04 ± 0.10 0.35 0.80 0.83 0.97 0.86
36 4.52 2.98 2.95 (N/A) 2.29 ± 0.24 0.29 0.69 0.75 (N/A) 0.83

Table 7: Longer lead time predictions: Latitude weighted RMSE(↓) and ACC(↑) for longer lead times in
global forecasting using the ERA5 dataset, in comparison with ClimaX.

RMSE(↓) ACC(↑)
Variable Lead-Time (hours) ClimaX ClimODE ClimaX ClimODE

z 72 687.0 478.7 ±48.3 0.73 0.88 ±0.04
144 801.9 783.6 ±37.3 0.58 0.61 ±0.13

t 72 3.17 2.58 ±0.16 0.76 0.85 ±0.06
144 3.97 3.62 ±0.21 0.69 0.77 ±0.16

t2m 72 2.87 2.75 ±0.49 0.83 0.85 ±0.14
144 3.38 3.30 ±0.23 0.83 0.79 ±0.25

u10 72 3.70 3.19±0.18 0.45 0.66 ±0.04
144 4.24 4.02 ±0.12 0.30 0.35 ±0.08

v10 72 3.80 3.30 ±0.22 0.39 0.63 ±0.05
144 4.42 4.24±0.10 0.25 0.32 ±0.11

I CRPS (CONTINUOUS RANKED PROBABILITY SCORE) AND CLIMATE
FORECASTING

We further assessed our model using CRPS (Continuous Ranked Probability Score), as depicted in Figure
10. This analysis highlights our model’s proficiency in capturing the underlying dynamics, evident in its
accurate prediction of both mean and variance.
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Figure 9: Validity of the mass conservation assumption of the ODE.

To showcase the effectiveness of our model in climate forecasting, we predicted average values over a one-
month duration for key meteorological variables sourced from the ERA5 dataset: ground temperature (t2m),
atmospheric temperature (t), geopotential (z), and ground wind vector (u10, v10). Employing identical
data-preprocessing steps, normalization, and model hyperparameters as detailed in previous experiments,
Figure 10 illustrates the performance of ClimODE compared to FourCastNet in climate forecasting. Particu-
larly noteworthy is our method’s superior performance over FourCastNet at longer lead times, underscoring
the multi-faceted efficacy of our approach.

Figure 10: CRPS and Monthly Forecasting: RMSE(↓) comparison with FourCastNet (FCN) for monthly
forecasting and CRPS scores for ClimODE.

J CORRELATION PLOTS

To demonstrate the emerging couplings of quantities (ie. wind, temperature, pressure potential), we below
plot the emission model upred(x, t) ∈ R5 pairwise densities averaged over space x and time t. These
effectively capture the correlations between quantities in the simulated weather states. These show that
temperatures (t,t2m) and potential (z) are highly correlated and bimodal; the horizontal and vertical wind
direction are independent (u10,v10); and there is little dependency between the two groups. These plots
indicate that the emission model is highly aligned with data and does not indicate any immediate biases or
skews. These results are averaged over space and time, and spatially local variations are still possible. The
mean µ plots show that means match data well. The standard deviation σ plots show some bimodality of
predictions with either no or moderate uncertainty.

20



Published as a conference paper at ICLR 2024

Figure 11: Pairwise correlation among the predicted variables by the model.
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Figure 12: Correlation between upred and utrue for different observables, showing the efficacy of our model
to predict the observables accurately.

Figure 13: Correlation between µ and utrue for different observables.
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Figure 14: Correlation between σ and utrue for different observables.
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