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1 OPV2V-N

To facilitate the research on camera-insensitivity for collaborative perception: i) firstly, as we discussed
in related works, multi-view based collaborative perception heals the ill-posed of recovering noisy
camera images just from single-view. Owing there are no labels of multi-view based overlap regions
in existing collaborative perception, we manually collect the multi-view based overlap regions for
RCDN experiments, shown in Figure 1. In detail, we will record the corresponding vehicle IDs,
camera IDs and duration time tstart, tend of the multi-view based overlap regions; ii) secondly, as we
need to distinguish the foreground and background for static and dynamic collaborative neural fields,
respectively. We extend the OPV2V[1] with more data format, such as the optical flow (supervise the
sfw,bw), mask labels, to bridge the gap between neural field and collaborative perception, as shown
in Figure 2.

Data analysis. We manually annotate about 65 scenes, which consists of a total of 6138 collaborative
samples. Figure 4 presents some statistical analysis results regarding the OPV2V-N dataset. The
OPV2V-N covers situations about 61.86%, 33.47%, and 4.66% for two, three, and four V2X collabo-
rative agents, respectively. Meanwhile, before we conduct the corresponding RCDN experiments,
we validate whether the random noisy camera data will affect the collaborative perception system.
Table 1 shows that i) the noise actually degrades the system performance; ii) compared to static scenes,
dynamic vehicles are more susceptible to the influence of noisy data. With this prior knowledge, we
decided to explore the RCDN algorithms and need to pay more attention to optimizing the design for
dynamic vehicle perception. We also visualize the specific degradation caused by the noisy camera
data, shown in Figure 3. Note that Figure 3 (a) degradation with missed vehicle inspections; Figure 3
(b) degradation with missed Dr. area and lane inspections; Figure 3 (c) degradation with both missed
vehicle and Dr. area, lane inspections; Figure 3 (d) no degradation. Also, to make sure that the
random noisy camera data is always inputted the same way and that performance does not change
because of the different types of noise, like blurred or occluded, we replace the manually annotated
camera IDs under the camera failure situation[2].
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Figure 1: Visualization of manually labeling mechanisms. Note that the red circles represent the multi-view
based overlap regions that are suitable for the random noisy situation. We will record the corresponding vehicle
IDs, camera IDs and duration tstart, tend of the overlap regions.

Figure 2: Visualization of extra data format.

2 Detailed Information about Experiments

2.1 Implementation Details.

For collaborative perception part, we assume all the AVs have a 70m communication range
following[3], and all the vehicles out of this broadcasting radius of ego vehicle will not have
any collaboration. We compare with the state-of-the-art multi-agent perception algorithms: F-Cooper,
AttFuse, V2VNet, DiscoNet and CoBEVT w.o/w. the proposed RCDN.

Table 2: Inference time for each chunk.

Modules Time Cost
fstatic 4.47±0.11ms

fdynamic 3.94±0.21ms
frender 20.98±0.22ms

Meanwhile, to make a fair comparison, we first
employ CVT to extract the BEV feature from
camera rigs for all methods. The transmitted
BEV intermediate representation has a resolu-
tion of 32×32×128; For collaborative neural
fields part, we pretrain the BEV decoder with
the mcp encoder for better performance, and the
geometry collaborative volume feature has a res-
olution of 128×128×128. Same as [4], we select (t− 1, t, t+ 1) as the mini training unit and train
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Figure 3: Visualization of different performance degradation with random noisy camera data.

the whole model with the Adam[5] optimizer and cosine annealing learning rate scheduler with initial
learning rate of 5e-4 on a single RTX 3090 24G GPU with AMD Ryzen Threadripper 3960X. As for
the inference time, we record the corresponding time in Table 2. Note that chunk is the smallest unit
of parallel processing of the image, e.g., if the image size is (400, 400), the chunk size is 4096 pixels,
the number of each image’s parallel chunks is about 40.

2.2 Discussion on RCDN.

Theoretically, the RCDN reconstructs the entire collaborative scenario field, according to radial
field theory[6], so whichever camera has the noise problem can actually be recovered. In this
regard, we experimentally validate the RCDN using CoBEVT and V2VNet, and the corresponding
results are in Table 3. We can see that i) if all the RCDN reconstructed cameras are used, the
performance is much better compared to using all the noisy camera data, e.g. as for CoBEVT, about
62.38%/123.29%/262.70% increment for the Dr. area, lanes and dynamic vehicles, respectively.
ii) compared to using all normal cameras, using all reconstructed RCDN cameras will degrade the
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Table 1: The validation experiments on whether random noise
will affect collaborative perception systems. Note that we
utilize the current SOTA map-segmentation method, CoBEVT.

OPV2V-N w. random noisy w.o. random noisy
Dr. Area 49.37 52.64

Lanes 34.80 37.96
Dynamic Veh. 39.81 47.49 Figure 4: The distributions of V2X collaborative

agents.

performance, e.g., as for V2VNet, about 20.94%/21.70%/35.73% decrement for the Dr. area, lanes
and dynamic vehicles, respectively. To address this phenomenon, we visualize the perspective of the
reconstructed camera views, shown in Figure 5, and it is not difficult to find that there is a domain
gap[7, 8] between the reconstructed and the normal cameras. Meanwhile, the backbone used to
extract the BEV is trained by using the normal camera, so if all reconstructed cameras are used,
it does cause a certain degree of degradation. Thanks to the development of abnormal detection
algorithms[9, 10], it is easy to find noisy camera data. Hence, we only replace the corresponding
noisy data without replacing all data for better performance.

Table 3: Performance comparison (Dr. Area/Lanes/Dynamic Veh.)
methods/setting all Nor. data all RCDN data all noisy data

CoBEVT 51.96/34.19/56.61 36.78/20.90/44.54 22.65/9.36/12.28
V2VNet 41.70/27.14/42.57 32.97/21.25/27.36 18.12/8.76/6.78

2.3 Multi-agents Collaborative Perception

Figure 5: Visualization of domain gap between normal
view and RCDN repaired view.

The MCP module stands for the Multi-agent Col-
laborative Perception process. Existing state-of-
the-art (SoTA) MCP modules share a common
pipeline: an encoder-fusion-decoder architec-
ture. To ensure fairness in collaborative percep-
tion experiments, different MCP modules use
the same encoder-decoder architecture but dif-
fer in the fusion process. The fusion process is
responsible for the bird-eye view (BEV) feature
aggregation. Therefore, the MCP module can be
replaced by simply switching between different
BEV feature aggregation processes.

2.4 Benchmarks

We conduct extensive experiments on current
collaborative perception methodologies with the
proposed RCDN. Table 4 presents the segmen-
tation performance under the expectation of ran-
dom noisy camera numbers from 0 to 3 on
OPV2V-N, which corresponds to the numeri-
cal results shown in Figure ?? in the main text. We see that RCDN can be portable to other baseline
methods and stabilize the performance even under the extreme camera-insensitivity setting. We also
visualize some training scene samples, shown in Figure 6.
2.5 PSNR Results

We also record the corresponding PSNR results of different baseline methods w. RCDN’s recon-
struction’s image view, as shown in Table 5. Note that the term peak signal-to-noise ratio (PSNR) is
an expression for the ratio between the maximum possible value (power) of a signal and the power
of distorting noise that affects the quality of its representation. Hence, the higher PSNR, the better
image quality.
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Table 4: Performance of RCDN with other baseline methods. Note that − represents the failed results.
Dr. Area/Lanes/Dynamic Veh.

w.o. RCDN w. RCDN
Method

Number Performance

n=0 n=1 n=2 n=3 n=0 n=1 n=2 n=3

scene1 34.03/17.55/55.56 19.37/6.67/28.96 20.41/7.77/24.39 22.68/9.27/17.56 34.03/17.55/55.56 35.46/16.82/52.69 36.85/16.23/44.45 35.31/16.88/43.49

scene2 48.14/24.45/55.32 44.55/16.81/20.89 35.79/17.10/24.98 35.83/16.34/22.39 48.14/24.45/55.32 48.50/24.75/52.66 47.54/22.84/52.86 46.90/19.58/54.19

scene3 35.00/29.86/66.79 25.43/18.01/38.00 26.11/14.99/26.28 21.94/11.56/24.74 35.00/29.86/66.79 35.93/30.10/67.70 34.40/29.51/61.14 36.77/28.86/67.09

scene4 65.36/63.79/77.24 30.95/17.74/31.34 27.02/18.48/16.31 -/-/7.03 65.36/63.79/77.24 64.98/62.73/77.77 65.93/62.15/67.66 -/-/70.18

scene5 44.67/30.20/61.74 24.03/20.50/29.32 25.57/15.51/15.49 24.03/17.55/17.32 44.67/30.20/61.74 39.56/26.73/58.00 38.20/23.83/52.49 38.51/19.31/52.02

F-Cooper

Avg 45.44/33.17/63.33 28.87/15.95/29.70 26.98/14.77/21.49 26.12/13.68/17.808 45.44/33.17/63.33 44.89/32.23/61.76 44.58/30.91/55.72 39.37/21.16/57.39

scene1 32.29/20.38/43.32 19.07/14.04/26.07 17.58/10.94/14.55 17.28/12.77/11.68 32.29/20.38/43.32 29.32/17.16/42.11 28.25/15.05/37.25 27.05/16.39/35.11

scene2 49.38/20.84/52.16 35.85/16.16/20.36 30.96/18.91/10.93 27.28/17.40/12.14 49.38/20.84/52.16 51.08/22.75/47.93 53.02/26.69/41.57 53.15/26.38/40.16

scene3 38.79/32.05/57.73 32.64/26.01/36.76 30.67/24.36/22.91 25.48/17.04/15.75 38.79/32.05/57.73 38.19/29.78/56.18 36.75/28.60/46.56 38.86/31.12/42.80

scene4 58.33/57.97/63.95 24.26/14.31/20.98 19.26/12.38/14.84 -/-/9.18 58.33/57.97/63.95 58.65/55.44/63.11 54.56/48.79/60.59 -/-/62.64

scene5 49.18/37.55/53.56 28.15/23.32/19.65 23.22/18.34/18.09 23.15/18.47/19.30 49.18/37.55/53.56 44.65/32.35/51.41 41.89/25.55/47.17 39.74/21.54/46.21

AttFuse

Avg 45.59/33.76/54.14 27.99/18.77/24.76 24.34/16.99/16.26 23.30/16.42/13.61 45.59/33.76/54.14 44.38/31.50/52.15 42.89/28.94/46.63 39.70/23.86/45.38

scene1 45.31/23.68/43.26 15.73/6.68/7.47 11.85/7.38/3.71 13.15/9.24/5.35 45.31/23.68/43.26 34.20/19.25/38.88 30.34/13.73/38.84 23.42/7.85/22.83

scene2 36.58/8.20/37.10 31.87/8.96/11.59 24.74/10.80/11.43 22.70/11.36/7.62 36.58/8.20/37.10 33.60/8.37/34.90 35.72/11.28/32.53 30.72/11.83/29.87

scene3 28.61/17.05/35.23 19.51/10.48/2.50 14.87/25.98/3.56 14.42/8.73/- 28.61/17.05/35.23 28.89/18.44/28.63 25.98/16.46/22.40 27.33/18.86/21.04

scene4 50.28/37.95/62.15 32.42/20.69/11.13 24.30/12.44/7.84 -/-/3.46 50.28/37.95/62.15 49.50/38.23/59.25 51.25/40.25/55.49 -/-/54.21

scene5 50.74/34.33/55.07 22.03/14.64/13.54 22.59/13.58/16.91 27.55/14.70/14.06 50.74/34.33/55.07 46.50/30.58/53.51 41.86/28.56/48.83 44.22/25.07/48.82

DiscoNet

Avg 42.30/24.24/46.56 24.31/12.29/9.25 19.67/14.04/8.69 21.25/12.32/6.10 42.30/24.24/46.56 38.54/22.97/43.03 37.03/22.06/39.62 37.33/23.10/35.35

scene1 39.83/19.49/28.06 20.52/7.15/8.21 11.41/7.68/5.68 9.54/7.33/3.94 39.83/19.49/28.06 39.28/19.95/28.72 36.13/15.55/28.25 30.56/15.21/19.67

scene2 40.21/14.45/39.60 37.38/7.19/14.73 29.05/6.84/6.77 19.64/6.66/8.58 40.21/14.45/39.60 38.45/14.96/39.45 34.61/8.07/39.17 33.40/12.29/33.17

scene3 33.24/26.83/31.89 20.11/6.11/2.93 12.39/7.28/8.37 9.48/7.01/1.49 33.24/26.83/31.89 29.53/20.95/35.15 24.75/16.82/26.92 27.94/16.59/20.52

scene4 49.76/36.24/57.83 28.50/17.23/11.52 26.74/18.85/9.37 14.54/12.00/8.00 49.76/36.24/57.83 48.34/36.74/58.46 47.00/36.37/57.31 53.40/40.01/56.45

scene5 45.47/38.71/55.45 33.46/14.91/18.99 29.66/17.04/16.38 24.23/14.99/14.10 45.47/38.71/55.45 42.98/33.59/52.06 39.04/28.94/52.93 39.21/28.99/47.79

V2VNet

Avg 41.70/27.14/42.57 27.99/10.52/11.28 21.85/11.54/9.31 15.49/9.60/7.22 41.70/27.14/42.57 39.72/25.24/42.77 36.31/21.15/40.92 36.90/22.62/35.52

scene1 30.59/12.43/47.62 24.55/10.07/30.67 23.23/8.19/18.83 22.99/11.63/14.59 30.59/12.43/47.62 27.37/10.63/46.65 27.22/11.31/41.38 26.96/10.59/36.99

scene2 39.28/10.72/54.25 37.47/14.26/28.43 32.32/12.94/16.57 23.43/8.41/11.93 39.28/10.72/54.25 37.47/9.64/50.48 44.97/15.85/49.88 39.51/9.77/46.46

scene3 47.80/37.85/60.40 24.91/11.90/33.73 18.34/11.15/18.29 15.78/11.56/63.49 47.80/37.85/60.40 49.45/37.51/60.02 50.96/40.09/57.53 49.85/37.13/63.49

scene4 73.62/61.44/61.70 46.69/20.88/38.91 34.26/12.43/12.10 -/-/8.67 73.62/61.44/61.70 70.27/59.07/62.01 68.48/56.13/53.58 -/-/56.71

scene5 68.50/48.53/59.06 26.80/15.13/30.32 28.38/8.42/14.19 23.51/11.26/10.67 68.50/48.53/59.06 51.39/30.88/56.35 52.02/30.53/51.86 46.52/25.31/53.37

CoBEVT

Avg 51.96/34.19/56.61 32.08/14.45/32.41 27.31/10.63/15.99 22.05/10.53/11.52 51.96/34.19/56.61 47.19/29.55/55.10 48.73/30.78/50.85 46.10/27.78/51.40

2.6 Geometry BEV Volume Feature

Table 5: The PSNR results.

PSNR
F-Cooper 26.11
AttFuse 25.79

DiscoNet 25.86
V2VNet 26.14
CoBEVT 25.89

We utilize the geometry BEV volume feature to speed
up the training process and improve the generality of the
collaborative neural fields. We observe that with fgeo_bev
the RCDN can obtain higher PSNR initial values and a
shorter training process, as shown in Figure 7.

2.7 Loss Functions

Similar to [11], we regularize the collaborative scene flow
to be spatially smooth by minimizing the difference be-
tween neighboring 3D points’ scene flow. To regularize
the consistency of the collaborative scene flow, we have
the scene flow cycle consistency regularization as follows:

Lcyc =
∑

∥sfw(r, t) + sbw(r+ sfw(r, t), t+ 1)∥22 (1a)

+
∑

∥sbw(r, t) + sfw(r+ sbw(r, t), t+ 1)∥22 (1b)

As for the weights of different losses in Eq ??, we set λ1, λ2, λ4 = 1.0 and λ3 = 0.1 for training.
Meanwhile, we train the whole network for about 1000 epochs, which takes about 20 to 30 minutes.

3 Visualization

We visualize some segmentation results of different baseline methods w.o/w RCND under the different
scenes, shown in Figure 8-12.

5



Figure 6: Visualization of some training scenes samples. Note that we cover the classical scenes, including the
four-way Intersection, T Intersection, Midblock, Entrance Ramp and Curvy Segment.

Figure 7: Visualization of w.o/w. geometry BEV volume feature modeling.
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Figure 8: Visualization of baseline method of F-Cooper w.o/w. RCDN with one random camera failure.

Figure 9: Visualization of baseline method of AttFuse w.o/w. RCDN with one random camera failure.
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Figure 10: Visualization of baseline method of DiscoNet w.o/w. RCDN with one random camera failure.

Figure 11: Visualization of baseline method of V2VNet w.o/w. RCDN with one random camera failure.
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Figure 12: Visualization of baseline method of CoBEVT w.o/w. RCDN with one random camera failure.
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