
Appendix

(a) Initial condition at t = 0

(b) LE-PDE prediction at t = 20 (c) Ground-truth at t = 20

(d) LE-PDE prediction at t = 40 (e) Ground-truth at t = 40

Figure S1: Visualization of LE-PDE testing on predicting the dynamics of turbulent 3D Navier-Stokes
flow through the cylinder with a novel Reynolds number (detail in Appendix F). The input domain
of size 2 ⇥ 1 ⇥ 1 is discretized into a 3D grid of 256 ⇥ 128 ⇥ 128, resulting in 4.19 million cells
per time step. Compression: LE-PDE learns latent dynamics with latent dimension of dz = 128,
achieving a 130,000⇥ reduction in representation dimension, compared with 4.19 million cells times
4 features per cell (⇢, vx, vy, vz) in input space. Prediction quality: The visualization is shown
at a cross-section of x = 50/128 ⇥ 1 along the direction of the cylinder. We see that compared
with ground-truth (c)(e), LE-PDE (b)(d) captures the turbulent dynamics reasonably well, predicting
both high-level and low-level dynamics in a qualitatively faithful way. This shows the scalability of
LE-PDE to large-scale simulations of PDE. Speed-up: To predict the state at t = 40, on an Nvidia
Quadro RTX 8000 48GB GPU, the ground-truth solver PhiFlow [73] uses 70.80s, an ablation our
LE-PDE-⇠⇠⇠latent without latent evolution (essentially a CNN) takes 1.03s, while our LE-PDE takes
only 0.084s. LE-PDE achieves an 840⇥ speed-up compared to the ground-truth solver, and 12.3⇥
speed-up compared to the ablation model without latent evolution.

In the Appendix, we provide details that complement the main text. In Appendix A, we give a brief
introduction to classical solvers. In Appendix B, we explain details about boundary interpolation
and annealing technique used in Section 4.3. In Appendix C, we give full explanation on the
architecture of LE-PDE used throughout the experiments. The following three sections explain details
on parameter settings of experiments: 1D family of nonlinear PDEs (Appendix D), 2D Navier-Stokes
flow (Appendix E) and 3D Navier-Stokes flow (Appendix F). In appendix G, we give details of
boundary inverse optimization conducted in Section 4.3. In appendix H, we show ablation study
for LE-PDE’s important parameters. In Appendix I, we discuss the broader social impact of our
work. In appendix J, we give comparison of trade-off between some metrics for LE-PDE and some

15

strong baselines. In addition, in Appendix K, we compare LE-PDE to another model exploiting latent
evolution method from several aspects. We present the influence of varying noise amplitude with
some tables in Appendix L. Finally, in Appendix M, we show the ablation study for various encoders
in different scenarios.

A Classical Numerical Solvers for PDEs

We refer the readers to [7] Section 2.2 and Appendix for a high-level introduction of the classical
PDE solvers. One thing that is in common with the Finite Difference Method (FDM), Finite Volume
Method (FVM) is that they all need to update the state of each cell at each time step. This stems
from that the methods require discretization of the domain X and solution u into a grid X . For
large-systems with millions or billions of cells, it will result in extremely slow simulation, as is also
shown in Appendix F where a classical solver takes extremely long to evolve a 3D system with
millions of cells per time step.

B Boundary Interpolation and Annealing Technique

Boundary interpolation. In order to allow gradients to pass through to the boundary parameter p,
we introduce a continuous boundary mask that continuously interpolates a discrete boundary mask
and continuous variables. Here, for the later convenience, we regard a mask as a function from a
grid structure N⇥2

128 to [0, 1]. Because boundary is composed by 1-dimensional segments, we use a
1-dimensional sigmoid function for the interpolation. Specifically, we define a sigmoid-interpolation
function on a segment as a map to a real from a natural number i conditioned by a pair of continuous
variables x1, x2 and positive real �:

f(i | x1, x2,�) =

8
><

>:

sigmoid(i�x1
�), i  x1,

sigmoid(x2�i
�), x2  i,

sigmoid(GM�1(|i�x1|,|i�x2|)
�), x1 < i < x2.

(13)

Here, x1 and x2 are the location of the edge of the line-segment boundary, which is to be optimized
during inverse optimization. GM�1(|i� x1|, |i� x2|) = (12 (|i� x1|�1 + |i� x2|�1))�1 denotes
the harmonic mean2, which is influenced more by the smaller of |i� x1| and |i� x2|, so it is a soft

version of the distance to the nearest edge inside the line segment of x1 < i < x2. When � tends to
0, the function f converges to a binary valued function: see also Fig. S2.

We define a continuous boundary function CB on a segment in a grid to be the pullback of the
sigmoid-interpolation function with the projection to 1-dimensional discretized line (i.e., take a
projection of the pair of integers onto a 1-dimensional segment and apply f):

CB((i, j) | (x1, x2),�) =

⇢
f(i | (x1, x2),�), if (i, j) is in a horizontal segment,
f(j | (x1, x2),�), if (i, j) is in a vertical segment. (14)

Finally, a continuous boundary mask on a grid is obtained by (tranformation by a function 1 � x
and) taking the maximum on a set of CBs on boundary segments on the grid (see also Fig. S3). The
boundary interpolation allows the gradient to pass through the boundary mask and able to optimize
the location of the edge of line segments (e.g. x1, x2).

Boundary annealing. As we see above, � can be seen as a temperature hyperparameter, and the
smaller it is, the more the boundary mask approximates a binary valued mask, and the less cells the
boundary directly influences. At the beginning of the optimization, the parameter of the boundary
(locations x1, x2 of each line segment) may be far away from the optimal location. Having a small
temperature � would result in vanishing gradient for the optimization, and very sparse interaction
where the boundary mainly interact with its immediate neighbors, resulting in that very small gradient
signal to optimize. Therefore, we introduce an annealing technique for the boundary optimization,

2GM�(x, y) = (12 (x
� + y�))1/� is generalized mean with order �. The harmonic mean GM�1(x, y)

interpolates between arithmetic mean GM1(x, y) = 1
2 (x+ y) and the minimum GM�1(x, y) = min(x, y),

and is influenced more by the smaller of x and y.

16

Figure S2: The interpolation of binary valued function by a sigmoid-interpolation function. Con-
tinuous variables (x1, x2) are set to be (31.5, 91.3). The continuous variables define edges of a
continuous segment.

Figure S3: Continuous bounds with different parameters � = 5 (left), 2 (middle) and 0.01 (right). As
� decreases, the edges of the boundaries tend to have steeper slopes.

where at the beginning, we start at a larger �0, and linearly tune it down until at the end reaching
a much smaller �. The larger � at the beginning allows denser gradient at the beginning of inverse
optimization, where the location of the boundary can also influence more cells, producing more
gradient signals. The smaller � at the end allows more accurate boundary location optimization at the
end, where we want to reduce the bias introduced by the boundary interpolation.

C Model Architecture for LE-PDE

Here we detail the architecture of LE-PDE, complementary to Sec. 3.1. This architecture is used
throughout all experiment, with just a few hyperparameter (e.g. latent dimension dz , number of
convolution layers) depending on the dimension (1D, 2D, 3D) of the problem. We first detail the 4
architectural components of LE-PDE, and then discuss its current limitations.

Dynamic encoder q. The dynamic encoder q consists of one CNN layer with (kernel-size, stride,
padding) = (3, 1, 1) and ELU activation, followed by Fq convolution blocks, then followed by a
flatten operation and an MLP with 1 layer and linear activation that outputs a dz-dimensional vector
zk 2 Rdz at time step k. Each of the Fq convolution block consists of a convolution layer with (kernel-
size, stride, padding) = (4, 2, 1) followed by group normalization [74] (number of groups=2) and
ELU activation [75]. The channel size of each convolution block follows the standard exponentially
increasing pattern, i.e. the first convolution block has C channels, the second has C ⇥ 21 channels, ...

17

the nth convolution block has C ⇥ 2n�1 channels. The larger channel size partly compensates for
smaller spatial dimensions of feature map for higher layers.

Static encoder r. For the static encoder r, depending on the static parameter p, it can be an Fr-layer
MLP (as in 1D experiment Sec. 4.1 and 3D experiment Appendix F), or a similar CNN+MLP
architecture as the dynamic encoder (as in Sec. 4.3 that takes as input the boundary mask). If using
MLP, it uses Fr layers with ELU activation and the last layer has linear activation. In our experiments,
we select Fr 2 {0, 1, 2}, and when Fr = 0, it means no layer and the static parameter is directly
used as zp. The static encoder outputs a dzp-dimensional vector zp 2 Rdzp .

Latent evolution model g. The latent evolution model g takes as input the concatenation of zk and
zp (concatenated along the feature dimension), and outputs the prediction ẑk+1. We model it as an
MLP with residual connection from input to output, as an equivalent of the forward Euler’s method
in latent space:

ẑk+1 = MLPg(z)
k + zk (15)

In this work, we use the same MLPg architecture throughout all sections, where the MLPg consists
of 5 layers, each layer has the same number dz of neurons as the dimension of zk. The first three
layers has ELU activation, and the last two layers have linear activation. We use two layers of linear
layer instead of one, to have an implicit rank-minimizing regularization [76], which we find performs
better than 1 last linear layer.

Decoder h. Mirroring the encoder q, the decoder h takes as input the zk+m 2 Rdz ,m = 0, 1, ...M ,
through an MLPh and a CNN with Fh = Fq number of convolution-transpose blocks, and maps
to the state Uk+m at input space. The MLPh is a one layer MLP with linear activation. After
it, the vector is reshaped into the shape of (batch-size, channel-size, *image-shape) for the Fh

convolution-transpose blocks. Then it is followed by a single convolution-transpose layer with
(kernel-size, stride, padding)=(3, 1, 1) and linear activation. Each convolution-transpose block
consists of one convolution-transpose layer with (kernel-size, stride, padding) = (4, 2, 1), followed by
group normalization and an ELU activation. The number of channels also follows a mirroring of the
encoder q, where the nearer to the output, the smaller the channel size with exponentially decreasing
size.

Limitations of current LE-PDE architecture. The use of MLPs in the encoder and decoder has its
benefits and downside. The benefit is that due to its flatten operation and MLP that maps to a much
smaller vector z, it can significantly improve speed, as demonstrated in the experiments in the paper.
The limitation is that it requires that the training and test datasets to have the same discretization,
otherwise a different discretization will result in a different flattened dimension making the MLP in
the encoder and decoder invalid. We note that despite this limitation, it already encompasses a vast
majority of applications where the training and test datasets share the same discretization (but with
novel initial condition, static parameter p, etc.). Experiments in this paper show that our method is
able to generalize to novel equations in the same family (Sec. 4.1), novel initial conditions (Sec. 4.2
and 4.3) and novel Reynolds numbers in 3D (Appendix F). Furthermore, our general 4-component
architecture of dynamic encoder, static encoder, latent evolution model and decoder is very general
and can allow future work to transcend this limitation. Future work may go beyond the limitation
of discretization, by incorporating ideas from e.g. neural operators [34, 36], where the latent vector
encodes the solution function u(x, t) instead of the discretized states Uk, and the latent evolution
model then models the latent dynamics of neural operators instead of functions.

Similar to a majority of other deep-learning based models for surrogate modeling (e.g. [13, 14]),
the conservation laws present in the PDE is encouraged through the loss w.r.t. the ground-truth, but
not generally enforced. Building domain-specific architectures that enforces certain conservation
laws is out-of-scope of this work, since we aim to introduce a more general method for accelerating
simulating and inverse optimizing PDEs, applicable to a wide scope of temporal PDEs. It is an exciting
open problem, to build more structures into the latent evolution that obeys certain conservation laws
or symmetries, potentially incorporating techniques e.g. in [77, 78]. Certain conservation laws can
also be enforced in the decoder, for example similar to the zero-divergence as in [57].

18

D Details for experiments in 1D family of nonlinear PDEs

Here we provide more details for the experiment for Sec. 4.1. The details of the dataset have already
been given in Section 4.1 and more detailed information can be found in [7] that introduced the
benchmark.

LE-PDE. For LE-PDE in this section, the convolution and convolution-transpose layers are 1D
convolutions, since the domain is 1D. We use temporal bundling steps S = 25, similar to the MP-
PDE, so it based on the past S = 25 steps to predict the next S = 25 steps. The input has shape of
(batch-size, S, Cin = 1, nx) , which3 we flatten the S and Cin dimensions into a single dimension and
feed the (batch-size, S ⇥ Cin = 25, nx) tensor to the encoder. For the convolution layers in encoder,
we use starting channel size C = 32 and exponential increasing channels as detailed in Appendix C.
We use Fq = Fr = 4 blocks of convolution (or convolution-transpose).

We perform search on hyperparameters of latent dimension dz 2 {64, 128}, loss function ` 2
{MSE,RMSE}, time horizon M 2 {4, 5}, and number of layers for static encoder Fr 2 {0, 1, 2},
and use the model with the best validation loss. We train for 50 epochs with Adam [61] optimizer
with learning rate of 10�3 and cosine learning rate annealing [76] whose learning rate follows a
cosine curve from 10�3 to 0.

Baselines. For baselines, we directly report the baselines of MP-PDE, FNO-RNN, FNO-PR and
WENO5 as provided in [7]. Details for the baselines is summarized in Sec. 4.1 and more in [7].

More explanation for Table 1. The runtimes in Table 1 are for one full unrolling that predicts the
future 200 steps starting at step 50, on a NVIDIA 2080 Ti RTX GPU. The “full” runtime includes the
time for encoder, latent evolution, and decoding to all the intermediate time steps. The “evo” runtime
only includes the runtime for the encoder and the latent evolution. The representation dimension, as
explained in Sec. 4.1, is the number of feature dimensions to update at each time step. For baselines
of MP-PDE, etc. it needs to update nx ⇥ S ⇥ 1 dimensions, i.e. the consecutive S = 25 steps of
the 1D space with nx cells (where each cell have one feature). For example, for nx = 100, the
representation dimension is nx ⇥ S ⇥ 1 = 100⇥ 25⇥ 1 = 2500. In contrast, our LE-PDE uses a
64 or 128-dimensional latent vector to represent the same state, and only need to update it for every
latent evolution.

Visualization of LE-PDE rollout. In Fig. 4, we show example rollout of our LE-PDE in the E2
scenario and comparing with ground-truth. We see that LE-PDE captures the shock formation (around
x = 14) faithfully, across all three spatial discretizations.

E Details for 2D Navier-Stokes flow

Here we detail the experiments we perform for Sec. 4.2. For the baselines, we use the results reported
in [14]. For our LE-PDE, we follow the same architecture as detailed in Appendix C. Similar to other
models (e.g. FNO-2d), we use temporal bundling of S = 1 (no bundling) and use the past 10 steps to
predict one future step, and autoregressively rollout for T �10 steps, then use the relative L2 loss over
the all the predicted states as the evaluation metric. We perform search on hyperparameters of latent
dimension dz 2 {128, 256}, loss function ` 2 {MSE,RMSE,L2}, time horizon M 2 {4, T � 10},
number of epochs {200, 500}, and use the model with the best validation loss. The runtime in Table 2
is computed using an Nvidia Quadro RTX 8000 48GB GPU (since the FNO-3D exceeds the memory
of the Nvidia 2080 Ti RTX 11GB GPU, to make a fair comparison, we use this larger-memory GPU
for all models for runtime comparison).

F 3D Navier-Stokes flow

To explore how LE-PDE can scale to larger scale turbulent dynamics and its potential speed-up, we
train LE-PDE in a 3D Navier-Stokes flow through the cylinder using a similar 3D dataset in [12],
generated by PhiFlow [73] as the ground-truth solver. The PDE is given by:

3Here Cin is the number of input channels for u(t, x). It is 1 since the u(t, x) has only one feature.

19

(a) LE-PDE prediction with nx = 40 (b) LE-PDE prediction with nx = 50

(c) LE-PDE prediction with nx = 100 (d) Ground-truth with nx = 100

Figure 4: Example rollout of LE-PDE for 200 steps (0 to 4s), with E2 scenario that tests the models
ability to generalize to new equations within the same family, for (a) nx = 40, (b) nx = 50, (c)
nx = 100, compared with ground-truth of (d) nx = 100. The LE-PDE models in the plot are using
the ones reported in Table 1. We see that LE-PDE captures the shock formation (around x = 14) very
accurately and faithfully, across all three spatial discretizations.

@tux + u ·rux = �1

⇢
rp+ ⌫r ·rux, (16)

@tuy + u ·ruy = �1

⇢
rp+ ⌫r ·ruy, (17)

@tuz + u ·ruz = �1

⇢
rp+ ⌫r ·ruz, (18)

subject tor · u = 0. (19)

We discretize the space into a 3D grid of 256⇥128⇥128, resulting in 4.19 million cells per time step.
We generate 5 trajectories of length 500 with Reynolds number {55.5, 56.8, 58.0, 58.3, 58.6} for
training/validation set and test the model’s performance on 2 additional trajectories with {57.4, 58.0}.
All the trajectories have different initial conditions. We sub-sample the time every other step, so
the time interval between consecutive time step for training is 2s. For LE-PDE, we follow the
architecture in Appendix C, with Fq = Fh = 5 convolution (convolution-transpose) blocks in the
encoder (decoder), latent dimension dz = 128, and starting channel dimension of C = 32. We use
time horizon M = 4 in the learning objective (Eq. 5), with (↵1,↵2,↵3,↵4) = (1, 0.1, 0, 0.1) (we
set the third step ↵3 = 0 due to the limitation in GPU memory). The Reynolds number p = Re is
copied 4 times and directly serve as the static latent parameter (number of layers Fr for static encoder
MLP r is 0). This static encoder allows LE-PDE to generalize to novel Reynolds numbers. We use
` =MSE. We randomly split 9:1 in the training/validation dataset of 5 trajectories, train for 30 epochs,
save the model after each epoch, and use the model with the best validation loss for testing.

Prediction quality. In Fig. S1, we show the prediction of LE-PDE on the first test trajectory with a
novel Reynolds number (Re = 57.4) and novel initial conditions. We see that LE-PDE captures the
high-level and low-level turbulent dynamics in a qualitatively reasonable way, both at the tail and also

20

in the inner bulk. This shows the scalability of our LE-PDE to learn large-scale PDEs with intensive
dynamics in a reasonably faithful way.

Speed comparison. We compare the runtime of our LE-PDE, an ablation LE-PDE-⇠⇠⇠latent and the
ground-truth solver PhiFlow, to predict the state at t = 40. The result is shown in Table 5. For the
ablation LE-PDE-⇠⇠⇠latent , its latent evolution model and the MLPs in the encoder and decoder are
ablated, and it directly uses the other parts of encoder and decoder to predict the next step (essentially
a 12-layer CNN). We see that our LE-PDE achieves a 70.80/0.084 ' 840⇥ speed up compared
to the ground-truth solver on the same GPU. We see that w.r.t. LE-PDE-⇠⇠⇠latent (a CNN) that is
significantly faster than solver, our LE-PDE is still 1.03/0.084 = 12.3 times faster. This shows that
our LE-PDE can significantly accelerate the simulation of large-scale PDEs.

Comparison of number of parameters. We see that our LE-PDE uses much less number of
parameters to evolve autoregressively than FNO. The most parameters of LE-PDE are mainly in the
encoder and decoder, which is only applied once at the beginning and end of the evolution. Thus,
LE-PDE achieves a much smaller runtime than FNO to evolve to t=40.

G Details for inverse optimization of boundary conditions

Figure S4: Trajectories generated by ground-truth solver with initial boundary parameter (upper) and
optimized boundary parameter (lower).

Objective function. To define the objective function, we create masks (o1, o2) that correspond to
respective outlets of given a boundary. The masks are defined to be ones on the outlets’ voids (see
also Fig. S5). With the masks, we define the objective function in Sec. 3.3 that can measure the
amount of smoke passing through the outlets:

Ld[p] =
2X

i=1

MSE(ti,

Pke

m=ks
hoi, Ûm(p)i
K

).

Here, (t1, t2) = (0.3, 0.7), K =
P2

j=1

Pke

m=ks
hoj , Ûm(p)i and hx, yi = xTy. We set ks = 50, i.e.,

we use smoke at scenes after 50 time steps to calculate the amount of the smoke.

LE-PDE. The encoder q and decoder h have Fq = Fh = 4 blocks of convolution (or convolution-
transpose) followed by MLP, as specified in Appendix C. The time step of input is set to be 1.

Table 5: Comparison of LE-PDE with baseline on runtime and representation dimension, in the 3D
Navier-Stokes flow. The runtime is to predict the state at t = 40.

Runtime (s) Representation
dimension

Error at
t = 40 # Paramters # Parameters for

evolution model
Training time

(min) per epoch
Memory

usage (MiB)
PhiFlow (ground-truth

solver) on CPU 1802 16.76⇥ 106 - - - - -

PhiFlow (ground-truth
solver) on GPU 70.80 16.76⇥ 106 - - - - -

FNO (with 2-step loss) 7.00 16.76⇥ 106 0.1695 3,281,864 3,281,864 102 25,147
FNO (with 1-step loss) 7.00 16.76⇥ 106 0.3215 3,281,864 3,281,864 58 24,891

LE-PDE-⇠⇠⇠latent 1.03 16.76⇥ 106 0.1870 71,396,976 71,396,976 69 21,361
LE-PDE (ours) 0.084 128 0.1947 65,003,120 83,072 65 25,595

21

Figure S5: Figures of outlet masks for given a boundary mask. The left mask is a boundary mask, the
middle mask o1 corresponds to the lower outlet and the right o2 the upper outlet.

The output of q is a 128-dimensional vector zk. The latent evolution model g takes as input
the concatenation of zk and 16-dimensional latent boundary representation zp along the feature
dimension, and outputs the prediction of ẑk+1. Here, zp is transformed by r with the same layers
as q, taking as input an boundary mask, where the boundary mask is a interpolated one specified in
Appendix B. The architecture of the latent evolution model g is the same as stated in Appendix C,
with latent dimension dz = 128.

Parameters for inverse design. We randomly choose 50 configurations for initial parameters. The
sampling space is defined by the product of sets of inlet locations {79, 80, 81}, lower outlet locations
{44, 45, 46, 47, 48, 49, 50} and smoke position {0, 1} ⇥ {�1, 0, 1}. We note that, even though we
use the integers for the initial parameters, we can also use continuous values as initial parameters as
long as the values are within the ranges of the integers. For one initial parameter, the number of the
iterations of the inverse optimization is 100. During the iteration for each sampled parameter, we
also perform linear annealing for � of continuous boundary mask starting from 0.1 to 0.05. We also
perform an ablation experiment with fixed � = 0.05 across the iteration. Fig. S6 shows the result.
We see that without annealing, the GT-solver (ground-truth solver) computed Error (0.041) is larger
than with annealing (0.035), and the gap estimated by the model and the GT-solver is much larger.
This shows the benefit of using boundary annealing.

(a) Transition of fraction estimated by LE-PDE with
fixed �. The difference (0.009) from fraction estimated
by GT-solver is larger than that of LE-PDE with anneal-
ing (0.001) in Table 3.

LE-PDE (ours) GT-solver Error
(Model estimated Error)

constant � 0.041 (0.032)
linear annealing � 0.035 (0.036)

(b) Fractions estimated by ablated version of the inverse
optimizer. Continuous boundary parameter � in the
ablated version is fixed across the iteration.

Figure S6: Ablation study of annealer in the inverse design for continuous boundary parameter �.

Model architecture of baselines. We use the same notation used in Appendix C. LE-PDE-⇠⇠⇠latent
uses the dynamic encoder q subsequently followed by the decoder h. Both q and h have the same
number of layers Fq = Fh = 4. The output of h is used as the input of the next time step. For the

22

GT solver

LE-PDE-⇠⇠⇠⇠latent

(a) LE-PDE-⇠⇠⇠latent (b) FNO-2D

Figure S7: Fraction of smoke passing through the lower outlet computed by GT solver and estimated
by LE-PDE-⇠⇠⇠latent and FNO-2D in Sec. 4.3. The dashed line denotes the objective of 0.3 fraction of
smoke passing through the lower outlet.

FNO-2D model, we use the same architecture proposed in [14] with modes = 12 and width = 20.
Fig. S7a and S7b are transition of fractions estimated by the ground-truth solver and the models with
the boundary parameter under the inverse design. Compared with the one by our LE-PDE in Fig. 3e,
we see that LE-PDE has much better GT-solver estimated fraction, and less gap between the fraction
estimated by the GT-solver and the model.

H More ablation experiments with varying latent dimension

In this section, we provide complementary information to Sec. 4.4. Specifically, we provide tables
and figures to study how the latent dimension dz influences the rollout error and runtime. Fig. 6
visualizes the results. Table 6 shows the results in the 1D E2 (nt, nx) = (250, 50) scenario that
evaluate how LE-PDE is able to generalize to novel PDEs within the same family. And Table 7 shows
the results in the 2D most difficult (⌫ = 10�5, N = 1000) scenario.

1D dataset. From Table 6 and Fig. 6a, we see that when latent dimension dz is between 16 and
128, the accumulated MSE is near the optimal of 1 ⇠ 1.1. It reaches minimum at dz = 64. With
larger latent dimensions, e.g. 256 or 512, the error slightly increases, likely due to the overfitting.
With smaller latent dimension (< 8), the accumulated error grows significantly. This shows that
the intrinsic dimension of this 1D problem with temporal bundling of S = 25 steps, is somewhere
between 4 and 8. Below this intrinsic dimension, the model severely underfits, resulting in huge
rollout error.

From the “runtime full” and “runtime evo” columns of Table 6 and also in Fig. 6b, we see that as the
latent dimension dz decreases down from 512, the “runtime evo” has a slight decreasing trend down
to 256, and then remains relatively flat. The “runtime full” also remains relatively flat. We don’t see
a significant decrease in runtime with decreasing dz , likely due to that the runtime does not differ
much in GPU with very small matrix multiplications.

2D dataset. From Table 7 and Fig. 6c, we see that similar to the 1D case, the error has a minimum
in intermediate values of dz . Specifically, as the latent dimension dz decreases from 512 to 4, the
error first goes down and reaching a minimum of 0.1861 at dz = 128. Then it slightly increase with
decreasing dz until dz = 16. When dz < 16, the error goes up significantly. This shows that large
latent dimension may results in overfitting, and the intrinsic dimension for this problem is somewhere
between 8 and 16, below which the error will significantly go up. As the latent dimension decreases,
the runtime have a very small amount of decreasing (from 512 to 256) but mostly remain at the same
level. This relatively flat behavior is also likely due to that the runtime does not differ much in GPU
with very small matrix multiplications.

23

Table 6: Performance evaluation for LE-PDE with different latent dimension on 1D dataset (E2-50
scenario). The accumulated error = 1

nx

P
t,x MSE, summing over the predicted steps of 50-250, the

same as in Table 1. The runtime is measured by rolling out with the same 200 steps, measured on a
NVIDIA 2080 Ti RTX GPU, same as in Table 1. The default is with dz = 128.)

LE-PDE
setting

cumulative
error

runtime
(full) (ms)

runtime
(evolution)

(ms)
parameters

parameters for
latent evolution

model
dz = 512 2.778 16.3 ± 2.6 6.7 ± 1.0 4043648 1314816
dz = 256 2.186 15.0 ± 0.8 6.1 ± 0.3 2271360 329728
dz = 128 1.127 14.9 ± 1.1 6.0 ± 0.4 1630976 82944
dz = 64 0.994 14.4 ± 1.0 5.7 ± 0.3 1372224 20992
dz = 32 1.048 14.5 ± 0.8 5.8 ± 0.4 1258208 5376
dz = 16 1.041 14.1 ± 0.9 5.8 ± 0.4 1205040 1408
dz = 8 21.03 14.0 ± 0.7 5.6 ± 0.2 1179416 384
dz = 4 205.09 13.9 ± 0.5 5.7 ± 0.3 1166844 112

Table 7: Performance evaluation for LE-PDE with different latent dimension on 2D dataset (⌫ = 10�5

scenario. The Error is the relative L2 norm measured over 10 rollout steps, the same as in Table 2.
The runtime is measured by rolling out with the same 10 steps, measured on a Nvidia Quadro RTX
8000 48GB GPU (same as in Table 2), and average over 100 runs (the number after ± is the std. of
the 100 runs). The default is with dz = 128.)

LE-PDE
setting

cumulative
error

runtime
(full) (ms)

runtime
(evolution)

(ms)
parameters

parameters for
latent evolution

model
dz = 512 0.1930 16.2 ± 1.1 6.8 ± 0.7 6467184 1313280
dz = 256 0.1861 14.8 ± 1.1 5.8 ± 0.4 3384944 328960
dz = 128 0.2064 14.8 ± 0.5 5.9 ± 0.4 2089584 82560
dz = 64 0.2252 14.7 ± 0.7 6.0 ± 0.7 1503344 20800
dz = 32 0.2315 15.0 ± 2.1 5.9 ± 0.5 1225584 5280
dz = 16 0.2236 14.2 ± 1.3 5.8 ± 0.6 1090544 1360
dz = 8 0.3539 14.3 ± 0.6 5.7 ± 0.3 1023984 360
dz = 4 0.6353 14.2 ± 0.5 5.7 ± 0.2 990944 100

More details in the ablation study experiments in Sec. 4.4. For the ablation “Pretrain with Lrecons”,
we pretrain the encoder and decoder with Lrecons for certain number of epochs, then freeze the
encoder and decoder and train the latent evolution model and static encoder with Lconsistency. Here
the Lmulti-step is not valid since the encoder and decoder are already trained and frozen. For both 1D
and 2D, we search hyperparameters of pretraining with {25, 50, 100}, and choose the model with the
best validation performance.

I Broader social impact

Here we discuss the broader social impact of our work, including its potential positive and negative
aspects, as recommended by the checklist. On the positive side, our work have huge potential
implication in science and engineering, since many important problems in these domains are expressed
as temporal PDEs, as discussed in the Introduction (Sec. 1). Although this work focus on evaluating
our model in standard benchmarks, the experiments in Appendix F also show the scalability of
our method to problems with millions of cells per time steps under turbulent dynamics. Our LE-
PDE can be applied to accelerate the simulation and inverse optimization of the PDEs in science
and engineering, e.g. weather forecasting, laser-plasma interaction, airplane design, etc., and may
significantly accelerate such tasks.

We see no obvious negative social impact of our work. As long as it is applied to the science and
engineering that is largely beneficial to society, our work will have beneficial effect.

24

(a) Accumulated Error vs. latent dimension in
1D scenario. The Error is the relative L2 norm
measured over 10 rollout steps, the same as in
Table 2. The runtime is measured by rolling out
with the same 10 steps, measured on a Nvidia
Quadro RTX 8000 48GB GPU (same as in Table
2), and average over 100 runs (the number after
± is the std. of the 100 runs). The default is with
dz = 128.

(b) Runtime vs. latent dimension in 1D scenario

(c) Error vs. latent dimension in 2D scenario. (d) Runtime vs. latent dimension in 2D scenario

Figure 6: Error vs. latent dimension dz for (a) 1D and (c) 2D scenario, and runtime vs. latent
dimension dz for (b) 1D and (d) 2D scenario. We see that in 1D, the Error stays near optimum with
latent size in [16, 128], and goes up outside the range. The runtime evo have a slight decreasing
trend from latent dimension at 512 to 256, and stays relatively flat. For 2D, the Error decreases
with increasing latent dimension, reaching an optimum at dz = 256, and then slightly increases. Its
runtime full have a slight decrease from latent dimension of 512 down to 256, and otherwise stays
relatively flat.

J Pareto efficiency of FNO vs. LE-PDE

The following Table S8 shows the comparison of performance of FNO with varying hyperparameters.
The hyperparameter search is performed on a 1D representative dataset E2-50. We evaluate the
models (with varying hyperparameters) using the metric of the cumulative error and runtime. The
most important hyperparameters for FNO are the “modes”, which denotes the number of Fourier
frequency modes, and “width”, which denotes the channel size for the convolution layer in the FNO.

We also perform hyperparameter search on a 2D representative dataset with ⌫ = 10�5. Table S9
shows the comparison of performance of FNO with varying hyperparameters. Hyperparameters to be
varied and metrics for the evaluation are same as that of Table S8.

We can compare the above two tables with Table 6 and 7. We also create plots Figure S8 and S9
that compare the trade-off between several metrics shown in the tables for LE-PDE and FNO. Note
that we provide both the total number of parameters (second last column) and number of parameters
for latent evolution model (last column). The latter is also a good indicator since during long-term
evolution, the latent evolution model is autoregressively applied while the encoder and decoder are
only applied once. So the latent evolution model is the deciding component of the long-term evolution
accuracy and runtime.

25

Table S8: Performance evaluation with FNO hyperparameter search on 1D dataset (E2-50 scenario.)

FNO setting cumulative
error

runtime
(full) (ms) # parameters

modes=16, width=64
(default setting) 2.379 21.2± 6.9 292249

modes=16, width=128 3.107 21.7± 4.3 1138201
modes=16, width=32 2.695 22.1± 7.4 78169
modes=16, width=16 2.755 21.0± 5.7 23353
modes=16, width=8 4.992 17.9± 1.2 9001
modes=20, width=128 2.804 20.9± 1.1 1400345
modes=20, width=64 2.626 19.3± 0.9 357785
modes=12, width=64 2.899 19.6± 2.2 226713
modes=8, width=64 2.240 19.7± 1.3 161177
modes=4, width=64 2.326 19.2± 0.9 95641
modes=8, width=32 2.366 18.2± 1.0 45401
modes=8, width=16 2.505 18.1± 1.2 15161
modes=8, width=8 5.817 18.4± 1.2 6953

Table S9: Performance evaluation with FNO hyperparameter search on 2D dataset (⌫ = 10�5

scenario.)

FNO setting L2 error runtime
(full)(ms) # parameters

modes=12, width=20
(default setting) 0.1745 42.7 ± 10.9 465717

modes=12, width=40 0.1454 42.7 ± 4.2 1855977
modes=12, width=10 0.2016 40.3 ± 5.4 117387
modes=12, width=5 0.2398 45.5 ± 7.4 29922
modes=16, width=20 0.1710 43.7 ± 4.2 824117
modes=8, width=20 0.1770 43.1 ± 3.1 209717
modes=4, width=20 0.1997 43.2 ± 4.8 56117
modes=8, width=10 0.2109 42.2 ± 4.8 53387
modes=8, width=5 0.2415 43.3 ± 4.3 13922

From the comparison, we see that:

• For 1D dataset, LE-PDE Pareto-dominates FNO in error vs. runtime plot (Fig. S8(a)). FNO’s
best cumulative error is 2.240, and runtime is above 17.9ms, over the full hyperparameters
combinations (number of parameter varying from 6953 to 1.4M). In comparison, our LE-
PDE achieves much better error and runtime over a wide parameter range: for dz from 16 to
64, LE-PDE’s cumulative error  1.05, runtime  14.5ms, latent runtime  5.8ms, (which
uses 1408 to 82944 number of parameters for latent evolution model, and 1.2-1.4M total
parameters). In terms of cumulative error vs. #parameter plot (Fig. S9(a)), the LE-PDE
with evolution model typically has less parameters than FNO, which in turn also have
less parameters than LE-PDE with full model. This makes sense, as the latent evolution
requires much less parameters. Adding the encoder and decoder, LE-PDE may have more
#parameters. But still it is the evolution parameter that is the most important for long-term
evolution.

• For 2D dataset, FNO’s cumulative error is slightly better than LE-PDE, but its runtime is
significantly larger (Fig. S8(b)). Concretely, the best FNO achieves an error of 0.1454 while
the best LE-PDE’s error is 0.1861. FNO’s runtime is above 40ms, while LE-PDE’s runtime
is generally below 15ms and latent evolution runtime is below 6ms. LE-PDE uses larger
total number of parameters but much less number of parameters for latent evolution model.
Also, similar to 1D, in terms of error vs. #parameter plot (Fig. S9(b)), the LE-PDE with
evolution model typically has much less parameters than FNO, which in turn also typically
have less parameters than LE-PDE with full model.

26

(a) 1D dataset. (b) 2D dataset.

Figure S8: Comparison of trade-off between cumulative error and runtime of LE-PDE and FNO for
1D and 2D dataset. Dotted line connected to filled marker is Pareto frontier for respective model.

(a) 1D dataset. (b) 2D dataset.

Figure S9: Comparison of trade-off between number of parameters and cumulative error of LE-PDE
and FNO for 1D and 2D dataset. Dotted line connected to filled marker is Pareto frontier for respective
model.

Which family of PDEs can our LE-PDE apply:. we can think of a PDE as a ground-truth model
that evolves the state of a physical system. Typically, the states show more global, dominant features,
and can be described by a state vector with much smaller dimension than the original discretization.
Our LE-PDE exploit this compressivity of state to evolve the system in latent space and achieve
speedup, and as long as the PDE does not significantly increase the spatial complexity of the state as it
evolves (e.g. developing finer and finer spatial details as in 2-stream instability in of plasma [75]), our
method can apply. Most of the PDEs satisfy the above requirements that the state are compressible
and does not significantly increase its complexity, so our LE-PDE can be apply to most PDEs. Since
any compression of state can incur a possible increase of error (possibly large or small, as the Pareto
frontier of "error vs. runtime" and "error vs. #parameter" in Fig. S8 and S9 show for our LE-PDE and
FNO), the more important/relevant question is then "what is the tradeoff of error vs. runtime we want
for the given PDE", since we can design the encoder of LE-PDE with varying amount of compression.
For example, we can design an encoder with minimal compression, so runtime reduction is low but
can guarantee to retain low error, or with a much more aggressive compression (like in our 2D and
3D experiments), but can still achieve minimal increase of error. The amount of compression is a
hyperparameter which can be obtained via validation set. Theoretically studying the best amount of
compression that achieves a good tradeoff will be left for an exciting future work.

27

K Comparison of LE-PDE with LFM

To compare our LE-PDE with the Latent Field Model method (LFM) proposed in [18], we perform
additional experiments in the representative 1D and 2D datasets in Section 4.4. We perform the
ablation study where we (a) remove MLP in our model, (b) use LFM objective but maintain MLP, and
(c) full LFM: remove MLP, use LFM objective, while all other aspects of training is kept the same.
We use PyTorch’s jvp function in autograd to compute the Jacobian-vector product and carefully
make sure that our implementation is correct. Table S10 is the comparison table.

Table S10: Performance comparison of LE-PDE with LFM, for 1D dataset E2-50 scenario.
LE-PDE
setting

cumulative
error

runtime
(full) (ms)

runtime
(evolution)

(ms)
parameters

parameters for
latent evolution

model
LE-PDE (ours) 1.127 14.9 ± 1.1 6.0 ± 0.4 1630976 82944
(a) without MLP 7.930 17.2 ± 6.0 8.3 ± 0.4 2730368 1580544
(b) with LFM objective 58.85 15.7 ± 1.5 6.5 ± 0.6 1630976 82944
(c) full LFM: without MLP,

with LFM objective 26.12 15.7 ± 1.3 8.4 ± 0.7 2730368 1580544

Table S11 shows the comparison result of LE-PDE with LFM obtained by performing additional
experiments on the representative 2D dataset in Section 4.4.

Table S11: Performance comparison of LE-PDE with LFM, for 2D dataset ⌫ = 1e-5 scenario.

LE-PDE setting cumulative
error

runtime
(full) (ms)

runtime
(evolution)

(ms)
parameters # parameters for

evolution model
LE-PDE (ours) 0.1861 14.8 ± 1.1 5.8 ± 0.4 3384944 328960
(a) without MLP 0.2120 16.6 ± 2.2 9.2 ± 0.8 2126960 1181184
(b) with LFM objective 0.4530 15.8 ± 2.3 6.2 ± 0.6 3384944 328960
(c) full LFM: without MLP,

with LFM objective 0.6315 16.2 ± 1.9 9.1 ± 0.4 2126960 1181184

From the above tables, we see that without MLP, it actually results in worse performance (ablation
(a)), and with LFM objective, the error is larger, likely due to that the dataset are quite chaotic and
LFM may not adapt to the large time range in these datasets.

L Influence of varying noise amplitude

Here, we perform additional experiments on how the noise affects the performance, on the repre-
sentative 1D used in Section 4.4 “Ablation Study”. Table S12 shows the results. Specifically, we
add random fixed Gaussian noise to the training, validation and test sets of the dataset, with varying
amplitude. The noise is independently added to each feature of the dataset. It is also “fixed” in the
sense that once added to the dataset, the noise is freezed and not re-sampled. This mimics the real
world setting where random observation noise can corrupt the observation and we never have the
ground-truth data to train and evaluate from.

We also perform experiments similar to Section L on a 2D representative dataset used in Section 4.4
“Ablation Study”. Table S13 shows the results.

Note that the value range of both datasets are within [�2, 2]. From Table S12, we see that LE-PDE’s
cumulative error stays excellent ( 1.456) with noise amplitude  10�3, much smaller than state-
of-the-art MP-PDE’s error of 1.63 and FNO-PF’s 2.27. Even with noise amplitude of 10�2, the
LE-PDE’s error of 2.612 still remains reasonable.

From Table S13, we see that LE-PDE is quite resilient to noise, with error barely increases for noise
amplitude up to 2 ⇥ 10�2, and only shows minimal increase at noise level of 10�1. As a context,
U-Net’s error is 0.1982 and TF-Net’s error is 0.2268 (Table 2 in main text).

In summary, in the 1D and 2D datasets, we see that LE-PDE shows good robustness to Gaussian
noise, where the performance is reasonable where the ratio of noise amplitude to the value range can

28

Table S12: Evaluation of cumulative error of LE-PDE on 1D dataset (E2-50 scenario) with varying
noise amplitude. The amplitude is the standard deviation of the diagonal Gaussian and the value
range of the state u(t, x) is within [�2, 2].

Noise amplitude cumulative error
0 (default) 1.127

10�5 1.253
10�4 1.268
10�3 1.456
10�2 2.612

2⇥ 10�2 4.102
5⇥ 10�2 9.228

Table S13: Evaluation of cumulative error of LE-PDE on 2D dataset (⌫ = 10�5 scenario) with
varying noise amplitude. The amplitude is the standard deviation of the diagonal Gaussian and the
value range of the state u(t, x) is within [�2, 2].

Noise amplitude cumulative error
0 (default) 0.1861

10�5 0.1880
10�4 0.1862
10�3 0.1866
10�2 0.1897

2⇥ 10�2 0.1875
5⇥ 10�2 0.1910
10�1 0.2012

go up to 0.25% in 1D and 2.5% in 2D. The smaller robustness in the 1D Burgers’ dataset may be due
to that it is a 200-step rollout and the noise may make the model uncertain about the onset of shock
formation.

M Ablation of LE-PDE using pretrained autoencoder or VAE

In addition, we perform two ablation experiments that explore performing data reduction first and
then learn the evolution in latent space: (a) pretrain an autoencoder with states from all time steps,
then freeze the autoencoder and train the latent evolution model. This mimics the method in [79]. (b)
the encoder and decoder of LE-PDE is replaced with a VAE, first pre-trained with ELBO on all time
steps, then freeze the encoder and decoder and train the latent evolution model. All other aspects of
the model architecture and training remains the same. The result is shown in the Table S14 and Table
S15 for the 1D and 2D datasets in Section 4.4 of “Ablation study”.

Table S14: Ablation study of LE-PDE using pretrained autoencoder or VAE, for 1D dataset (E2-50
scenario.)

LE-PDE setting Cumulative error
LE-PDE (ours) 1.127

(a) pretrain autoencoder 1.952
(b) pretrained VAE 1.980

From Table S14 and S15, we see that performing pre-training results in a much worse performance,
since the data reduction only focuses on reconstruction, without consideration for which latent state
is best used for evolving long-term into the future. On the other hand, our LE-PDE trains the
components jointly with a novel objective that not only encourages better reconstruction, but also
long-term evolution accuracy both in latent and input space. We also see that VAE as data-reduction
performs worse than autoencoder, since the dynamics of the system is deterministic, and having a
stochasticity from the VAE does not help.

29

Table S15: Ablation study of LE-PDE using pretrained autoencoder or VAE, for 2D dataset (⌫ = 10�5

scenario.)
LE-PDE setting Cumulative error
LE-PDE (ours) 0.1861

(a) pretrain autoencoder 0.2105
(b) pretrained VAE 0.2329

References

[74] Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 3–19.

[75] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning
by exponential linear units (elus),” International Conference on Learning Representations, 2016,
[Online]. Available: https://arxiv.org/abs/1511.07289.

[76] L. Jing, J. Zbontar et al.., “Implicit rank-minimizing autoencoder,” in Advances in Neural

Information Processing Systems, vol. 33, pp. 14736–14746, 2020.

[77] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, “Physics-constrained, low
dimensional models for magnetohydrodynamics: First-principles and data-driven approaches,” in
Physical Review E, vol. 104, no. 1, p. 015206, 2021.

[78] S. Yang, X. He, and B. Zhu, “Learning physical constraints with neural projections,” in Advances

in Neural Information Processing Systems, vol. 33, pp. 5178–5189, 2020.

[79] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,”
in International Conference on Learning Representations (Poster), 2017, [Online]. Available:
https://arxiv.org/abs/1608.03983.

30

	Introduction
	Problem Setting and Related Work
	Our approach LE-PDE
	Model architecture
	Learning objective
	Accelerating inverse optimization

	Experiments
	1D family of nonlinear PDEs
	2D Navier-Stokes flow
	Accelerating inverse optimization of boundary conditions
	Ablation study

	Discussion and Conclusion
	Classical Numerical Solvers for PDEs
	Boundary Interpolation and Annealing Technique
	Model Architecture for LE-PDE
	Details for experiments in 1D family of nonlinear PDEs
	Details for 2D Navier-Stokes flow
	3D Navier-Stokes flow
	Details for inverse optimization of boundary conditions
	More ablation experiments with varying latent dimension
	Broader social impact
	Pareto efficiency of FNO vs. LE-PDE
	Comparison of LE-PDE with LFM
	Influence of varying noise amplitude
	Ablation of LE-PDE using pretrained autoencoder or VAE

