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ABSTRACT

With the rapid development of large generative models for 3D, especially the evolution
from NeRF representations to more efficient Gaussian Splatting, the synthesis of 3D as-
sets has become increasingly fast and efficient, enabling the large-scale publication and
sharing of generated 3D objects. However, while existing methods can add watermarks
or steganographic information to individual 3D assets, they often require time-consuming
per-scene training and optimization, leading to watermarking overheads that can far exceed
the time required for asset generation itself, making deployment impractical for generating
large collections of 3D objects. To address this, we propose InstantSplamp (Instant Spltting
Stamp), a framework that seamlessly integrates the 3D steganography pipeline into large
3D generative models without introducing explicit additional time costs. Guided by visual
foundation models, InstantSplamp subtly injects hidden information like copyright tags
during asset generation, enabling effective embedding and recovery of watermarks within
generated 3D assets while preserving original visual quality. Experiments across various
potential deployment scenarios demonstrate that InstantSplamp strikes an optimal balance
between rendering quality and hiding fidelity, as well as between hiding performance
and speed. Compared to existing per-scene optimization techniques for 3D assets, In-
stantSplamp reduces their watermarking training overheads that are multiples of generation
time to nearly zero, paving the way for real-world deployment at scale. Project page:
https://gaussian-stego.github.io/.

1 INTRODUCTION

Automatic 3D content generation has revolutionized diverse fields including gaming, virtual reality, and film
production Samavati & Soryani (2023); Tang et al. (2023). Foundational techniques like image-to-3D and
text-to-3D Poole et al. (2022); Tang et al. (2024); Liu et al. (2024) significantly reduce the manual labor
required from professional 3D artists. These approaches simplify and democratize the creation process,
enabling individuals without specialized expertise to contribute to 3D asset production. By making 3D
design more accessible and efficient, these innovations foster an inclusive environment in the field, potentially
reshaping the landscape of 3D content creation and distribution. Furthermore, this democratization opens up
new possibilities for creative expression and innovation, as a wider range of perspectives and ideas can now
be translated into 3D form, potentially leading to rich contents across various media platforms.

Research on 3D generation has evolved from Score Distillation Sampling (SDS) methods such as Poole
et al. (2022); Lin et al. (2023); Liu et al. (2023a); Tang et al. (2023); Chen & Wang (2024), which optimize
3D representations to match the predictions of pre-trained 2D diffusion models, enabling the creation of
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Figure 1: Method Comparison of 3D Generation with Existing Per-scene Watermarking Methods vs. In-
stantSplamp. (a) Traditional 3D generation requires separate steps for object generation and watermarking,
leading to significant time overhead. (b) Our method, InstantSplamp, unifies 3D generation and watermarking
into a single process, maintaining the generation time and reducing watermarking overhead to near-zero,
significantly improving efficiency.

detailed 3D objects from text or single-view images. While SDS techniques have produced impressive results,
they often struggle with challenges related to generation speed and diversity. Recent advancements have led
to efficient feed-forward 3D-native techniques, trained on large-scale 3D datasets Deitke et al. (2023b;a),
capable of generating 3D assets in just a few seconds. The latest research incorporates Gaussian splatting and
optimized 3D backbones Tang et al. (2024), further enhancing texture details and geometric complexity. As
we witness the rapid development of 3D asset generation, a new challenge arises: how to invisibly watermark
the upcoming wave of generated 3D assets using steganography.

Traditional digital steganography methods have primarily focused on embedding hidden information within
2D images. However, the recent surge in generative AI and social media platforms has led to an explosion in
the online sharing of generated content, driving the practical application of steganography in mainstream
generative media. This trend has prompted research on embedding ownership information and metadata into
generated content to ensure traceability, allowing users and content providers to protect their intellectual
property. Additionally, efforts have been made to prevent content misuse by embedding covert backdoors,
which prevent unauthorized re-creation of content through generative models Baluja (2017; 2019). These
advancements address growing concerns over copyright protection and content misuse in the era of AI-
generated media.

As 3D representation technologies powered by large generative models continue to evolve, we anticipate that
generating and sharing large-scale 3D content will become as common as sharing 2D images and videos
today. Existing watermarking techniques for 3D representations, such as those developed for meshes Ohbuchi
et al. (2002); Praun et al. (1999), Neural Radiance Fields (NeRF) Li et al. (2023a), and Gaussian Splatting
(GS) Kerbl et al. (2023), face significant time overhead due to the need for per-scene or per-object watermark
training. While this process works for individual or small collections of assets, it becomes impractical for
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large-scale 3D asset generation. For example, generating a 3D object might take only a few seconds, but
watermarking each object can add several minutes, resulting in time costs tens of times greater than the
generation itself. This inefficiency limits the scalability of current 3D watermarking methods. Motivated
by this challenge, we aim to explore whether a scalable, generalizable 3D watermarking technique can be
developed—one that eliminates the need for per-scene training and incurs no additional overhead, paving the
way for efficient watermarking in large-scale 3D asset generation.

Driven by these inquiries, we propose InstantSplamp, an fast and generalizable 3D steganography framework
that seamlessly integrates the 3D watermarking pipeline into large 3D generative models. Unlike existing
steganography methods specialized for 3D content that require time-consuming per-scene optimization,
InstantSplamp operates without introducing explicit additional time costs, making it practical for large-scale
deployment. InstantSplamp utilizes visual foundation models to extract informative watermark embeddings,
which are subtly injected into the intermediate features of a 3D Gaussian generation baseline through cross-
attention mechanisms. For watermark recovery, a U-Net-based decoder retrieves the concealed information
from images rendered at specific verification viewpoints. To balance rendering quality and information hiding,
we introduce an adaptive gradient harmonization technique that aligns the gradients of the information hiding
and rendering losses, optimizing both steganography and visual output. Extensive experiments demonstrate
that InstantSplamp achieves a balance between rendering quality, hiding fidelity, and processing speed,
reducing watermarking overhead—previously up to 30 times the generation time—to nearly zero. Our
contributions are summarized as follows:

• We introduce InstantSplamp, a novel framework that seamlessly integrates fast and generalizable
3D steganography into large 3D generative models, enabling watermarking of 3D assets without
additional time costs.

• We develop a unique approach that leverages visual foundation models to extract and inject watermark
embeddings via cross-attention, allowing for effective embedding and recovery of hidden information
in generated 3D Gaussian representations while preserving visual quality.

• We demonstrate the effectiveness of our framework across various deployment scenarios, showing
significant improvements in efficiency by reducing watermarking overhead from approximately 30
times the generation time to nearly zero, thus enabling practical large-scale deployment.

• We empirically validate our framework’s ability to embed and recover a wide range of signal modali-
ties in 3D objects across different domains, achieving high recovery accuracy while maintaining
rendering quality.

2 RELATED WORK

Generative 3D Gaussian Splatting. Gaussian splatting, introduced by Kerbl et al.Kerbl et al. (2023), is a
powerful 3D representation known for its expressiveness and rendering efficiency. Enhancing details requires
careful initialization and densificationChen et al. (2023b); Yi et al. (2023), but our research focuses on a
feed-forward approach for autonomous 3D Gaussian generation. Unlike SDS-based methods, 3D-native
feed-forward models trained on large datasets can generate 3D models in seconds Deitke et al. (2023b;a).
While text-conditioned diffusion models for 3D formats have been explored Nichol et al. (2022); Jun &
Nichol (2023); Liu et al. (2023c); Müller et al. (2023); Chen et al. (2023a), they often face scalability and
quality issues. Recent advances include rapid NeRF prediction from single-view images Hong et al. (2023)
and Instant3D Li et al. (2023b), combining text-to-multi-view diffusion and LRM for fast 3D generation. As
3D Gaussian Splatting evolves, it’s timely to explore steganography tailored for this emerging field.

Steganography for 2D Representation. Deep learning has significantly advanced deep watermarking.
Works like Hayes & Danezis (2017) and Zhu et al. (2018) introduced end-to-end learning paradigms where
watermark encoders and decoders are refined via adversarial objectives, improving transmission fidelity and
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robustness. Zeng et al. (2023) extended this by jointly optimizing a watermarked encoder and its detector
using image datasets. More recent methods, such as Yu et al. (2022), integrate watermark encoding into the
generative framework. The Stable Signature technique Fernandez et al. (2023) applies this in latent diffusion
models by fine-tuning the latent decoder with a pre-trained watermark encoder. Similarly, Zhao et al. (2023)
adapts this approach for unconditional diffusion models. In contrast, methods for language models, like
Kirchenbauer et al. (2023), embed watermarks by modifying the output distribution without explicit training.
While these advances were pivotal for traditional media, the rise of point-based Gaussian representations for
3D scenes calls for extending steganographic techniques from 2D to 3D, a critical area for future research as
visual data representation evolves.

Steganography for 3D Representation. Within watermarking specialized for 3D contents, traditional
approaches by Ohbuchi et al. Ohbuchi et al. (2002), Praun et al. Praun et al. (1999), and Wu et al. Wu et al.
(2015) relied on Fourier or wavelet transformations applied to mesh structures. Recent innovations have
expanded the field’s scope: Hou et al. Hou et al. (2017) exploited 3D printing artifacts for watermarking,
while Son et al. Son et al. (2017) and Hamidi et al. Hamidi et al. (2019) utilized mesh saliency to minimize
vertex distortions and enhance robustness. Liu et al. Liu et al. (2019) explored watermarking for point clouds,
focusing on vertex curvatures. A significant advancement came from Yoo et al. Yoo et al. (2022), who
introduced a deep-learning method to embed messages in 3D meshes and extract them from 2D renderings.
StegaNeRF Li et al. (2023a) further pioneered embedding messages into neural radiance fields (NeRF),
enabling extraction of multimodal information from 2D renderings. A concurrent work, GS-Hider Zhang
et al. (2024), shifts the focus of steganography from NeRF to 3DGS, leveraging its explicit representation
and real-time rendering to embed hidden messages securely and invisibly without compromising rendering
quality. However, current 3D watermarking methods typically require per-scene optimization, significantly
increasing watermarking time and making them impractical for large-scale 3D generation scenarios.

3 METHOD

Preliminary for Generative Gaussian Splatting. Gaussian splatting Kerbl et al. (2023) represents 3D data
using a collection of 3D Gaussians, where each Gaussian is defined by a center x ∈ R3, a scaling factor
s ∈ R3, and a rotation quaternion q ∈ R4. Additionally, each Gaussian has an opacity value α ∈ R and a color
feature c ∈ RC , with spherical harmonics modeling view-dependent effects. These parameters, collectively
denoted as Ω, define the i-th Gaussian as Ωi = xi, si,qi, αi, ci. Rendering projects 3D Gaussians onto the
image plane and uses alpha composition in depth order to determine pixel color and opacity. Traditional 2D
diffusion models generate images from a single viewpoint, lacking 3D viewpoint capabilities. To overcome
this, recent methods fine-tune multiview diffusion models on 3D datasets, incorporating camera poses. This
allows for multiview image generation from text or single images, generalizing to unseen objects. By
integrating 3D spatial points and a consistency loss to ensure view coherence, these techniques improve
performance and scalability when applied to 3D Gaussians.

Pipeline Overview. Conventional Image-to-3D generative models FΘ convert an input image I into generative
3D Gaussians, parameterized as Ω = FΘ(I). The goal of our InstantSplamp is to discreetly embed proprietary
steganographic information into the Gaussian generation process, causing imperceptible visual changes in the
rendered output. Given hidden information H to be embedded, the process involves two stages: embedding
and decoding. During embedding, a hidden embedder FΦ integrates the features of the hidden image fH
into the intermediate feature fI of the generation process. In the decoding stage, a checking view Pc is
selected from all available poses P . When rendering from this view using the generated Gaussians Ω, the
embedded information S is recovered via a decoder with learnable weights Ψ. Fig.2 provides an overview of
the InstantSplamp framework.
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Figure 2: InstantSplamp training overview. During (a) Hidden Information Embedding, InstantSplamp incor-
porates the DINOv2 features of the hidden information into the intermediate feature of Gaussian generation
via cross-attention. In (b) Hidden Information Recovery, a U-Net-based decoder is employed to retrieve the
hidden information from the rendered image under the checking pose. Through the optimization process, (c)
Adaptive Gradient Harmonization is used to maintain a balance between the rendering and hidden recovery.

3.1 HIDDEN INFORMATION EMBEDDING

Models that are operated under the demand to predict new views from a single input are inherently ill-posed,
given that atypical 2D images can be projected from entirely distinct 3D representations. Consequently,
when there is a requirement to embed 2D images into 3D representations, the anticipated 3D generative
model is optimized to ensure that 2D images carrying hidden information can be inversely projected into the
underlying 3D space in conformity with human perceptual understanding. Under such circumstances, directly
embedding 2D watermark images into the feed-forward process of the equally ill-posed 3D generative model
could potentially have deleterious effects on this inverse projection process. Inspired by the robust dense
prediction capabilities exhibited by recent visual backbone models, particularly the semantic consistency
demonstrated by spatial representations derived from the DINOv2 encoder compared to other encoders like
CLIP Liu et al. (2023a;b); Radford et al. (2021), we advocate extrapolating the representational capabilities
of the DINOv2 encoder to the to-be-encoded implicit watermark information. This effectively extracts the
features of hidden information as fH .

Although features derived from the visual base model provide a robust means of projecting the image into 3D
space, this process can still result in the loss of detailed visual watermarks, thus impacting the visual quality
of the hidden information. To address this challenge, we propose an early injection of the spatial details of the
hidden information into the intermediate features derived from the image-to-3D Gaussian generation process.
By integrating the image watermark into the intermediate feature fI of the generation process through cross-
attention, the hidden image can effectively influence the update of the 3D representation via adaptive attention
adjustment. Specially, the intermidate image feature fI can be updated by: fI := Softmax(K·QT

√
d

) ·V (where
d denotes the length of the key and query features), with the key K, query Q and value V can be obtained by:

K = FΦK
(fH), V = FΦV

(fH), Q = FΦQ
(fI) (1)

where FΦ∗ respectively for key K and value V represent the linear transformation layer applied to the feature
fH derived from the hidden images, while that for query Q represents the linear transformation layer applied
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to the feature fI . Therefore, for cross attention injection, we utilize the features of image watermarks to
weight 3D features through cross attention. Effectively, the strategy promotes the propagation of visual cues
from image watermarks through network propagation Li et al. (2024); Li et al.; Zhang et al. (2021).

3.2 HIDDEN INFORMATION RECOVERY

Given the set of camera poses P for the image rendered with the generated 3D Gaussians, we aim to
extract the concealed information H when rendering at a specific checking viewpoint PC in the image
Ω(PC). It is crucial to prevent the emergence of false positives of hidden watermarkers in the renderings
of Gaussians, generated at checking viewpoint by the original generative network FΘ0 , as Ω0(PC), which
lacks steganographic features. Even if the images rendered by Ω0 and Ω visually appear identical, we aim to
minimize the following contrastive loss term:

Ldec+ = |FΨ(Ω(PC))−H|, Ldec− = |FΨ(Ω0(PC))−∅|, (2)
where ∅ is a meaningless constant image that can be pre-defined by the users. Effectively, Ldec+ serves as a
regularization term, aiding the decoder in recovering the embedded image patterns based on the rendering
obtained from the model. On the contrary, Ldec− prevents the decoder from erroneously generating any
seemingly reasonable image patterns when rendering is given from the standard generated Gaussians without
any hidden signal. The decoder Ψ can be conveniently implemented as U-Net to decode H into the form of a
2D image. Although the above discussion is primarily focused on hiding images, our framework can easily
be extended to embed other modalities such as strings, text, and even audio, all of which can be represented
as 1D vectors. We can simply modify the architecture of Ψ to have a 1D prediction branch.

3.3 PRESERVING PERCEPTUAL IDENTITY

Overall Loss. We retain the standard photometric error in steganography learning to maintain the Gaussian
rendering fidelity across any views between the steganographic one and the original one: Lrgb = |Ω(P )−
Ω0(P )|. The overall training loss of the framework can be formulated as follows, given the input reference
image I and hidden image H:

L(I,H;Θ,Φ,Ψ) = λ1Ldec+ + λ2Ldec− + λ3Lrgb. (3)
where λ1, λ2, λ3 is the trade-off coefficients. The parameters that are optimized by the above loss is listed as
the generative model Θ, the hidden embedder Φ and hidden decoder Ψ. Please note that while the parameters
of the Gaussian Ω are present in the loss formula, during the optimization of these parameters, we directly
update the generative network Θ, thereby indirectly influencing the generated Gaussian by Ω = FΘ(I),

Adaptive Gradient Harmonisation. Given our objective to embed information without altering the visual
perception of the rendered output, one might intuitively consider penalizing the deviation between Θ and Θ0

as an effective regularization. However, we have found that naively incorporating penalties for deviations of
all weights impedes the generative network’s ability to alter its weights for steganographic purposes. Instead,
we take into account two key insights: 1) The quality of the rendering and the hidden information both exert
influence on the generative network, leading to potentially conflicting demands as the network must conceal
hints about the hidden information in certain aspects of the rendering. 2) The weights of the generative
network do not equally contribute to the quality of the GS rendering and exhibit strong sparsity. Inspired by
these insights, in what follows, we introduce an adaptive gradient harmonization strategy to embed hidden
information into specific weight groups of the generative network, where the gradient update requirements for
rendering and hidden information are aligned.

Formally, given the weights Θ ∈ RN , we compute a gradient mask M ∈ RN that indicates whether the
gradients with respect to rendering and hidden embedding are harmonious across all weights:

M = I
(
Cos

(
∂Lrgb

∂Θ
,
∂(Ldec+ + Ldec−)

∂Θ

)
> 0

)
(4)
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where Cos(·, ·) denotes the cosine similarity between the two gradient components, and I is an indicator
function that is equal to 1 if the condition is true and 0 otherwise. Notably, the cosine similarity here is
computed globally to determine the overall alignment of gradients, acting as a global switch for the entire set
of weights. We apply the mask to the gradient as ∂L

∂Θ⊙M when optimizing Θ based on the total loss L, where
⊙ represents the Hadamard product. By doing so, this masking mechanism ensures that either all gradients
are retained or all are discarded based on their global alignment, thereby simplifying the harmonization
process. Effectively, the gradients related to information embedding, which are inconsistent with the objective
of maintaining the rendering quality from the pre-trained generative model that tends to generate high-quality
GS representations, are "masked out" on those conflicting weights.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation We train our model on a filtered subset of the Objaverse dataset Deitke et al. (2023c),
excluding low-quality 3D models such as partial scans and those without textures. This filtering process
results in a final collection of approximately 80K 3D objects. For training, 100 objects are randomly selected,
while a separate test set of 100 unseen objects is reserved for evaluation. We render RGBA images from
40 camera views at a resolution of 256 × 256 for both training and testing. To evaluate the quality of the
recovered hidden information, we assess PSNR, SSIM, and LPIPS. All metrics are calculated on the test
set and averaged across all scenarios and embedded images Chen et al. (2022); Li et al. (2022a); Liang
et al. (2021). For subjective evaluation, 360-degree rotational videos of 3D Gaussians generated by different
methods are rendered for a collection of 30 images. Each of the 30 samples, randomly selected from different
methods, is presented to 20 volunteers who are asked to score based on overall visual quality.

Implementation. Our approach is deployed over an advanced image-to-3DGS model, LGM Tang et al.
(2024), which serves as the Gaussian generator. A simple U-Net is utilized as the decoder for hidden
information. Upon the Gaussian generation foundation, we fine-tune a LoRA Hu et al. (2021) for each
watermark image. This training routine typically necessitates training over N=100 objects for approximately
30 epochs, which takes around 20 minutes, and subsequently, it can be generalized to other unseen objects.
We employ the AdamW optimizer for optimization, with a learning rate of 1e− 4. For hyper-parameters in
Eq. (3), we set the weight λ1 = 0.3, λ2 = 1, λ3 = 0.1 for all experiments.

Table 1: Quantitative comparison in rendering and hidden information recovery.

Method
Rendering Hidden Recovery

PSNR ↑ SSIM ↑ LPIPS ↓ Subj. ↑ PSNR ↑ SSIM ↑ LPIPS ↓ Subj. ↑
Init. Render 20.48 0.8522 0.1181 5.00 N/A N/A N/A N/A

LSB Chang et al. (2003) 20.45 0.8518 0.1185 3.95 8.36 0.2091 0.5379 1.20
DeepStega Baluja (2017) 20.43 0.8513 0.1197 3.21 12.11 0.2847 0.4432 1.83
StegaNeRF Li et al. (2023a) 18.53 0.8362 0.1756 2.30 31.87 0.9659 0.0114 3.25
InstantSplamp (Ours) 20.45 0.8519 0.1189 4.11 32.97 0.9808 0.0082 3.67

4.2 EMBEDDING 2D VISUAL CONTENTS AS HIDDEN INFORMATION

Baseline Models. Since no prior work exists on steganography for Gaussian Splatting, we establish baselines
from 2D image steganography by fine-tuning large generative models with watermarked images. We
implement two methods: a traditional approach, Least Significant Bit (LSB Chang et al. (2003)), and a
deep learning pipeline, DeepStega Baluja (2017)). Additionally, we extend StegaNeRF Li et al. (2023a) by
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Figure 3: Qualitative comparison on the test objects of the Objaverse dataset. Within each column, we show
the rendering images on check pose and and the recovered hidden images.

DeepStega StegaNeRF Ours

Figure 4: Quantitative comparison on widely-used test images by image-to-3D models. Within each column,
we show the rendering and the recovered hidden images.

redesigning its framework to a Gaussian Splatting-based pipeline for embedding recoverable watermarks, as
a watermarking baseline for Gaussian Splatting. These baselines provide essential benchmarks and insights
into the unique challenges of information hiding in Gaussian Splatting.

Tab.1 presents quantitative results from testing on selected objects in the Objaverse dataset. Despite challenges
in recovering embedded information through 2D steganography methods and maintaining rendering quality
with StegaNeRF, our model minimizes the impact on rendering quality, as evidenced by PSNR scores. Fig.3
compares steganography on three objects from the Objaverse dataset, showcasing our model’s ability to retain
the original rendering details while precisely recovering the watermark. These results highlight the superiority
of our approach in balancing information hiding capacity and visual fidelity, a critical factor in practical 3D
steganography applications.
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Our framework has been rigorously tested in real-world image-to-3D deployment scenarios. As shown
in Fig.4, we applied our method to embed watermarks in various prevalent use-cases and compared its
performance to other state-of-the-arts Ye et al. (2023); Wang et al. (2022); Li et al. (2022b; 2021b) to
assess the generalizability of InstantSplamp. Compared to alternative techniques, InstantSplamp consistently
preserves the details of the original, unwatermarked renderings while accurately extracting the watermark,
even for unseen objects Wang et al. (2022); Li et al. (2021a); Zhang et al. (2021); Xu et al. (2022); Ding et al.
(2022). This demonstrates the applicability of our method in practical 3D asset production environments.
Moreover, the model’s ability to generalize to unseen objects underscores its potential for widespread adoption
across industries, like entertainment and design, where protecting intellectual property in 3D assets is crucial.

4.3 EMBEDDING MULTIMODAL CONTENTS AS HIDDEN INFORMATION

We further explore the capabilities of InstantSplamp in integrating multimodal hidden information such
as text, QR codes, audio, and video into generated objects. Compared to traditional image watermarking
techniques, utilizing multimodal data provides a richer and more comprehensive information set. However, it
also introduces the challenge of managing an increased volume of embedded information. To address this, we
enhance the decoder network by implementing a modality-specific decoder for each type of input modality.
This allows for more effective recovery and utilization of the embedded information. Figure 5 illustrates
the successful recovery of multimodal embedded signals from three generated objects, demonstrating the
effectiveness of our approach. We use different metrics to evaluate the quality of recovery for different
modalities: ACC for text embedding recovery, SSIM for QR code watermark recovery, and PSNR for audio
recovery. Our results indicate that these metrics are suitable for assessing the quality of recovered information
across various modalities.

Furthermore, we experiment with embedding a 16-frame video into assets represented by Gaussian represen-
tations. The success of this experiment suggests that the InstantSplamp framework can be easily adapted to
accommodate multimodal information with high recovery performance, all while maintaining the rendering
quality of the generated objects. This flexibility and efficiency in handling multimodal information open up
numerous potential applications for watermarking in generative 3D Gaussian contexts. For instance, this could
be particularly useful in digital rights management, where multimodal watermarks could provide additional
layers of security and authentication. Additionally, in fields like entertainment or education, multimodal
embedding could enable the creation of interactive and enriched content by seamlessly integrating various
types of media into a single 3D object.

4.4 ABLATION STUDIES

Effectiveness of Components In Tab. 2, we present an analysis of the effect of removing each component of
InstantSplamp. This analysis is crucial in understanding the contribution of each component to the overall
performance of the system. The variant termed as No All Components discards all the proposed additions
to the system. This version only retains the fundamental rendering and steganographic loss, providing a
baseline for comparison. On the other hand, the variant No DINOv2 eliminates the newly introduced DINOv2.
This component is used as the feature extractor for the hidden image. Instead of DINOv2, this variant
employs the CLIP Image encoder, providing a different approach to feature extraction. The variants No Cross
Attention and No Gradient Harmoni. respectively eliminate the cross-attention of hidden information on
the intermediate features of Gaussian generation and the newly introduced gradient harmonization strategy.
Through this analysis, it becomes clear that when any component is removed, the performance drops
accordingly, underscoring the effectiveness of our design in each component.

Robustness Analysis As shown in Fig.6, we can observe that InstantSplamp is robust against common
perturbations, such as JPEG compression and Gaussian noise. We provide the SSIM of rendered views
(blue) and recovered hidden images (green). The curves are representative of mean accuracies that have been
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Figure 5: Quantitative results of InstantSplamp with multimodal information being embedded.

Table 2: Ablation study on the proposed key
components of InstantSplamp.

Method
Rendering Hidden Recovery

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
No All Components 18.39 0.7904 27.32 0.8870
No DINOv2 20.04 0.8507 30.60 0.9695
No Cross Attention 19.66 0.8395 30.15 0.9669
No Gradient Harmoni. 20.11 0.8529 31.17 0.9629
Full Model (Ours) 20.45 0.8519 32.97 0.9808
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Figure 6: Robustness Analysis over (a) JPEG compression
and (b) Gaussian blur.

computed across selected scenes. The shaded regions, on the other hand, signify a range of 0.5 standard
deviation. This suggests a certain degree of variability within the data even with the limited data quality Pan
et al. (2023). The results of this analysis strongly suggest that the ability of the InstantSplamp to recover hidden
information remains consistent and resilient, even when exposed to a wide variety of JPEG compression
levels and deteriorations caused by Gaussian blur. This robustness extends the practical applicability of
InstantSplamp to real-world scenarios where image manipulations and transformations are common, ensuring
the integrity of embedded information across various digital environments and transmission channels.

5 CONCLUSION

This paper addresses the challenge of integrating steganographic information into 3D content generation,
focusing on emerging techniques like Gaussian Splatting. We introduce InstantSplamp (Instant Spltting
Stamp), a novel framework that seamlessly embeds copyright or proprietary information into the generation
process of 3D assets while maintaining original visual quality. Unlike existing methods that require time-
consuming per-scene watermark optimization, InstantSplamp operates without introducing additional time
costs, making it practical for large-scale deployment. Our approach leverages visual foundation models
to subtly inject hidden information during asset generation, enabling effective watermark embedding and
recovery across various 3D assets. InstantSplamp has been extensively tested across various scenarios,
showcasing its capability to embed diverse hidden information while optimizing rendering quality, hiding
fidelity, and processing efficiency. By significantly reducing watermarking overhead, InstantSplamp enables
generalizable, scalable and usable applications in the growing field of 3D asset generation and protection.
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