
A Further Details on the Experiments393

In this section, we provide further details on the numerical experiments reported in Section 5.394

A.1 Details of Section 5.1395

In Section 5.1, we generate the synthetic datasets according to Model 1 with N = 10, d = 6, ri = 6,396

and ni = 200 for each 1  i  10. Each D⇤
i is an orthogonal matrix with the first rg = 3 columns397

shared with every other client and the last rli = 3 columns unique to themselves. Each X⇤
i is first398

generated from a Gaussian-Bernoulli distribution where each entry is non-zero with a probability 0.2.399

Then, X⇤
i is further truncated, where all the entries (X⇤

i)(j,k) with | (X⇤
i)(j,k) | < 0.3 are replaced by400

(X⇤
i)(j,k) = 0.3⇥ sign((X⇤

i)(j,k)).401

We use the orthogonal DL algorithm (Algorithm 4) introduced in (Liang et al., 2022, Algorithm 1) as402

the local DL algorithm for each client. This algorithm is simple to implement and comes equipped403

with a strong convergence guarantee (see (Liang et al., 2022, Theorem 1)). Here HT⇣(·) denotes the404

hard-thresholding operator at level ⇣, which is defined as:405

(HT⇣(A))(i,j) =

⇢
A(i,j) if |A(i,j)| � ⇣,

0 if |A(i,j)| < ⇣.

Specifically, we use ⇣ = 0.15 for the experiments in Section 5.1. Polar(·) denotes the polar406

decomposition operater, which is defined as Polar(A) = UAV>
A, where UA⌃AV>

A is the Singular407

Value Decomposition (SVD) of A.408

Algorithm 4 Alternating minimization for orthogonal dictionary learning (Liang et al. (2022))

1: Input: Yi, D
(t)
i

2: Set X(t)
i = HT⇣

�
D(t)i>Yi

�

3: Set D(t+1)
i = Polar

⇣
YiX

(t)>
i

⌘

4: return D(t+1)
i

For a fair comparison, we initialize both strategies using the same {D(0)
i }

N
i=1, which is obtained by409

iteratively calling Algorithm 4 with a random initial dictionary and shrinking thresholds ⇣. For a410

detailed discussion on such an initialization scheme we refer the reader to Liang et al. (2022).411

A.2 Details of Section 5.2412

In section 5.2, we aim to learn a dictionary with imbalanced data collected from MNIST dataset413

(LeCun et al., 2010). Specifically, we consider N = 10 clients, each with 500 handwritten images.414

Each image is comprised of 28 ⇥ 28 pixels. Instead of randomly assigning images, we construct415

dataset i such that it contains 450 images of digit i and 50 images of other digits. Here client 10416

corresponds to digit 0. After vectorizing each image into a 784 ⇥ 1 one-dimension signal, our417

imbalanced dataset contains 10 matrices Yi 2 R784⇥500
, i = 1, . . . , 10.418

We first use Algorithm 4 to learn an orthogonal dictionary for each client, using their own imbalanced419

dataset. For client i, given the output of Algorithm 4 after T iterations D(T)
i , we reconstruct a420

new signal y using the top k atoms according to the following steps: first, we solve a sparse421

coding problem to find the sparse code x such that y ⇡ D(T)
i x. This can be achieved by Step 2422

in Algorithm 4. Second, we find the top k entries in x that have the largest magnitude: x(↵1,1),423

x(↵2,1), · · · ,x(↵k,1). Finally, we calculate the reconstructed signal ỹ as424

ỹ =

kX

j=1

x(↵h,1)

⇣
D(T)

i

⌘

↵h

.

The second row of Figure 3 is generated by the above procedure with k = 5 using the dictionary425

learned by Client 1. The third row of Figure 3 corresponds to the reconstructed images using the426

output of PerMA.427

12

A.3 Details of Section 5.3428

Our considered dataset in section 5.3 contains 62 frames, each of which is a 480 ⇥ 640 ⇥ 3 RGB429

image. We consider each frame as one client (N = 62). After dividing each frame into 40 ⇥ 40430

patches, we obtain each data matrix Yi 2 R576⇥1600. Then we apply PerMA to {Yi}
62
i=1 with431

ri = 576 for all i and r
g
= 30. Consider D(T)

i =

h
Dg,(T) Dl,(T)

i

i
, which is the output of PerMA432

for client i. We reconstruct each Yi using the procedure described in the previous section with433

k = 50. Specifically, we separate the contribution of Dg,(T) from Dl,(T)
i . Consider the reconstructed434

matrix Ỹi as435

Ỹi =

h
Dg,(T) Dl,(T)

i

i Xg
i

Xl
i

�
= Dg,(T)Xg

i| {z }
Ỹg

i

+Dl,(T)
i Xl

i| {z }
Ỹl

i

The second column and the third column of Figure 4 correspond to reconstructed results of Ỹg
i and436

Ỹl
i respectively. We can see clear separation of the background (which is shared among all frames)437

from the moving objects (which is unique to each frame).438

One notable difference between this experiment and the previous one is in the choice of the DL439

algorithm Ai. To provide more flexibility, we relax the orthogonality condition for the dictionary.440

Therefore, we use the alternating minimization algorithm introduced in Arora et al. (2015) for each441

client (see Algorithm 5). The main difference between this algorithm and Algorithm 4 is that the442

polar decomposition step in Algorithm 4 is replaced by a single iteration of the gradient descent443

applied to the loss function L(D,X) = kDX�Yk
2
F .444

Algorithm 5 Alternating minimization for general dictionary learning (Arora et al. (2015))

1: Input: Yi, D
(t)
i

2: Set X(t)
i = HT⇣

⇣
D(t)>

i Yi

⌘

3: Set D(t+1)
i = D(t)

i � 2⌘

⇣
D(t)

i X(t)
i �Yi

⌘
X(t)>

i

4: return D(t+1)
i

Even with the computational saving brought up by Algorithm 5, the runtime significantly slows down445

for PerMA due to large N , d, and p. Here we report a practical trick to speed up PerMA, which is446

a local refinement procedure (Algorithm 6) added immediately before local_update (Step 10 of447

Algorithm 1). At a high level, local_dictionary_refinement first finds the local residual data448

matrix Yl
i by removing the contribution of the global dictionary. Then it iteratively refines the local449

dictionary with respect to Yl
i. We observed that local_dictionary_refinement significantly450

improves the local reconstruction quality. We leave its theoretical analysis as a possible direction for451

future work.452

Algorithm 6 local_dictionary_refinement

1: Input: D(t)
i =

h
Dg,(t) Dl,(t)

i

i
,Yi

2: Find

Xg

i
Xl

i

�
such that Yi ⇡

h
Dg,(t) Dl,(t)

i

i Xg
i

Xl
i

�

// Solving a sparse coding problem

3: Set Yl
i = Yi �Dg,(t)Xg

i

4: Set Drefine,(0)
i = Dl,(t)

i .
5: for ⌧ = 0, 1, ..., T

refine
� 1 do

6: Set Drefine,(⌧+1)
i = Ai

⇣
Yl

i,D
refine,(⌧)
i

⌘
// Improving local dictionary

7: end for
8: return Drefine,(T refine)

i as refined Dl,(t)
i

13

B Further Discussion on Linearly Convergent Algorithms453

In this section, we discuss a linearly convergent DL algorithm that satisfies the conditions of our454

Theorem 2. In particular, the next theorem is adapted from (Arora et al., 2015, Theorem 12) and455

shows that a modified variant of Algorithm 5 introduced in (Arora et al., 2015, Algorithm 5) is indeed456

linearly-convergent.457

Theorem 3 (Linear convergence of Algorithm 5 in Arora et al. (2015)). Suppose that the data matrix458

satisfies Y = D⇤X⇤, where D⇤ is an µ-incoherent dictionary and the sparse code X⇤ satisfies the459

generative model introduced in Section 1.2 and Section 4.1 of Arora et al. (2015). For any initial460

dictionary kD(0)
k2  1, Algorithm 5 in Arora et al. (2015) is (�, ⇢,)-linearly convergent with461

� = O(1/ log d), ⇢ 2 (1/2, 1), and = O(d
�!(1)

).462

Algorithm 5 in Arora et al. (2015) is a refinement of Algorithm 5, where the error is further reduced463

by projecting out the components along the column currently being updated. For brevity, we do464

not discuss the exact implementation of the algorithm; an interested reader may refer to Arora et al.465

(2015) for more details. Indeed, we have observed in our experiments that the additional projection466

step does not provide a significant benefit over Algorithm 5.467

C Proof of Theorems468

C.1 Proof of Theorem 1469

To begin with, we establish a triangular inequality for d1,2(·, ·), which will be important in our470

subsequent arguments:471

Lemma 1 (Triangular inequality for d1,2(·, ·)). For any dictionary D1, D2, D3 2 Rd⇥r, we have472

d1,2 (D1,D2)  d1,2 (D1,D3) + d1,2 (D3,D2) (13)

Proof. Suppose ⇧1,3 and ⇧3,2 satisfy d1,2 (D1,D3) = kD1⇧1,3 �D3k1,2 and d1,2 (D3,D2) =473

kD3 �D2⇧3,2k1,2. Then we have474

d1,2 (D1,D3) + d1,2 (D3,D2) = kD1⇧1,3 �D3k1,2 + kD3 �D2⇧3,2k1,2

� kD1⇧1,3 �D2⇧3,2k1,2

� d1,2 (D1,D2) .

(14)

475

Given how the directed graph G is constructed and modified, any directed path from s to t will be476

of the form P = s ! (D(0)
1)↵(1) ! (D(0)

2)↵(2) ! · · · ! (D(0)
N)↵(N) ! t. Specifically, each layer477

(or client) contributes exactly one node (or atom), and the path is determined by ↵(·) : [N] ! [r].478

Recall that D⇤
i =

⇥
Dg⇤ Dl⇤

i

⇤
for every 1  i  N . Assume, without loss of generality, that for479

every client 1  i  N ,480

Iri⇥ri = arg min
⇧2P(ri)

���D⇤
i⇧�D(0)

i

���
1,2

. (15)

In other words, the first rg atoms in the initial dictionaries {D(0)
i }

N
i=1 are aligned with the global481

dictionary. Now consider the special path P
⇤
j for 1  j  r

g defined as482

P
⇤
j = s ! (D(0)

1)j ! (D(0)
2)j ! · · · ! (D(0)

N)j ! t. (16)

To prove that Algorithm 2 correctly selects and aligns global atoms from clients, it suffices to show483

that {P⇤
j }

rg
j=1 are the top-rg shortest paths from s to t in G. The length of the path P

⇤
j can be bounded484

14

as485

L
�
P

⇤
j

�
=

N�1X

i=1

d2

⇣
(D(0)

i)j , (D
(0)
i+1)j

⌘

=

N�1X

i=1

min

n
k(D(0)

i)j � (D(0)
i+1)jk2, k(D

(0)
i)j + (D(0)

i+1)jk2

o



N�1X

i=1

k(D(0)
i)j � (D(0)

i+1)jk2



N�1X

i=1

k(D(0)
i)j � (Dg⇤

)jk2 + k(D(0)
i+1)j � (Dg⇤

)jk2



N�1X

i=1

(✏i + ✏i+1)

 2

NX

i=1

✏i.

(17)

We move on to prove that all the other paths from s to t will have a distance longer than 2
PN

i=1 ✏i.486

Consider a general directed path P = s ! (D(0)
1)↵(1) ! (D(0)

2)↵(2) ! · · · ! (D(0)
N)↵(N) ! t that487

is not in {P
⇤
j }

rg
j=1. Based on whether or not P contains atoms that align with the true global ground488

atoms, there are two situations:489

Case 1: Suppose there exists 1  i  N such that ↵(i)  r
g. Given Model 1 and the assumed490

equality (15), we know that for layer i, P contains a global atom. Since P is not in {P
⇤
j }

rg
j=1, there491

must exist k 6= i such that ↵(k) 6= ↵(i). As a result, we have492

L(P)

(a)
� d1,2

⇣
(D(0)

i)↵(i), (D
(0)
k)↵(k)

⌘

(b)
� min

�
k(D⇤

i)↵(i) � (D⇤
k)↵(k)k2, (D

⇤
i)↵(i) + (D⇤

k)↵(k)k2

� k(D⇤
i)↵(i) � (D(0)

i)↵(i)k2 � k(D⇤
k)↵(k) � (D(0)

k)↵(k)k2

(c)
�

q
2� 2

��⌦(D⇤
k)↵(i), (D

⇤
k)↵(k)

↵��� 2 max
1iN

✏i

(d)
�

r
2� 2

µ
p
d
� 2 max

1iN
✏i

(e)
� 2

NX

i=1

✏
g
i

(18)

Here (a) and (b) are due to Lemma 1, (c) is due to assumed equality (15), (d) is due to the µ-493

incoherency of D⇤
k, and finally (e) is given by the assumption of Theorem 1.494

Case 2: Suppose ↵(i) > r
g for all 1  i  N , which means that the path P495

only uses approximations to local atoms. Consider the ground truth of these approxi-496

mations, (D⇤
1)↵(1), (D

⇤
2)↵(2), ..., (D

⇤
N)↵(N). There must exist 1  i, j  N such that497

d1,2

�
(D⇤

i)↵(i), (D
⇤
j)↵(j)

�
� �. Otherwise, it is easy to see that {Dl⇤

i }
N
i=1 would not be �-identifiable498

15

because any (D⇤
i)↵(i) will satisfy (6). As a result, we have the following:499

L(P) � d1,2

⇣
(D(0)

i)↵(i), (D
(0)
j)↵(j)

⌘

� d1,2

�
(D⇤

i)↵(i), (D
⇤
j)↵(j)

�
� k(D⇤

i)↵(i) � (D(0)
i)↵(i)k2 � k(D⇤

j)↵(j) � (D(0)
j)↵(j)k2

� � � 2max
i
✏i

� 2

NX

i=1

✏i

(19)
So we have shown that {P⇤

j }
rg
j=1 are the top-rg shortest paths from s to t in G. Moreover, it is easy500

to show that sign
⇣D

(D(0)
1)j , (D

(0)
i)j

E⌘
= 1 for small enough {✏i}

N
i=1. Therefore, the proposed501

algorithm correctly recovers the global dictionaries (with the correct identity permutation). Finally,502

we have Dg,(0)
=

1
N

PN
i=1(D

(0)
i)1:rg , which leads to:503

d1,2

⇣
Dg,(0)

,Dg⇤
⌘
 max

1jrg

�����
1

N

NX

i=1

(D(0)
i)j � (Dg⇤

)j

�����
2

 max
1jrg

1

N

NX

i=1

���(D(0)
i)j � (Dg⇤

)j

���
2

 max
1jrg

1

N

NX

i=1

✏i

=
1

N

NX

i=1

✏i.

(20)

This completes the proof of Theorem 1. ⇤504

C.2 Proof of Theorem 2505

Throughout this section, we define:506

⇢̄ :=
1

N

NX

i=1

⇢i, ̄ :=
1

N

NX

i=1

 i. (21)

We will prove the convergence of the global dictionary in Theorem 2 by proving the following507

induction: at each t � 1, we have508

d1,2

⇣
Dg,(t+1)

,Dg⇤
⌘
 ⇢̄d1,2

⇣
Dg,(t)

,Dg⇤
⌘
+ ̄. (22)

At the beginning of communication round t, each client i performs local_update to get D(t+1)
i509

given
h
Dg,(t) Dl,(t)

i

i
. Without loss of generality, we assume510

Iri⇥ri = arg min
⇧2P(ri)

���D⇤
i⇧�

h
Dg,(t) Dl,(t)

i

i���
1,2

, (23)

Iri⇥ri = arg min
⇧2P(ri)

���D⇤
i⇧�D(t+1)

i

���
1,2

. (24)

Assumed equalities (23) and (24) imply that the permutation matrix that aligns the input and the511

output of Ai is also Iri⇥ri . Specifically, the linear convergence property of Ai and Theorem 1 thus512

suggest:513

����
⇣
D(t+1)

i

⌘

j
� (D⇤

i)j

����
2

 ⇢i

����
⇣
Dg,(t)

⌘

j
� (D⇤

i)j

����
2

+ i 81  j  r
g
, 1  i  N. (25)

16

However, our algorithm is unaware of this trivial alignment. We will next show the remaining steps514

in local_update correctly recovers the identity permutation. The proof is very similar to the proof515

of Theorem 1 since we are essentially running Algorithm 2 on a two-layer G. For every 1  i  N ,516

1  j  r
g , we have517

d1,2

✓⇣
D(t+1)

i

⌘

j
,

⇣
Dg,(t)

⌘

j

◆
 d1,2

✓⇣
D(t+1)

i

⌘

j
, (D⇤

i)j

◆
+ d1,2

✓
(D⇤

i)j ,

⇣
Dg,(t)

⌘

j

◆

 2�i.

(26)

Meanwhile for k 6= j,518

d1,2

✓⇣
D(t+1)

i

⌘

k
,

⇣
Dg,(t)

⌘

j

◆

� d1,2

⇣
(D⇤

i)k , (D
⇤
i)j

⌘
� d1,2

⇣⇣
D(t+1)

i

⌘

k
, (D⇤

i)k

⌘
� d1,2

✓
(D⇤

i)j ,

⇣
Dg,(t)

⌘

j

◆

�

s

2�
2µ
p
d
� 2�i.

� 2�i.

(27)

As a result, we successfully recover the identity permutation, which implies519

����
⇣
Dg,(t+1)

i

⌘

j
�
�
Dg⇤

i

�
j

����
2

 ⇢i

����
⇣
Dg,(t)

⌘

j
�
�
Dg⇤

i

�
j

����
2

+ i 81  j  r
g
, 1  i  N. (28)

Finally, the aggregation step (Step 13 in Algorithm 1) gives:520

d1,2

⇣
Dg,(t+1)

,Dg⇤
⌘


�����
1

N

NX

i=1

Dg,(t+1)
i �Dg⇤

�����
1,2

= max
1jrg

������

1

N

NX

i=1

Dg,(t+1)
i

!

j

� (Dg⇤
)j

������

 max
1jrg

1

N

NX

i=1

����
⇣
Dg,(t+1)

i

⌘

j
�
�
Dg⇤

i

�
j

����
2

 max
1jrg

1

N

NX

i=1

✓
⇢i

����
⇣
Dg,(t)

⌘

j
�
�
Dg⇤

i

�
j

����
2

+ i

◆


1

N

NX

i=1

⇣
⇢id1,2

⇣
Dg,(t)

,Dg⇤
⌘
+ i

⌘

= ⇢̄d1,2

⇣
Dg,(t)

,Dg⇤
⌘
+ ̄.

(29)

As a result, we prove the induction (22) for all 0  t  T � 1. Inequality (12) is a by-product of the521

accurate separation of global and local atoms and can be proved by similar arguments. The proof is522

hence complete. ⇤523

17

	Introduction
	Related Works

	PerDL: Personalized Dictionary Learning
	Meta-algorithm of Solving PerDL
	Global Matching and Local Updates

	Theoretical Guarantees
	Numerical Experiments
	Synthetic Dataset
	Training with Imbalanced Data
	Surveillance Video Dataset

	Conclusion and Future Directions
	Further Details on the Experiments
	Details of Section 5.1
	Details of Section 5.2
	Details of Section 5.3

	Further Discussion on Linearly Convergent Algorithms
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

