
AW-Opt: Learning Robotic Skills with Imitation and
Reinforcement at Scale

Yao Lu1, Karol Hausman1, Yevgen Chebotar1, Mengyuan Yan2, Eric Jang 1,Alexander Herzog2,
Ted Xiao1, Alex Irpan1, Mohi Khansari2, Dmitry Kalashnikov1, Sergey Levine1,3

1Robotics at Google 2X, The Moonshot Factory 3UC Berkeley

A Appendix

Figure 1: Illustration of the navigation task, based on LIDAR observations.

A.1 Experimental results with navigation task

Figure 2: Comparison of QT-Opt, AWAC, AW-Opt on LIDAR-
based navigation task.

For an additional test of the proposed
algorithm, we compared QT-Opt,
AWAC and AW-Opt on a point-to-
point LIDAR-based navigation task
(Task 6) (shown in Fig. 1) follow-
ing the navigation training configura-
tion in [? ]. This task is significantly
simpler than the image-based manip-
ulation tasks, since the observation
space is lower-dimensional (240 LI-
DAR points and a 2D goal, rather
than 472 X 472 image), and the action space is smaller (a navigation twist with 2 degrees of free-
dom). Therefore, all three algorithms attain reasonable performance. However, as expected, AW-
Opt and QT-Opt converge to significantly better final performance: 90% success rate at reaching the
goal versus 70% for AWAC, and AW-Opt attains much better performance after offline pretraining
compared to QT-Opt (20% vs 0% success rate), allowing it to learn the task up to the 90% success
rate about three times faster than QT-Opt during online finetuning. AWAC requires a similar number
of transitions to converge, but reaches a significantly worse final level of performance.

A.2 Ablation study for episode-level random switcher

Figure 3: Comparison of different splits for Task
1 and Task 2.

In Section ??, we compared different exploration
strategies and concluded that episode-level random
switcher is the best strategy. In this section, we fur-
ther compare the choice of ratio for actor vs. critic-
based exploration. The default ratio is 80%/20%
(critic/actor). Fig. 3 presents a comparison of dif-
ferent splits, on Task 1 and Task 3. Each run was
repeated three times, with each of the following
splits: 20%/80%, 50%/50%, 60%/40%, 70%/30%,
80%/20%, 90%/10%. For Task 1, we see similar re-
sults for the last three splits, while for Task 2, we see
better results with the 30%/70% split.

5th Conference on Robot Learning (CoRL 2021), London, UK.



A.3 Experimental results with negative data
In Table ??, we see that including “negatives” in the
offline pretraining data for QT-Opt significantly improves QT-Opt’s performance on Task 3 and Task
5, where the data was collected using a scripted policy. The negatives and positives are collected
using the same scripted policy, with the positives treated as “successful demonstrations.” We might
wonder if an analogous trend would hold for other tasks, where human demonstrations are used
as positives. In these cases, there are no corresponding negatives, but we can supply additional
negatives by using a random policy. To examine the effect of these synthetic negatives, we evaluate
Task 4 with either 10,000 or 100,000 additional random negatives. The results are shown in Fig 4.
However, in this case, we see that QT-Opt is still not able to make any progress, remaining at 0%
success rate throughout. This is not surprising. In the case of Task 3 and Task 5, the randomized
scripted policy that collects the data has broad coverage, which means that many different actions are
in-distribution. The “negatives” come from the same distribution as the positives (they are collected
by the same scripted policy). Such a condition is known to be favorable for offline reinforcement
learning [? ], since when the data distribution is broad, fewer actions are out of distribution. Indeed,
this is precisely the distribution used in the original QT-Opt work [? ]. However, in the case of Task
4, the distribution of positives is very narrow. We cannot add negatives from the same distribution
(since the distribution is over successful behaviors), which forces us to add negatives from a different
distribution. While this does provide for broader coverage, it does not provide broader coverage in
the region surrounding the positive examples, and therefore does not relieve the distributional shift
challenge faced by offline RL.

A.4 Action space and loss function

Figure 4: Comparison of QT-Opt offline training on Task 4
with only positives, positives and 10,000 negatives, and pos-
itives and 100,000 negatives. We can see that in all cases,
QT-Opt makes no progress in this case. However, we can see
that AW-Opt learns well even without any negatives.

For Task 1 and Task 3, the robot is oper-
ated in a 7D action space, namely: x, y,
z, vertical rotation θ, open gripper, close
gripper, terminate episode. The first 4 sub-
actions are continuous while the last 3 sub-
actions are discrete. For Task 2, Task 4 and
Task 5, the action space is slightly differ-
ent. It is operated on a 8D action space,
namely: x, y, z angle axis x, angle axis y,
angle axis z, gripper closedness, terminate
episode.The first 7 subactions are contin-
uous while the last subaction is discrete.
The actor loss function considers both discrete and continuous subactions and also applies a weight
on each one of the subaction. The full equation can be formulated as the following.

Table 1: Loss weights for
Task1.

Subaction Weight
x 33.3
y 33.3
z 33.3
θ 5.5
discrete 1.0

Table 2: Loss weights for Task
2, Task 4, Task 5.

Subaction Weight
x 6.0
y 6.0
z 6.0
angle axis x 3.0
angle axis y 3.0
angle axis z 3.0
gripper closedness 1.0
discrete 1.0

LA(at, Aφi
(st)) =

∑K
k=0 wkMSE(atk, Aφi

(st)k) · 1continuous +
wdcross entropy(at, Aφi

(st)) · 1discrete

where K is the total number of subactions. wk is the weight to bal-
ance between each subaction. wd is the weight for discrete subac-
tions.

For Task1, the weights are summarized in Table. 1. For Task 2, Task
4, Task 5, the weights are summarized in Table. 2

A.5 Network architecture

We apply exactly the same network architecture as QT-Opt[? ] as
the critic network for all RL algorithms and in all experiments we
conducted. Actor network also uses the same backbone as the critic
network. The difference is that it does not have action input and in-
stead of outputting a single Q value, it outputs the action distribution
(mean and variance of Gaussian distribution for continuous subac-
tions and a one hot vector of the discrete actions).

During the training, critic network and actor network do not share
weights between each other. They are trained separately.

2



We plan to open source AW-Opt algorithm once the paper is pub-
lished.

A.6 Policy Action Selection Runtime

Table 3: Run time comparison between
QT-Opt, AWAC, AW-Opt on different
robots.

Algorithm Kuka arm Pica
QT-Opt 125ms 137ms
AWAC 42ms 48ms
AW-Opt 42ms 48ms

A significant limitation of QT-Opt and other methods that
do not employ an actor in continuous action spaces is that
action-selection at evaluation time requires an optimiza-
tion with respect to the critic. In this section, we compare
the run time of action selection for QT-Opt, AWAC, AW-
Opt on different robots. Both AWAC and AW-Opt use an
actor network after training, while QT-Opt requires opti-
mization over actions with CEM. As we can see in Table 3,
this results in AW-Opt and AWAC selecting actions about
three times faster than QT-Opt. We measure the inference time on a Quadro P1000 GPU.

A.7 Datasets

In the following we summarize the dataset size and type for different tasks.

Table 4: Dataset information for different tasks.

Offline data sim/real Offline Positive/ Finetuning sim/real
type data size Negative ratio data size

Task 1 off-policy simulation 1000 30%/70% 20K simulation
Task 2 demonstration simulation 120 100%/0% 120K simulation
Task 3 off-policy real 320K 40%/60% 0 N/A
Task 4 demonstration real 300 100%/0% 150K simulation +

RL cyclegan
Task 5 demonstration real 300 100%/0% 200K simulation +

RL cyclegan
Task 6 off-policy sim 100 100%/0% 1K simulation

3


	Appendix
	Experimental results with navigation task
	Ablation study for episode-level random switcher
	Experimental results with negative data
	Action space and loss function
	Network architecture
	Policy Action Selection Runtime
	Datasets


