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Figure 1: Ten shapes of metals for synthesizing metal-corrupted measurements in the DeepLesion [1]
dataset. These metals are supposed as Titanium. The white regions denote metals.

1 Additional Details of Datasets

In this work, we perform experiments on four datasets: DeepLesion [1], XCOM [2], and our Walnut
Sample. DeepLesion and XCOM are simulation datasets, while Walnut Sample and Mouse Thigh are
real-world datasets. Note that our method is fully unsupervised, and thus all the data are exclusively
used for testing purposes.

DeepLesion. To simulate metal-corrupted measurements in the DeepLesion dataset [1], we follow
the pipelines outlined in [4, 5, 6]. For our experiments, we extract 200 2D images from the DeepLesion
dataset as test GT samples [1]. As depicted in Fig. 1, we leverage ten shapes of metallic implants
from [4, 5, 6] and consider them Titanium. To simulate the X-ray source, we employ a polychromatic
X-ray with an energy range of [20, 120] KeV and a minimum energy unit of 1 KeV. The number of
photons emitted by the X-ray source is set to 2×107. The normalized energy spectrum η of the X-ray
source is illustrated in Fig. 2 (Left). We adopt an equiangular fan-beam CT acquisition geometry,
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Figure 2: (Left) The simulated spectrum within an energy range of [20, 120] for synthesizing metal-
corrupted measurements of the DeepLesion [1] and XCOM [2] datasets. The spectrums estimated
within the energy ranges of [0, 100] and [0, 60] estimated by the SPEKTR toolkit [3] for the real
walnut sample (Middle) and mouse thigh (Right).

Table 1: Detailed parameters of the acquisition geometry for the four datasets.

Parameters
Simulation Datasets Real Datasets

DeepLesion [1] XCOM [2] Walnut Mouse Thigh

Type of geometry 2D fan-beam 2D fan-beam 2D fan-beam 3D cone-beam

Source Voltage (kV) 120 120 100 60

Source Current (uA) - - 200 200

Exposure Time (ms) - - 276 730

Image size 256×256 512×512 650×650 200×200×150

Voxel size (mm) 1×1 0.8×0.8 0.05×0.05 0.06×0.06×0.06

Angle range (◦) [0, 360) [0, 360) [0, 360) [0, 360)

The number of the angles 360 984 720 900

Angular spacing (◦) 0.1 0.057 - -

Detector spacing (mm) - - 0.069 0.069

Distance from source to center (mm) 362 743 92.602 92.602

Distance from center to detector (mm) 362 743 65.946 65.946

and the detailed parameters are provided in Table 1. Additionally, we incorporate Poisson noise and
consider the partial volume effect in the sinogram domain during the simulation process.

XCOM. For the XCOM dataset [2], we use two samples provided by Zhang et al. [5]. These two
cases are simulated using two 2D clean CT images sourced from the XCOM [2] database. Zhang et
al. [5] consider a polychromatic X-ray source with an energy range of [20, 120] KeV and a minimum
energy unit of 1 KeV. The corresponding normalized energy spectrum η is depicted in Fig. 2 (Left).
In oder to generate metal-corrupted sinograms, an equiangular fan-beam CT acquisition geometry
is employed, and the geometry parameters are specified in Table 1. Similar to the DeepLesion [1]
dataset, Zhang et al. [5] also simulate Poisson noise and consider the partial volume effect in the
sinogram domain during the simulation process.

Walnut Sample. To assess the performance of our proposed method on real CT data, we employ a
commercial Bruker SKYSCAN 1276 micro-CT scanner to scan a walnut sample that contains a metal
paper clip. Detailed parameters of the acquisition geometry can be found in Table 1. To estimate
the X-ray spectrum of the micro-CT scanner, we leverage the SPEKTR toolkit [3]. The estimated
spectrum is illustrated in Fig. 2 (Middle).

Mouse Thigh. We also scan a mouse thigh containing a metal intramedullary needle on the same
micro-CT scanner. This sample is 3D cone-beam data. Detailed parameters of the acquisition
geometry are shown in Table 1. We leverage the SPEKTR toolkit [3] to estimate the X-ray spectrum
of the micro-CT scanner. The estimated spectrum is illustrated in Fig. 2 (Right).
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2 Additional Details of Baselines

In our experiments, we compare our proposed method against eight baseline MAR approaches.
Notably, for the five DL-based methods, we evaluate their performance using the pre-trained models
provided by the respective authors.

FBP. The FBP [7] is a conventional approach used for reconstructing CT images. It involves
re-projecting the acquired sinogram data onto the image domain using the corresponding projection
angles and geometric parameters to obtain an approximate estimate of the unknown image. In our
experiments, we use the in-build function ifanbem in MATLAB (https://ww2.mathworks.cn/
help/images/ref/ifanbeam.html?requestedDomain=cn).

LI. A simple strategy to mitigate metal artifacts in CT imaging involves the direct linear interpola-
tion of the sinogram [8] to fill in the regions affected by metal. This approach does not require any
network training but may result in imperfect sinogram completion, which in turn could introduce un-
desired artifacts in the reconstructed image. In our experiments, we use the implementation provided
by Zhang et al. [5] (https://github.com/yanbozhang007/CNN-MAR/blob/master/cnnmar).

NMAR. The NMAR [9] introduces a generalized normalization technique that extends previously
developed interpolation-based MAR techniques (e.g., LI [8]), which also does not require any
network training. Specifically, it normalizes the projections before interpolation based on forward
projections of a prior image obtained through multi-threshold segmentation of the initial image. In
our experiments, we use the implementation provided by Zhang et al. [5] (https://github.com/
yanbozhang007/CNN-MAR/tree/master/cnnmar).

CNN-MAR. Zhang et al. [5] proposed a CNN-based MAR framework, which uses a CNN to
estimate a prior image and subsequently apply a sinogram correction. However, despite the strong
representation ability of CNNs, these approaches are still susceptible to secondary artifacts resulting
from inconsistent sinograms. In our experiments, we use its official implementation and pre-trained
model (https://github.com/yanbozhang007/CNN-MAR/tree/master/cnnmar).

DICDNet. Wang et al. [10] propose a deep interpretable convolutional dictionary network (DICD-
Net) for the MAR task, which explicitly formulates the prior structures underlying metal artifacts in
CT images as a convolutional dictionary model. In our experiments, we use its official implementation
and pre-trained model (https://github.com/hongwang01/DICDNet/tree/main).

ACDNet. Similarly to DICDNet [10], the adaptive convolutional dictionary network (ACDNet)
[11] explicitly encodes the prior observations underlying the MAR task into an adaptive convolutional
dictionary network. In our experiments, we use its official implementation and pre-trained model
(https://github.com/hongwang01/ACDNet).

ADN. The ADN [4] is an unsupervised learning approach for the MAR problem. Specifically, it
takes unpaired metal-corrupted and clean CT images as inputs to learn the transformation between
these two distributions. In our experiments, we use its official implementation and pre-trained model
(https://github.com/liaohaofu/adn/tree/master).

Score-MAR. Song et al. [12] demonstrated that unconditional diffusion models can be adapted
to various inverse problems, such as the MAR. Specifically, it learns the prior distribution of metal-
free CT images with a generative model in order to infer the lost sinogram in the metal-affected
regions. In our experiments, we use its official implementation and pre-trained model (https:
//github.com/yang-song/score_inverse_problems).

3 Additional Visual Results

Figs. 3, 4, 5, 6, and 7 demonstrate some additional visual results. We observe that the proposed
Polyner generally obtains the best MAR results.
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4 Broader Impacts

Our Polyner is expected to have significant broader impacts in the field of medical imaging. By
effectively reducing metal artifacts in CT scans, our research has the potential to improve diagnostic
accuracy, leading to more precise diagnoses and enhanced patient care. However, it is important to
address potential limitations and concerns, such as the possibility of introducing false positive or
negative results. Thorough evaluation and validation of our method is crucial to ensure its reliability
and minimize any adverse effects. Overall, our work contributes to advancing medical imaging
technology and has the potential to positively impact healthcare.
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Figure 3: (Left) A sample among 2D projections of a mouse thigh containing a metal intramedullary
needle scanned by the micro-CT scanner. (Right) Qualitative results of FDK [13] and our Polyner on
the sample. Note that the acquisition geometry is the 3D cone beam. The reconstructed images have
a size of 200×200×150. Our Polyner takes about 32 minutes on a single NVIDIA RTX TITAN GPU.
The red regions denote the metal needle tubing. This data collection is approved ethically.
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Figure 4: Qualitative results of the compared methods on a sample (#74) of DeepLesion [1] dataset.
The white regions denote metals.
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Figure 5: Qualitative results of the compared methods on a sample (#162) of DeepLesion [1] dataset.
The white regions denote metals.
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Figure 6: Qualitative results of the compared methods on a sample (#158) of DeepLesion [1] dataset.
The white regions denote metals.

7



FBP LI NMAR CNN-MAR DICDNet

ACDNet ADN Score-MAR Polyner (Ours) GT

Figure 7: Qualitative results of the compared methods on a sample (#1) of XCOM [2] dataset. The
white regions denote metals.
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