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A General Form of Selection Tensor Decomposition

In this section, we further extend the selection tensor decomposition in Section 3.3.1 from a special
case, where ¢t = 2, to a more general case, where 2 < ¢t < n. The interaction selection tensor A’; for
t-th order features is also semi-positive and sysmmtric. By extending the Takagi factorization [2], we
have:

Al =3 5 U xoU x5+ x: U, (13)

where S isad x---xd diagonal tensor, x; denotes the {-mode matrix multiplication [4],
N——
t times

U e R™? and d < m. Similar to the special case where ¢ = 2, we adopt multi-mode ten-
sor factorization [4] to replace U/ as an output of a neural network, denoted as:

U~ f(B), (14)

where f; : Rmxd _y Rmxd § <« d is a neural network with parameter 6 and B € R™*4 js
an additional embedding table for generating feature interaction selection tensor. The element of
architecture metric AZ( i e kg, ) CAN be calculated given the following equation:

i1 sy

A’tU(kilv"'vkit) =X X1 fé(Ekil,:) Xog « oo Xy fgﬂ(Eklw) (15)

The original value-grained selection tensor Af consists of O(m!) elements. The trainable elements

is reduced to O(md’) after the Takagi factorization [2] and to O(d(m + d')) after the multi-mode
tensor factorization [4].

B Experiment Setup

B.1 Dataset and Preprocessing

We conduct our experiments on two public real-world benchmark datasets. The statistics of all
datasets are given in Table 3. We describe all these datasets and the pre-processing steps below.

Table 3: Dataset Statistics
Dataset | #samples #field #value pos ratio

Criteo | 4.6 x 107 39 6.8 x10° 0.2562
Avazu | 4.0 x 107 24 4.4x10% 0.1698
KDDI2 | 1.5 x 108 11 6.0 x 105 0.0445
Note: #samples refers to the total samples in the dataset, #field refers to the number of feature fields for

original features, #value refers to the number of feature values for original features, pos ratio refers to the
positive ratio.

Criteo dataset consists of ad click data over a week. It consists of 26 categorical feature fields and
13 numerical feature fields. Following the best practice [26], we discretize each numeric value x
to [log?(z)], if # > 2; x = 1 otherwise. We replace infrequent categorical features with a default
"OOV" (i.e. out-of-vocabulary) token, with min_count=2.

Avazu dataset contains 10 days of click logs. It has 24 fields with categorical features. Following the
best practice [26], we remove the instance_id field and transform the timestamp field into three new
fields: hour, weekday and is_weekend. We replace infrequent categorical features with the "OOV"
token, with min_count=2.

KDD12 dataset contains training instances derived from search session logs. It has 11 categorical
fields, and the click field is the number of times the user clicks the ad. We replace infrequent features
with an "OOV" token, with min_count=10.

B.2 Parameter Setup

To ensure the reproducibility of experimental results, here we further introduce the implementation
setting in details. We implement our methods using PyTorch. We adopt the Adam optimizer with a
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mini-batch size of 4096. We set the embedding sizes to 16 in all the models. We set the predictor
as an MLP model with [1024, 512, 256] for all methods. All the hyper-parameters are tuned on
the validation set with a learning rate from [le-3, 3e-4, le-4, 3e-5, 1e-5] and weight decay from
[1e-4, 3e-5, le-5, 3e-6, 1e-6]. We also tune the learning ratio for the feature interaction selection
parameters from [le-4, 3e-5, 1e-5, 3e-6, le-6] and while weight decay from [1e-4, 3e-5, le-5, 3e-6,
le-6, 0]. The initialization parameters for the retraining stage is selected from the best-performed
model parameters and randomly initialized ones.

B.3 Hardware Platform

All experiments are conducted on a Linux server with one Nvidia-Tesla V100-PCle-32GB GPU,
128GB main memory and 8 Intel(R) Xeon(R) Gold 6140 CPU cores.

C Ablation Study

C.1 Feature Interaction Operation

In this section, we conduct an ablation study on the feature interaction operation, comparing the
performance of the default setting, which uses the inner product, with the outer product operation.
We evaluate these operations on OptFeature and its two variants: OptFeature-f and OptFeature-v.
The results are summarized in Table 4.

Table 4: Performance Comparison over Different Feature Interaction Operation.
Dataset Criteo Avazu KDDI2
Category Model AUC Logloss | AUC Logloss | AUC  Logloss
OptFeature-f | 0.8115  0.4404 | 0.7920 0.3744 | 0.7978  0.1530
inner product | OptFeature-v | 0.8116  0.4403 | 0.7920 0.3742 | 0.7981 0.1529
OptFeature | 0.8116 0.4402 | 0.7925 0.3741 | 0.7982  0.1529
OptFeature-f | 0.8114  0.4404 | 0.7896  0.3760 | 0.7957  0.1535
outer product | OptFeature-v | 0.8113  0.4405 | 0.7902 0.3752 | 0.7961 0.1533
OptFeature | 0.8115 0.4403 | 0.7899  0.3753 | 0.7961  0.1533

From the table, we observe that the inner product operation outperforms the outer product operation.
This performance gap is particularly significant on the Avazu and KDD12 datasets, while it is
relatively insignificant on the Criteo dataset. The drop in performance with the outer product
operation is likely due to the introduction of a significantly larger number of inputs into the final
predictor. This makes it more challenging for the predictor to effectively balance the information
from raw inputs and feature interactions.

C.2 Dimension Selection

In this section, we perform an ablation study on the feature interac-

tion selection dimension d. We compare the AUC performance with
the corresponding dimension d and present the results in Figure 5. ™ % cieo

@ Avazu

From the figure, we can observe that as the dimension d increases, KOD12

the AUC performance remains relatively consistent over the Criteo ...

dataset. This suggests that it is relatively easy to distinguish value- o o0 o 9
level selection on the Criteo dataset. However, on the Avazu and ‘ Log2(Dimension) ‘
KDD12 datasets, the AUC performance improves as the selection

dimension d increases. This indicates that distinguishing informative Figure 5: Ablation over fea-

values is comparatively more challenging on these two datasets. ture interaction selection di-
mension on OptFeature.

AUC

C.3 Higher-Order Feature Interactions

In this section, we investigate the influence of higher-order feature
interactions over the final results on the KDD12 dataset. We compare
the default setting where only considering second-order interactions with two other settings: (i) only
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third-order interactions and (ii) both second and third-order interactions.

Figure 6.

From the figure, we can draw the following ob-

servations. First, only considering third-order 2nd
interactions leads to the worst performance. -

This aligns with the common understanding that .
second-order interactions are typically consid- 2

ered the most informative in deep sparse predic-

tion [13]. Second, for field-level selection, the

performance improves when both second and °* " \ale  Field  Hybrid
third-order interactions are incorporated into the

model. This finding is consistent with previ- () AUC
ous studies [10, 6], as the inclusion of additional
interactions introduces extra information that en-
hances the performance. In contrast, for value-

We visualize the result in

01540

o.1535

Logloss

0153

01525

2nd

= 3rd
. 2nd&3rd
Value Field Hybrid

(b) Logloss

Figure 6: Performance Comparison over Different
Feature Interaction Orders.

level selection, the performance tends to decrease when both second and third-order interactions are
included. This could be attributed to the fact that value-level selection operates at a finer-grained
level and might be more challenging to optimize directly. Finally, OptFeature constantly outperforms
its two variants over all settings. This indicates the feasibility and effectiveness of hybrid-grained

selection, which combines both field-level and value-level interactions.

C.4 Selection Visualization

Criteo-OptFeature-f Criteo-OptFeature-v Criteo-OptFeature

b

(a) Criteo Dataset

Avazu-OptFeature-f Avazu-OptFeature-v Avazu-OptFeature

(b) Avazu Dataset

KDD12-OptFeature-f KDD12-OptFeature-v KDD12-OptFeature

(c) KDD12 Dataset

-0z

Figure 7: Visualization of the Feature Interaction Selection Results.
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In this section, we present the visualization of the interaction selection results for OptFeature and its
two variants in Figure 7. OptFeature-f performs a binary selection for each interaction field, allowing
for easy visualization through a heatmap representation where one indicates keep and zero indicates
drop. On the other hand, OptFeature-v and OptFeature involve value-level interaction selection.
Hence, we visualize them by setting each element as the percentage of being selected over the training
set. The detailed equation for calculating the value for interaction field (i, j) is shown in Equation 16.

#Samples keeping interaction field (i, j)
#Training Samples

Piij) = (16)
From the visualization, we can observe that OptFeature acts as a hybrid approach, exhibiting a
combination of both ficld-level and value-level interactions. Interestingly, we note significant
differences between certain interaction ficlds in the KDD12 and Avazu datasets. OptFeature-f retains
all of its interactions, while OptFeature-v only keeps a proportion of the value-level interactions. This
observation further emphasizes the importance of exploring interactions at a finer-grained level.

D Broader Impact

Successfully identifying informative feature interactions could be a double-edged sword. One the
one hand, by proving that introducing noisy features into model could harm the performance, feature
interaction selection could be used as supporting evidences in preventing certain business, such as
advertisement recommendation, from over-collecting users’ information, thereby protecting user
privacy. On the other hand, these tools, if acquired by malicious people, can be used for filtering out
potential victims, such as individuals susceptible to email fraud. As researchers, it is crucial for us to
remain vigilant and ensure that our work is directed towards noble causes and societal benefits.
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