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A APPENDIX I: INTRODUCTION TO SPIKE CAMERA

RGB Camera:

Light(x, y, t) → {Ir(x, y, t), Ig(x, y, t), Ib(x, y, t)}

After a fixed time interval ∆T for camera exposure ∆Te and internal circus analog-digital conver-
sion and quantization∆Tadc, while ∆T = ∆Te +∆Tadc and ∆Te ≫ ∆Tadc . A final digital image
is generated as Drgb(x, y, t + ∆T ). So the average of 1/∆t is the frame ratio of RGB camera.
However, if the RGB cameras are applied to capture a very fast object, like a 91km/h car in our
CitySpike20K dataset, a line-shaped motion blur would be generated

Spike Camera:

In contrast, spike camera is a kind of event-camera, which means the imaging process of the spike
camera is event-driven. Every pixel in the spike camera imaging unit is isolated, they don’t share a
united imaging process and are activated when the imaging condition is met, as described in Sec 3.1
in our paper. This high-frequency event-driven imaging approach guarantees almost no blur in the
imaging process. And generated spike streams from the spike camera are discrete and sparse point
sets like lidar in 3D space. Given a time window, the spike voxel can be divided into spike seqences
S = {xn, yn, tn;n = 1, 2, 3..., N}. It’s worth noting that during the training phase, one spike voxel
corresponds to one depth map.

So to sum up, spike camera is not restricted by fixed exposure time interval. So ideally the spike
camera generates images like streams without imaging frequency, in a continuous time integration.
However, ∆adc, no matter how short it is, does exist in all kinds of circus. So in practice, the ADC
frequency of the spike camera determines the output frame ratio and reaches as high as 40000hz,
meaning that 40000 one-bit frames are generated per second(no matter the spikes are generated or
not in the pixels, a spike frame always output at certain timestamps with the frequency 40000Hz). So
the ∆adc decides the frequency of spike frames, and the illuminance of pixels(dark or bright) decides
the frequency of spike generation (0 or 1) of specific pixels. Back to our motivation, RGB images
may not be reliable enough for scene understanding with high driving speed duo to the existence of
blur, so we introduce spike vision to tackle this problem.

B APPENDIX II : PROPOSED DATASET: CITYSPIKE20K

B.1 INTRODUCTION AND VISUALIZATION

We propose CitySpike20K, a spike-depth dataset to help explore the depth estimation algorithms
for spike camera. The dataset is generated by Unity3D and contains 10 sequences, 5 of which
are day scenes and 5 others are night scenes. In the dataset, the frequency of the spike data and
corresponding depth GTs is 1000Hz. Besides, we supply 30Hz RGB images for each scenes as well
as 1000Hz RGB images that aligned with spike data.

To fully simulate the city environments, we add moving automobiles and dynamic traffic lights. We
set 5-10 moving automobiles including buses, cars, vans and trucks for each scene. Figure 2 gives a
visualization of CitySpike20K which contains RGB frames, spike data and depth maps. Specifically,
we split scene03, scene07 for testing, scene09 for validation and others for training.
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Figure 1: Spike camera is capable of of generating 2-bit spike streams via a retina-like process.

Table 1: Quantitative results on CitySpike20K-demo. Evaluation metrics are as described above. We
make comparison with DORNFu et al. (2018), GwcNetGuo et al. (2019), CFNetShen et al. (2021),
StereoNetKhamis et al. (2018), PSMNetChang & Chen (2018), and GANetZhang et al. (2019) . The
evaluation metrics are as introduced in subsection 4.2. We also consider model parameter size to be
one of compared targets.

Dataset Method Approach Abs Rel↓ RMSE ↓ Sq Rel ↓ RMSE log ↓ a1 ↑ a2 ↑ a3 ↑

UNetRonneberger et al. (2015) Mono. 0.2518 23.993 9.008 0.357 0.68 0.896 0.932
demo DORNFu et al. (2018) Mono. 0.3857 25.258 10.691 0.438 0.409 0.841 0.917

EigenEigen et al. (2014) Mono. 0.4262 25.154 20.363 0.459 0.542 0.800 0.893

GC-NetKendall et al. (2017) Ster. 0.2350 37.158 12.743 0.401 0.614 0.809 0.868
GwcNetGuo et al. (2019) Ster. 0.1880 24.152 7.469 0.304 0.757 0.895 0.953
CFnetShen et al. (2021) Ster. 0.2281 25.905 5.557 0.397 0.610 0.847 0.926

demo SteroNetKhamis et al. (2018) Ster. 0.2890 50.765 19.772 0.690 0.563 0.727 0.823
PSMNetChang & Chen (2018) Ster. 0.1886 28.496 7.354 0.340 0.723 0.887 0.941
GANet-1Zhang et al. (2019) Ster. 0.3270 49.068 19.505 0.865 0.586 0.764 0.851
GANetZhang et al. (2019) Ster. 0.2963 47.202 17.598 0.714 0.576 0.771 0.857

demo Ours Fusion 0.1715 22.793 11.217 0.306 0.791 0.928 0.961

B.2 EVALUATION METRIC

We conducted to evaluate the effectiveness of supervised depth estimation model on CitySpike20K.
Our evaluation metrics for depth estimation is described as follows:

Given an estimated depth map D̂, and its corresponding ground truth D, N = H ×W , Abs Rel is
quantified as:

Abs Rel =
1

N

N∑
i=1

|Di − D̂i|
Di

(1)

and RMSE defined:

RMSE =

√√√√ 1

N

N∑
i=1

||Di − D̂i||2 (2)

we also introduce RMSE log metric:

RMSE log =

√√√√ 1

N

N∑
i=1

||log(D̂i)− log(Di)||2 (3)

and Sq Rel metric as here:

Sq Rel =
1

N

N∑
i=1

||Di − D̂i||2

Di
(4)

Above metrics measure output errors from different statistic aspect, weighting the distance between
predictions and ground-truth labels, where lower values mean better model performance. Below
metrics are for evaluation of whether predictions are accurate within certain range of ground-truth,
and higher values mean better performance. Note that j ∈ {1, 2, 3}
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Figure 2: A visualization of our proposed CitySpike20k dataset. We generate it by Unity3D engine
and simulate a vivid city environment along with dense depth maps and spike data.

aj accuracy : % of Di s.t. max(
D̂i

Di
,
Di

D̂i

) = δ < T = 1.25j (5)

C APPENDIX III : PERFORMANCE ON OTHER DATASETS

C.1 REAL-DATASET

As we have described in our submitted paper, we also evaluate our framework on a real-recorded
dataset by a spike camera. The dataset contains 40 sequences data and each of which includes 3-6
[400 × 250 × 400] spike voxels in the format of [T ×H ×W ]. We split 33 sequences for training
and 7 for testing.
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Figure 3: More prediction results on CitySpike20K dataset. As can be seen, the stereo estimation
results and the monocular estimation results fuse efficiently by our framework
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Figure 4: A visualization for Spike-Real dataset and prediction results from its test set.

C.2 KITTI

To demonstrate that our UGDF framework still works in real-world scenes, we carry out experiment
on a spike-kitti dataset. To convert KittiGeiger et al. (2013) from RGB modality to spike modal-
ity, we first make frame interpolation using XVFISim et al. (2021) by 128 times. Then we use a
Simulated-Vidar code script to generate spike data from RGB Kitti images to form spike voxels in
the format (128× 375× 1242) , where 128 represents the time dimension and (375× 1242) is the
original size of Kitti RGB images. We maintain the same way to operate neuromorphic encoding as
what we design for CitySpike20K dataset in our submitted paper. As mentioned above, we set this
experiment to further explore the effectiveness of our fusion strategy. We train our framework for
50 epochs on 4 RTX-2080Ti GPUs.

Specifically, we use official validation sequences 2011 09 26 drive 0002 sync
,2011 09 26 drive 0005 sync,2011 09 26 drive 0013 sync, 2011 09 26 drive 0095 sync,
2011 09 26 drive 0113 sync for validation, and 2011 09 26 other official training sequences
to train our framework.

C.3 CITYSPIKE20K-DEMO

In addition to 10 sequences of 1000Hz spike data we provide in the CitySpike20K dataset, we still
supply a 40000Hz demo to simulate real spike as possible as we could. The demo contains 60K
paired data and records a 1.5 seconds video of a fast-driving car in the city street. Different from
our submitted papers, we use this demo to evaluate the performance of models to directly load
with spike data. Considering existing methods for monocular or stereo depth estimation are mostly
based on RGB 3-channel data, we change the input channel of the models to the time-window
width of applied spike sequences, i.e. 32 as we adopted. And we use the first half of the demo for
training and the second half for testing. Table 7 records relevant results compared with state-of-the-
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Figure 5: Accuracy statistics on CitySpike20K test set. The green lines and blue lines represent the
monocular and stereo accuracies respectively.

art traditional methods. Note that we adopt ResNet-50 instead of MobileNetV3 as backbone for this
part experiments.

D APPENDIX IV : STATISTICS TO SUPPORT OUR MOTIVATION

There are two clues to inspire our motivations. The first of which is that, the spike camera has its
unique advantages to deal with fast-moving circumstances when operating depth estimation task.
And the second is that, the monocular strategy and stereo strategy share some distinct advantages
to finish depth estimation task while loaded with spike data. We supply statistical results to prove
our second motivation. On CitySpike20K dataset, we make a1, a2, a3 accuracy calculation in dif-
ferent depth intervals according to depth GT while evaluating our network. We transform the stereo
disparities into depths, and count a1, a2, a3 accuracy for two branches respectively in the same
metrics. Then we plot them in one coordinate. Figure 9 shows statistical results on test set. As
seen, the stereo branch suffers from great accuracy decrease for far regions, while monocular branch
still maintains certain reliability. Similarly, the stereo branch is more stable and accurate than the
monocular branch for closer regions.
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