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Rethinking Impersonation and Dodging Attacks on Face
Recognition Systems

ABSTRACT

Anonymous Authors

Face Recognition (FR) systems can be easily deceived by adversar-
ial examples that manipulate benign face images through imper-
ceptible perturbations. Adversarial attacks on FR encompass two
types: impersonation (targeted) attacks and dodging (untargeted)
attacks. Previous methods often achieve a successful imperson-
ation attack on FR; However, it does not necessarily guarantee a
successful dodging attack on FR in the black-box setting. In this
paper, our key insight is that the generation of adversarial examples
should perform both impersonation and dodging attacks simulta-
neously. To this end, we propose a novel attack method termed as
Adversarial Pruning (Adv-Pruning), to fine-tune existing adversar-
ial examples to enhance their dodging capabilities while preserving
their impersonation capabilities. Adv-Pruning consists of Priming,
Pruning, and Restoration stages. Concretely, we propose Adversar-
ial Priority Quantification to measure the region-wise priority of
original adversarial perturbations, identifying and releasing those
with minimal impact on absolute model output variances. Then,
Biased Gradient Adaptation is presented to adapt the adversarial
examples to traverse the decision boundaries of both the attacker
and victim by adding perturbations favoring dodging attacks on the
vacated regions, preserving the prioritized features of the original
perturbations while boosting dodging performance. As a result, we
can maintain the impersonation capabilities of original adversarial
examples while effectively enhancing dodging capabilities. Com-
prehensive experiments demonstrate the superiority of our method
compared with state-of-the-art adversarial attacks.

CCS CONCEPTS

« Computing methodologies — Biometrics.

KEYWORDS

Face Recognition, Adversarial Attacks, Adversarial Attacks on Face
Recognition, Impersonation Attacks, Dodging Attacks

1 INTRODUCTION

Thanks to the ceaseless advancements in deep learning, Face Recog-
nition (FR) has achieved exceptional performance [1, 2, 9, 27, 42, 50].
However, the vulnerability of existing FR models to adversarial at-
tacks poses a significant threat to their security. Hence, there is
an urgent need to enhance the performance of adversarial face

Unpublished working draft. Not for distribution.
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Figure 1: Top: previous methods that achieve a successful
impersonation attack on FR cannot guarantee a success-
ful dodging attack on FR in the black-box setting. In con-
trast, we present Adv-Pruning, including Priming, Pruning,
and Restoration Stages, to perform both impersonation and
dodging attacks simultaneously. Bottom (left): natural Multi-
identity Samples (MS). Bottom (right): the dodging Attack
Success Rate (%) between the previous methods and Adv-
Pruning on multiple models.

examples to expose more blind spots in FR models. As a result,
several research endeavors have been directed towards this realm.
A multitude of adversarial attacks have been developed to create
adversarial face examples with characteristics such as stealthiness
[7, 19, 41, 43, 62], transferability [30, 70-72], and physical attack
capability [29, 63, 64]. These efforts contribute to enhancing the ef-
fectiveness of adversarial attacks on FR. Nevertheless, these studies
primarily concentrate on bolstering either impersonation attacks
or dodging attacks, overlooking the exploration of the effectiveness
of dodging attacks when crafting adversarial face examples using
impersonation attacks.

In real-world deployment contexts, individuals with malicious
intent are prone to creating adversarial face examples incorporating
their own facial features to manipulate FR systems to mistakenly
identify them as pre-defined victims during impersonation attacks.
Concurrently, the individuals strive to evade accurate identification
as perpetrators, thereby circumventing detection and preventing
legal accountability. This requires the creation of adversarial exam-
ples capable of executing both impersonation and dodging attacks
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simultaneously. In the realm of adversarial attacks on image clas-
sification, a successful impersonation attack typically implies a
successful dodging attack. However, FR is an open-set task [9, 50],
which is quite different from image classification. In the real-world
deployment of FR systems, accurately predicting the class proba-
bility of identities presents an extreme challenge. Therefore, we
extract embeddings from two face images using the FR model. Sub-
sequently, the distance between the two embeddings is used to
determine whether the images belong to the same identity. If the
distance falls below a predefined threshold, the two images are
recognized as belonging to the same identity; otherwise, they are
classified as different identities. Based on the measurement of FR,
there are two decision boundaries for each FR model when crafting
adversarial examples as shown in Fig. 1. As a result, there exists
the natural samples that can be classified as two different identities
in theory. We denote these samples as multi-identity samples (refer
to Section 4.4).

The existence of multi-identity samples implies that a successful
impersonation attack on FR does not necessarily guarantee a suc-
cessful dodging attack on FR. Existing research indicates that an
adversarial sample was located near the decision boundary [4, 18].
Suppose we generate adversarial face examples using previous
methods. In the white-box setting, both the structures and param-
eters of the victim models are known, enabling the generation of
adversarial face examples that can cross the decision boundaries
of both attacker and victim, as shown in Fig. 1. However, in the
black-box setting, the decision boundaries of black-box models dif-
fer from those of the surrogate models. Consequently, adversarial
examples generated on the surrogate model lie near the decision
boundary of the victim, preventing them from crossing the deci-
sion boundary of the attacker. As such, the majority of adversarial
face examples crafted by previous methods, which can successfully
perform impersonation attacks, fail to perform dodging attacks in
the black-box setting.

In this paper, we propose a novel attack method, termed as Ad-
versarial Pruning (Adv-Pruning). In the realm of adversarial attacks
on FR, previous impersonation methods have achieved a significant
level of sophistication. However, there remains a pressing need
to bolster the efficacy of adversarial face examples in dodging at-
tacks. Consequently, our research is directed towards enhancing
the dodging attack performance of adversarial face examples while
maintaining the impersonation attack performance. Specifically,
we introduce an attack consisting of three stages: Priming, Pruning,
and Restoration. In the Priming stage, we optimize the adversarial
examples to ensure adequate attack potential. In the Pruning stage,
with considering the pruning concept in model compression, we
propose Adversarial Priority Quantification to measure the region-
wise priority of original adversarial perturbations using an priority
measure which is directly proportional to the supremum of the
absolute model output variances. After processing by Adversarial
Priority Quantification, we prune the adversarial face examples to
free up less prioritized adversarial perturbations. In the Restora-
tion stage, we propose Biased Gradient Adaptation to add biased
gradient perturbations favoring dodging attacks on the pruned re-
gions to adapt the adversarial face examples into the space that
can be classified as the victim while remaining unidentifiable as
the attacker, thereby enhancing the dodging performance of the
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adversarial face examples without compromising the prioritized
features of original adversarial perturbations. As illustrated in the
top of Fig. 1, after undergoing these stages, the adversarial face
example generated by our proposed method can successfully tra-
verse the decision boundaries of both the attacker and victim of
the black-box model, achieving successful black-box impersonation
and dodging attacks.
Our main contributions are summarized as follows:

e We offer a new perspective for adversarial attacks on FR
models that the generation of adversarial examples should
perform both impersonation and dodging attacks simulta-
neously. To the best of our knowledge, this is the first work
that studies the universality of multi-identity samples among
adversarial face examples crafted by impersonation attacks.

e We propose a novel adversarial attack method called Adver-
sarial Pruning (Adv-Pruning). Adversarial Priority Quantifi-
cation is presented to quantify the priority of the adversarial
perturbations with minimal impact on absolute model out-
put variances. Biased Gradient Adaptation is designed to
adapt the adversarial examples to traverse both the decision
boundaries of attacker and victim using biased gradients.

o Extensive experiments demonstrate that our proposed method
achieves superior performance compared to the state-of-
the-art adversarial attack methods. Moreover, our presented
method could be plugged into various FR systems and ad-
versarial attack methods.

2 RELATED WORK
2.1 Adversarial Attacks

The primary objective of adversarial attacks is to introduce imper-
ceptible perturbations to benign images to deceive machine learning
systems and cause them to make mistakes [14, 48]. The existence
of adversarial examples poses a significant threat to the security of
current machine learning systems. Lots of efforts have been ded-
icated to researching adversarial attacks in order to enhance the
robustness of these systems [12, 31, 34, 35, 38, 44, 55, 68, 69, 73]. To
improve the performance of black-box adversarial attacks, DI [60]
applies random transformations to adversarial examples in each
iteration to achieve a data augmentation effect. VMI-FGSM [52]
employs gradient variance to stabilize the updating process of ad-
versarial examples, boosting the black-box performance. SSA [34]
transforms adversarial examples into the frequency domain and
uses spectrum transformation to augment them. SIA [54] applies
a random image transformation to each image block, generating
a varied collection of images that are then employed for gradient
calculation. BSR [51] divides the input image into multiple blocks,
subsequently shuffling and rotating these blocks in a random man-
ner, creating a collection of new images for the purpose of gradient
calculation. DA [16] utilizes dispersion amplification to enhance
the multi-task attack capability of adversarial attacks. Despite their
gratifying progress, these studies neglect the consideration of prun-
ing adversarial examples through introducing pruning methods
into the realm of adversarial attacks. In our research, we propose
a novel pruning method capable of identifying and freeing up the
adversarial perturbations with minimal impact on absolute model
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Figure 2: Overview of our Adv-Pruning attack framework, which consists of Priming, Pruning, and Restoration stages. (a) During
the Priming stage, we optimize the adversarial examples to ensure they have sufficient attack performance. (b) In the Pruning
stage, we propose Adversarial Priority Quantification to quantify the priority of adversarial perturbations. Subsequently, we
sparsify the adversarial perturbations based on the quantified priorities. (c) In the Restoration stage, we present Biased Gradient
Adaptation to introduces gradient perturbations biased to dodging attacks on the sparsified regions.

output variances, thereby sparsifying regions for adding adversarial
perturbations with the aim of dodging capabilities improvement.

2.2 Adversarial Attacks on Face Recognition

Based on the restriction of the adversarial perturbations, adversar-
ial attacks on FR can be classified into two categories: restricted
attacks [5, 10, 32, 33, 36, 61, 74] and unrestricted attacks [3, 6, 8,
45, 47, 49, 56, 57, 65]. Restricted attacks on FR are the attacks that
generate adversarial examples in a restricted bound (e.g. L, bound).
To enhance the transferability of adversarial attacks on FR, [70]
propose DFANet, which applies dropout on the feature maps of the
convolutional layers to achieve ensemble-like effects. In addition,
[72] introduces BPFA, which further improves the transferability
of adversarial attacks on FR by incorporating beneficial pertur-
bations [58] on the feature maps of the FR models, resulting in
hard model augmentation effects. [30] leverages extra informa-
tion from FR-correlated tasks and uses a multi-task optimization
framework to enhance the transferability of crafted adversarial
examples. The unrestricted adversarial attacks on FR are the at-
tacks that generate adversarial examples without the restriction
of a predefined perturbation bound. They mainly focus on phys-
ical attacks [29, 59, 63], attribute editing [23, 41] and generating
adversarial examples based on makeup transfer [19, 43, 64]. The
existing literature on both restricted and unrestricted adversarial
attacks on FR systems has successfully enhanced the performance
of these attacks. Nevertheless, it remains under-explored in the cor-
relation between impersonation and dodging attacks. This paper
elegantly addresses this by investigating the correlation between
impersonation and dodging attacks and introducing a novel attack
method that bolsters the dodging capabilities while preserving the
impersonation capabilities of previous methods.

3 METHODOLOGY

3.1 Problem Formulation

Let F9!(x) denote the FR model used by the victim to extract the
embedding from a face image x. We refer to x* and x” as the attacker
and victim images, respectively. The objective of the impersonation
attacks explored in our research is to manipulate F°¢ in order
to misclassify x%%? as x!, while ensuring that x%4? bears a close
visual resemblance to x°. By contrast, the objective of the dodging
attacks proposed in this study is to render 7! (x) unable to iden-
tify x?9% as x°, while simultaneously ensuring that x%4% bears a
visual resemblance to x°. For the sake of clarity and conciseness,
the detailed optimization objectives for both impersonation and
dodging attacks are provided in the supplementary.

Few works explore the correlation between impersonation and
dodging attacks on FR. In the following, we delve into the correla-
tion between these two types of attacks and propose a novel method
to enhance dodging attacks while maintaining impersonation at-
tacks. An overview of the proposed method is illustrated in Fig. 2.
As depicted in Fig. 2, our proposed method is structured into three
stages: Priming, Pruning, and Restoration. Through the sequen-
tial application of these stages, we are able to generate adversarial
examples that exhibit a potent combination of impersonation and
dodging attack capabilities.

3.2 Exploring the Impersonation and Dodging
Attack on Face Recognition

In most cases, the victim model 79¢! is not accessible to the attacker,

making it extremely challenging to optimize the objectives for black-

box attacks directly. To circumvent this issue, a common approach
is to leverage a surrogate model ¥ accessible to the attacker to
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generate adversarial examples that can be transferred to the victim
model for an effective attack [5, 11, 13, 28, 39, 40, 51, 54, 66, 68].
For impersonation attacks, the loss can be formulated as follows:

L= 11g (7 (x*)) = ¢ (7 () 13 1)

where ¢ (x) represents the operation that normalizes x. x%?? is the
adversarial example which is initialized with the same value as x°.
The loss function of dodging attacks can be formulated as:

L= -llg (7 (x°)) = ¢ (7 () 13 @

As the FR task is an open-set task, it is impractical to predict the
classes of users during the practical deployment of the FR model.
Therefore, we need to compare the distance between two face
images to discern whether they depict the same identity or not.
Based on the identification method in FR, multi-identity samples
exist theoretically. Our experiments verify the existence of such
samples among benign face images. The existence of multi-identity
samples raises a question:

Does the success of an impersonation attack imply the suc-
cess of dodging attacks on FR systems?

To this end, we generate adversarial face examples using the
previous impersonation attack and evaluate its dodging Attack
Success Rate (ASR). Our experiment confirms that the majority of
adversarial examples crafted through previous methods, which are
successful in performing impersonation attacks, fail to successfully
execute dodging attacks in the black-box setting (see Section 4.4).

Nonetheless, in real-world adversarial attacks, attackers do not
want the adversarial face examples to be recognized as themselves,
as this may lead to legal consequences. Hence, it is crucial to re-
search attack techniques that can execute both impersonation and
dodging attacks simultaneously. Previous methods on FR systems
have shown a remarkably high level of impersonation ASR in black-
box settings. Therefore, our objective is to enhance the dodging
performance while maintaining the impersonation effectiveness of
previous attack methods.

To accomplish this objective, a straightforward approach is to
generate adversarial face examples using a multi-task attack strat-
egy. In the following, we will take the Lagrangian attack strategy
as the example for its simplicity. The Lagrangian attack strategy
utilizes the following loss function to craft adversarial examples:

L=2Ll+ 1 3

However, due to the conflict between the optimization between
LP and £9, there exists a trade-off between the performance of
impersonation and dodging performance, leading to subpar perfor-
mance (See Section 4.4). Suppose we can mitigate the trade-off, we

will achieve a better dodging performance while maintaining the
impersonation performance.

3.3 Adversarial Pruning Attack

To accomplish this objective, a straightforward approach is to fine-
tune the adversarial face examples generated by the Lagrangian
attack with a lower A value in order to enhance the performance of
dodging attacks. However, this method does not enhance the dodg-
ing attack performance without compromising the impersonation
attack performance (see Fine-tuning in Table 3). We contend that
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this issue arises because the newly introduced adversarial perturba-
tion that favors dodging attacks ends up disrupting the prioritized
features of existing adversarial perturbation. While it may improve
the performance of dodging attacks, it inevitably diminishes the
performance of impersonation attacks. To address this, we intro-
duce new perturbations favoring dodging attacks in regions where
original perturbations are not added. Nevertheless, identifying suit-
able areas for these new perturbations is challenging due to their
scarcity. Therefore, we propose a novel pruning method to release
less prioritized adversarial perturbations with minimal impact on
the absolute model output variances, thereby creating space to
introduce perturbations that facilitate dodging attacks.

Our proposed Adv-Pruning and be combined with various ad-
versarial attacks. In the following, we will introduce our proposed
Adv-Pruning based on Lagrangian attack in detail. In the Prim-
ing Stage, we utilize Eq. (3) as the Priming loss L? to craft the
adversarial face examples:

<o =] (x;‘j’f — Bsign (vx[a_dlv LP)) (4)

x5,€

where ¢ is the iteration of the optimization process of adversarial
examples, and f is the step size when optimizing the adversarial
face examples in the Priming stage, and [] (x) is the projection
function that projects x onto the L, norm bound.
Adversarial Priority Quantification. After completing the Prim-
ing Stage, we obtain an adversarial example with varying magni-
tudes of gradient perturbations across different regions. Following
this, we proceed to the Pruning stage to process the crafted ad-
versarial example. In order to prune the adversarial perturbation,
our initial step is to assess its priority. To estimate this priority, we
propose Adversarial Priority Quantification to quantify the priority
of adversarial perturbations. Specifically, Adversarial Priority Quan-
tification utilizes the magnitude of the adversarial perturbation as a
measure. A lower magnitude implies a lesser impact on the perfor-
mance of the adversarial examples generated after sparsification,
as the supremum of absolute model output variances is directly
proportional to the magnitude of the adversarial perturbations. The
proof is in the supplementary.

Let the adversarial examples be x%?%. The formula to calculate
the priority can be expressed as:

I — |xadv _ xS| (5)

where 7 € REHW, C, H, and W are the channel number, height,
and width of the face images, respectively.

Once the priority values of the adversarial perturbations are
quantified, we employ these values to release less prioritized ad-
versarial perturbations. Let k be the sparsity ratio for pruning the
adversarial face examples that measure the ratio of perturbations
to be set into zero. Let s = CHW be the number of adversarial per-
turbation elements. We arrange the elements in a flattened vector
of I in ascending order (from the lowest to the highest):

Q = Sort (¥ (1)) (6)

where ¥ is the flatten operation.
Let ‘W be the set of the elements of the adversarial perturbations
to be pruned. Given the priority calculation method for pruning,
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the value of ‘W can be calculated as follows:
W =Q][: «s] 7)

where the colon denotes the slice operation to obtain the first ks
elements. The pruning mask, which has the same shape as 7, can
be obtained by utilizing W'

. ®
l, lf ]},j,k ¢ (W

0, iffi’ jk € w
ik =
By utilizing the mask, we can apply the following formula to
prune the adversarial example:
)—Cadv =5 + (xadv _ xs) oM (9)
where % is the adversarial face example after pruning.
Biased Gradient Adaptation. During the Restoration stage, we re-
store the adversarial face examples in the previously pruned region
using our proposed Biased Gradient Adaptation. Biased Gradient
Adaptation using the following loss function to craft gradient biased
to the dodging attacks to adapt the crafted adversarial examples
into the space that favors dodging attacks.

Lr=1ri+ o (10)

where 1isa weight that is lower than A that is objective for crafting
adversarial face examples that favor dodging attacks. The mask
representing the regions for restoring the adversarial examples can
be denoted as:

A=1-M 1)

Subsequently, we utilize the following formula to restore the
pruned adversarial face examples:

xfdo — l—[ (xf:dv +AO (xfdf

x3,e

psign (g £7) =5

where y is the step size when optimizing the adversarial face ex-
amples in the Restoration stage, ¥%9? is the adversarial example

crafted by the Priming Stage, and V adv-L is the biased gradient.

The pseudo-code of our proposed method based on the Lagrangian
attack is illustrated in the supplementary.
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4 EXPERIMENTS
4.1 Experimental Setting

Datasets. Face images play a pivotal role in multimedia processing
applications. Therefore, the research on adversarial attacks on FR
has a significant impact on security and privacy in multimedia pro-
cessing. We opt to use the LFW [20], CelebA-HQ [25], and FFHQ
[26] datasets for our experiments. LFW serves as an unconstrained
face dataset for FR. CelebA-HQ and FFHQ consists of high-quality
images. The LFW and CelebA-HQ utilized in our experiments are
identical to those employed in [71, 72], while FFHQ is the cor-
responding dataset provided by the Sibling-Attack official page,
ensuring the consistency for analysis.

Face Recognition Models. The normal trained FR models em-
ployed in our experiments include IR152 [17], FaceNet [42], Mobile-
Face (abbreviated as MF) [9], ArcFace [9], CircleLoss [46], Curric-
ularFace [22], MagFace [37], MV-Softmax [53], and NPCFace [67].
IR152, FaceNet, and MF are identical to those used in [19, 64, 71, 72].
ArcFace, CircleLoss, CurricularFace, MagFace, MV-Softmax, and
NPCFace are the official models available in FaceX-ZOO [24]. Ad-
ditionally, we incorporate adversarial robust FR models in our ex-
periments, denoted as IR15299%, FaceNet?@?, and MF%4?, which are
identical to those used in [72]. For calculating the ASR in imper-
sonation and dodging attacks, we choose the thresholds based on
FAR@0.001 on the entire LFW dataset.

Attack Setting. Without any particular emphasis, we set the max-
imum allowable perturbation magnitude to 10 based on the L
norm bound and utilize the Lagrangian attack method as the attack
in both the Priming and Restoration stages. Additionally, we specify
the maximum number of iterative steps as 200. For both the Priming
and Restoration stages, the step size is uniformly designated as 1.0.
Evaluation Metrics. We employ Attack Success Rate (ASR) to
evaluate the performance of various attacks. ASR signifies the pro-
portion of successfully attacked adversarial examples out of all
the adversarial examples. We use ASR! and ASR? to denote imper-
sonation and dodging ASR, respectively. The detailed calculation
methods for ASR? and ASR? are provided in the supplementary.
Compared methods. Our proposed attack is a restricted attack
method that aims to maliciously attack FR systems to expose more
blind spots of them. It is not fair to compare our proposed method

17.1 - Bascline
16 4 155 Baseline + ours

Dodging ASR

DI-I DI-F DI-M SIA-I SIA-F SIA-M

Figure 4: Comparisons of ASR (%) on LFW with adversarial
robust models as victim models.
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Table 1: Comparisons of dodging ASR (%) results for attacks on the LFW and CelebA-HQ datasets. The surrogate models
are presented in the first column, and the victim models are listed in the second row. The numbers before and after the
slash represent the results of the baseline attack and the attack that combines the baseline attack with our proposed attack,

respectively.
LFW CelebA-HQ
Surrogate Model | Attack IR152 FaceNet MF IR152 FaceNet MF
DI 95.4/ 100.0 5.8/11.3 02/0.8 87.9 / 100.0 8.4/16.4 04/1.2
VMI 92.7/100.0 17.3/32.5 1.2/9.5 92.2/100.0 14.3/27.9 12/4.1
SSA 78.8 / 100.0 5.7/22.5 0.9/10.6 83.8/99.9 7.2/19.6 0.4/5.6
IR152 [17] DFANet | 98.9/100.0 14/4.2 0.0/0.3 98.9 /100.0 23/6.0 0.0/0.4
SIA 81.7/100.0 13.0/37.5 0.8/8.9 78.4/100.0 13.2/35.6 07/7.4
BSR 52.4/100.0 53/17.6 0.1/1.5 48.5/99.9 5.4/18.0 03/1.9
BPFA 92.6 / 100.0 1.7/7.3 0.0/1.2 90.4 / 100.0 21/8.1 0.1/0.8
DI 5.3/10.3 99.8/99.9 3.1/10.3 15/3.1 99.4/99.9 1.8/4.7
VMI 9.7/ 14.3 99.8/99.9 6.2/13.2 31/7.1 99.3/99.8 3.6/9.3
SSA 6.0/ 14.0 97.5/99.9 6.6/26.2 2.0/5.5 96.9/99.7 4.2/ 14.6
FaceNet [42] DFANet 1.6/3.3 99.8/99.9 04/2.7 0.5/2.6 99.1/100.0 0.8/4.1
SIA 11.2/ 20.6 99.5/99.9 8.7/21.2 4.0/8.9 99.4/99.9 5.4/13.7
BSR 12.2/19.2 98.6/99.9 9.0/17.8 4.6/10.1 98.8/99.9 53/14.1
BPFA 4.7/ 16.8 98.6 / 100.0 1.6/ 15.0 1.1/4.2 99.0 / 100.0 0.6/5.1
DI 22/17.3 18.2/36.4 99.2/100.0 0.1/2.5 12.1/31.3 95.2/100.0
VMI 1.0/2.8 8.4/20.9 99.7 / 100.0 0.2/0.4 5.2/15.0 98.2/100.0
SSA 0.7/4.1 6.1/23.5 98.3/100.0 0.0/0.6 3.9/18.5 93.3/100.0
MF [9] DFANet 0.2/1.0 1.5/5.8 99.6 / 100.0 0.0/0.2 1.1/7.7 99.1/100.0
SIA 1.0/5.9 10.6 / 36.6  98.4/ 100.0 01/2.4 9.0/24.4 96.3 / 100.0
BSR 0.4/1.5 3.7/14.7 84.9 / 100.0 0.1/0.6 29/12.6 77.6 / 100.0
BPFA 09/4.1 4.6/20.4 97.7 / 100.0 0.0/2.3 4.0/20.4 96.2 / 100.0

Table 2: Comparisons of ASR (%) with multi-task attacks on
LFW dataset. Models in the second row are victim models.

ASR? ASR!

Attack IR152 FaceNet MF
Lagrangian 3.9 26.5 100.0 26.0
Lagrangian + ours | 7.3 36.4 100.0 26.6
DA 11.0 35.6 99.1 37.4
DA + ours 17.5 44.9 994 37.8

with unrestricted attacks that do not limit the magnitude of the
adversarial perturbations. Therefore, we choose restricted attacks
on FR that aim to maliciously attack FR systems [70] [72] [30] and
state-of-the-art transfer attacks [60] [34] [54] [51] as our baseline.

4.2 Comparison Study

We compare our proposed attack method with the state-of-the-art
attacks on multiple FR models and datasets. Several adversarial
examples are illustrated in Fig. 5. The attack performance results
are shown in Table 1. Table 1 illustrates that the incorporation of
our proposed attack method significantly enhances the dodging
ASR of adversarial attacks. It is worth noting that the average black-
box impersonation ASRs of the baseline attacks in Table 1 also
increase after integrating our proposed attack method. This demon-
strates the effectiveness of our proposed method in improving the
dodging attack performance while simultaneously maintaining the

impersonation attack performance. Furthermore, we conducted a
comparison between our proposed Adv-Pruning and multi-task at-
tacks using MF as the surrogate model on LFW based on DI. For our
proposed method, we choose the corresponding multi-task attack as
the attack for both the Priming and Restoration stages. The dodging
ASR and average black-box impersonation ASR results are shown
in Table 2. Table 2 underscores the effectiveness of our method in
enhancing the dodging performance of multi-task attacks while
maintaining the impersonation performance. To further validate
our proposed attack method on additional FR models, we selected
SIA [54] as Baseline and IR152 as the surrogate model. The experi-
mental settings are consistent with those described in Table 1. The
dodging ASR across multiple FR models is demonstrated in Fig. 3.
As depicted in Fig. 3, the dodging ASR improves on multiple FR
models after integrating our proposed method, further confirming
the effectiveness of our attack.

In practical application scenarios, victims can employ adversarial
robust models to defend against adversarial attacks. Consequently,
it becomes crucial to evaluate the performance of adversarial at-
tacks on these robust models. In this study, we generate adversarial
examples on the LFW dataset using MF as the surrogate model and
assess the performance of various attacks on the adversarial robust
models. The results are presented in Fig. 4. The letters following
the en dash represent the surrogate models, with T, °’F’, and "M’
corresponding to IRlSZ“d”, FaceNet“d”, and MF“d”, respectively.
Fig. 4 illustrates that the inclusion of our proposed method leads
to improvements in both dodging and impersonation performance.
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Adversarial Example
1

Attacker Victim

BPFA BPFA + Ours BSR

BSR + Ours

Figure 5: The Illustration of adversarial examples crafted by
various attacks. First column: some attacker images. Last col-
umn: the corresponding victim images. The second to fifth
columns exhibit the corresponding adversarial face exam-
ples crafted by BPFA, BPFA + ours, BSR, and BSR + ours,
respectively.

These results serve as evidence of the effectiveness of our proposed
method on adversarial robust models.

JPEG compression is a widely adopted method for image com-
pression during transmission, concurrently acting as a defense
mechanism against adversarial examples. To assess the effective-
ness of our proposed attack under JPEG compression, we utilize DI
as the baseline attack and MF as the surrogate model, evaluating the
attack performance on ArcFace and CurricularFace models with ex-
perimental settings consistent with those described in Table 1. The
results are illustrated in Fig. 6. These results demonstrate that across
varying levels of JPEG compression, our proposed attack method
consistently outperforms the baseline attack, thereby highlighting
its effectiveness under JPEG compression.

The experimental results on negative cosine similarity loss, and
Sibling-Attack are presented in the supplementary.

4.3 Ablation Study

To delve into the properties of our proposed attack method, we
conducted an ablation experiment using DI as the Baseline attack,
with MF serving as the surrogate model on the LFW dataset. To
confirm the effectiveness of our pruning method, we employed the
Random Zeroing (RZ) method, which randomly sets adversarial
perturbations to zero. We applied this method and our pruning
method to free up 20% of the adversarial perturbations crafted by
the Lagrangian attack. For Fine-tuning, we employed the Lagrangian
attack as the method to further optimize the Lagrangian adversarial
examples with a lower A. The dodging attack ASR and average
black-box impersonation ASR results are shown in Table 3. Table 3
demonstrates that our proposed pruning method for adversarial
examples achieves a significantly smaller decrease in ASR than
RZ after pruning 20% of adversarial perturbations, indicating the
effectiveness of our pruning method. After being processed using
the Pruning and Restoration stage of our proposed Adv-Pruning

ACM MM, 2024, Melbourne, Australia

(a) ArcFace (b) CurricularFace
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Figure 6: The dodging ASR under various JPEG Q values.

method, both impersonation and dodging ASR of the crafted ad-
versarial face examples are recovered and higher than the Baseline
attack method. These results demonstrate the effectiveness of our
proposed Adv-Pruning in improving the dodging performance of
adversarial attacks on FR without compromising the impersonation
attack performance.

The sparsity ratio quantifies the proportion of adversarial pertur-
bations that are allowed to be discarded during the Pruning stage.
This ratio greatly impacts the performance of our proposed attack
method. Hence, we conducted a sensitivity study on the sparsity
ratio to analyze its effect on performance of the algorithm. The La-
grangian attack method based on DI is selected as the Baseline. We
conduct a hyperparameter sensitivity study on LFW using FaceNet
as the surrogate model, and adjust the value of ] to ensure that
the average black-box impersonation ASR results were within a
0.4% absolute difference compared to the Baseline. The dodging
ASR results are illustrated in the right plot of Fig. 7. The results
illustrate that the dodging ASR of our proposed method initially
increases and then decreases as the sparsity ratio increases. When
the sparsity ratio increases, a greater number of adversarial pertur-
bations are pruned, creating more empty regions for the adversarial
perturbations that favor dodging attacks in the Restoration stage.
If the sparsity ratio is set to a too-high value, an excessive number
of adversarial perturbations are allowed to be freed up, resulting in
a degradation of performance for the adversarial examples crafted
by the Priming stage. Consequently, the performance of adversarial
face examples will decrease.

4.4 Analytical Study

Multi-identity Samples among the Natural Face Images: Multi-
identity samples are intriguing samples that can be classified as
multiple classes in FR. In this section, we will explore the exis-
tence of multi-identity samples among the natural face images. We
randomly select negative face pairs from the entire LFW dataset.
Subsequently, we use MF as our FR model to extract the embeddings
of the face images in each face pair and calculate the cosine sim-
ilarity between the two images. If the cosine similarity surpasses
the threshold, both images in the pair are classified as belonging to
multiple identities, indicating that they are multi-identity samples.
Our findings demonstrate the presence of multi-identity samples
among the benign face images, as illustrated in the bottom left of
Fig. 1. The multi-identity samples in Fig. 1 closely resemble the
appearances of the identities they are classified into.
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Table 3: Comparisons of ASR (%) results of dodging attack
and impersonation attacks on the LFW dataset. The models

in the second row are the victim models.

ASR? ASR!

Attack IR152 FaceNet MF
Baseline 2.2 18.2 99.2 25.6
Lagrangian 3.9 26.5 100.0  26.0
Fine-tuning 4.2 26.3 100.0 25.6
RZ 0.6 4.4 94.8 15.1
Pruning 3.4 24.8 100.0 254
Adv-Pruning | 5.4 32.5 100.0 26.3

Anonymous Authors

IS
S
L

Dodging ASR
2
!
-

8
L

4 Lagrangian
4 ours

Dodging ASR

1 == ours ) /./’ \
/

—=- Lagrangian "~

T T T
0 5 10 15 20
Impersonation ASR

Figure 7: (a) The trade-off between the ASR (%) of imperson-
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To analyze the cause of this phenomenon, we need to consider
the properties of both the multi-identity samples and the FR model.
Commonly-used FR models are well-trained and capable of cor-
rectly classifying the majority of benign face images. However,
there are some benign face images that the FR model fails to clas-
sify accurately, and these samples are referred to as hard samples
[21, 72]. Multi-identity samples are a specific type of hard sample
known as hard negative samples. Typically, hard negative samples
exhibit a similar appearance [67], indicating that the multi-identity
samples among the benign face images share a resemblance.

Universality of Multi-identity Samples among Adversarial
Face Examples: The previous impersonation methods craft adver-
sarial face examples only use the impersonation loss £. In this
section, we will investigate the ratio of multi-identity samples and
evaluate the effectiveness of previous impersonation methods in
terms of dodging attacks. We utilize the Multi-identity Sample Ra-
tio (MSR) to gauge the proportion of multi-identity samples in the
adversarial face examples capable of executing successful imper-
sonation attacks. These multi-identity samples can be recognized
as both the attacker and victim identities in the setting of our paper.
The detailed calculation method of MSR is in the supplementary. We
evaluate the MSR, impersonation ASR and dodging ASR using MF as
the surrogate model on the LFW dataset and the results are demon-
strated in the supplementary. The results demonstrates that most
of the crafted adversarial face examples are multi-identity samples
in the black-box setting. This indicates that most adversarial face
examples generated through previous impersonation attacks are
unable to attain a successful dodging attack in the black-box setting.
Nevertheless, in the white-box setting, the majority of adversar-
ial face examples capable of executing successful impersonation
attacks also demonstrate success in dodging attacks.

To analyze the reason, we consider the metric used to determine
whether two face images belong to the same identity in FR. Since
FR is an open-set task, we rely on the distance in the embedding
space to make decisions. The top of Fig. 1 illustrates two decision
boundaries for each FR model, one for attacker identity and one
for victim identity. In the white-box setting, if we generate adver-
sarial examples using L, these adversarial examples can penetrate
a space where they are recognized as the victim identity rather
than the attacker identity. However, the decision boundary of the
black-box model differs from that of the surrogate model. In the
black-box setting, most adversarial examples are found between

ation attack and dodging attack of adversarial examples. (b)
The dodging ASR (%) in different sparsity ratios.

the decision boundaries of the black-box model, resulting in the ma-
jority of adversarial examples crafted using £ being multi-identity
samples. This demonstrates that the adversarial face examples are
positioned near the decision boundary in the black-box setting.

The Trade-off Between the Impersonation Attacks and Dodg-
ing Attacks: Owing to the inherent conflict during the optimization
process of impersonation and dodging losses in the black-box set-
ting, there exists a trade-off between impersonation and dodging
performance. We craft adversarial face examples using Lagrangian
attack and our proposed Adv-Pruning on LFW based on DI. The
average black-box results are demonstrated in the left plot of Fig. 7.

The results illustrate that our proposed method can reduce the
trade-off between impersonation and dodging performance in the
black-box setting. The pruning operation of our proposed Adv-
Pruning serves to sparsify the adversarial perturbations while pre-
serving the impersonation performance. On the other hand, the
restoration operation tends to introduce adversarial perturbations
in the pruned areas, specifically favoring dodging attacks. These op-
erations effectively enhance the dodging attack performance while
maintaining the impersonation attack performance, ultimately mit-
igating the trade-off.

5 CONCLUSION

In this paper, we delve into the issue of multi-identity samples
among adversarial face examples. Our research reveals the univer-
sality of multi-identity samples among adversarial face examples
crafted by previous impersonation attacks and the success of an
impersonation attack may not necessarily imply the success of dodg-
ing attacks on FR systems in the black-box setting. In order to im-
prove dodging performance without compromising impersonation
performance, we proposed a novel attack, namely Adv-Pruning.
Adv-Pruning comprises Priming, Pruning, and Restoration Stages.
Leveraging our proposed Adversarial Priority Quantification, we
identify less prioritized adversarial perturbations with minimal im-
pact on absolute model output variances. Through our proposed
Biased Gradient Adaptation, biased gradient perturbations are ap-
plied to the sparsified regions, adapting adversarial face examples
to a space favoring evasion attacks. Extensive experiments demon-
strate the effectiveness of our proposed method.

871

873

874

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

928



929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Rethinking Impersonation and Dodging Attacks on Face Recognition Systems

REFERENCES

(1]

A

(8]

(9]

[10]

[11]

[12]

[15]

[16

[17

(18]

[19

[20]

[21]

[22]

[23

Xiang An, Xuhan Zhu, Yuan Gao, Yang Xiao, Yongle Zhao, Ziyong Feng, Lan Wu,
Bin Qin, Ming Zhang, Debing Zhang, and Ying Fu. 2021. Partial FC: Training 10
Million Identities on a Single Machine. In IEEE/CVF International Conference on
Computer Vision Workshops. IEEE, 1445-1449.

Fadi Boutros, Jonas Henry Grebe, Arjan Kuijper, and Naser Damer. 2023. IDiff-
Face: Synthetic-based Face Recognition through Fizzy Identity-Conditioned Dif-
fusion Models. arXiv:2308.04995 [cs.CV]

Tom B. Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul F. Chris-
tiano, and Ian J. Goodfellow. 2018. Unrestricted Adversarial Examples. CoRR
abs/1809.08352 (2018). arXiv:1809.08352

Xiaoyu Cao and Neil Zhengiang Gong. 2017. Mitigating Evasion Attacks to Deep
Neural Networks via Region-based Classification. Proceedings of the 33rd Annual
Computer Security Applications Conference (2017).

Bin Chen, Jia-Li Yin, Shukai Chen, Bohao Chen, and Ximeng Liu. 2023. An Adap-
tive Model Ensemble Adversarial Attack for Boosting Adversarial Transferability.
In International Conference on Computer Vision. IEEE, 4466-4475.

Zhaoyu Chen, Bo Li, Shuang Wu, Kaixun Jiang, Shouhong Ding, and Wenqiang
Zhang. 2023. Content-based Unrestricted Adversarial Attack. In Advances in
Neural Information Processing Systems.

Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John P
Dickerson, Gavin Taylor, and Tom Goldstein. 2021. LowKey: Leveraging Adversar-
ial Attacks to Protect Social Media Users from Facial Recognition. In International
Conference on Learning Representations.

Xuelong Dai, Kaisheng Liang, and Bin Xiao. 2023. AdvDiff: Generating Unre-
stricted Adversarial Examples using Diffusion Models. CoRR abs/2307.12499
(2023). arXiv:2307.12499

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos
Zafeiriou. 2022. ArcFace: Additive Angular Margin Loss for Deep Face Recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 10 (2022),
5962-5979. https://doi.org/10.1109/TPAMI.2021.3087709

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting Adversarial Attacks with Momentum. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018), 9185-9193.
Jungi Gao, Biqing Qi, Yao Li, Zhichang Guo, Dong Li, Yuming Xing, and Dazhi
Zhang. 2023. Perturbation Towards Easy Samples Improves Targeted Adversarial
Transferability. In Advances in Neural Information Processing Systems.

Zhijin Ge, Fanhua Shang, Hongying Liu, Yuanyuan Liu, Liang Wan, Wei Feng, and
Xiaosen Wang. 2023. Improving the Transferability of Adversarial Examples with
Arbitrary Style Transfer. In Proceedings of the 31st ACM International Conference
on Multimedia. 4440-4449.

Zhijin Ge, Xiaosen Wang, Hongying Liu, Fanhua Shang, and Yuanyuan Liu.
2023. Boosting Adversarial Transferability by Achieving Flat Local Maxima. In
Advances in Neural Information Processing Systems.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations.

Yiwen Guo, Qizhang Li, and Hao Chen. 2020. Backpropagating linearly improves
transferability of adversarial examples. Advances in neural information processing
systems 33 (2020), 85-95.

Pavlo Haleta, Dmytro Likhomanov, and Oleksandra Sokol. 2021. Multitask
adversarial attack with dispersion amplification. EURASIP Journal on Information
Security 2021 (2021), 1-10.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770-778. https://doi.org/10.1109/CVPR.2016.90

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. 2019. Knowledge
Distillation with Adversarial Samples Supporting Decision Boundary. In The
Thirty-Third AAAI Conference on Artificial Intelligence. AAAI Press, 3771-3778.
Shengshan Hu, Xiaogeng Liu, Yechao Zhang, Minghui Li, Leo Yu Zhang, Hai Jin,
and Libing Wu. 2022. Protecting Facial Privacy: Generating Adversarial Identity
Masks via Style-robust Makeup Transfer. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 14994-15003.

Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-
beled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments. Technical Report 07-49. University of Massachusetts, Amherst.
Y. Huang, Pengcheng Shen, Ying Tai, Shaoxin Li, Xiaoming Liu, Jilin Li, Feiyue
Huang, and Rongrong Ji. 2020. Improving Face Recognition from Hard Samples
via Distribution Distillation Loss. In European Conference on Computer Vision.
Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li,
Jilin Li, and Feiyue Huang. 2020. CurricularFace: Adaptive Curriculum Learning
Loss for Deep Face Recognition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

Shuai Jia, Bangjie Yin, Taiping Yao, Shouhong Ding, Chunhua Shen, Xiaokang
Yang, and Chao Ma. 2022. Adv-Attribute: Inconspicuous and Transferable Adver-
sarial Attack on Face Recognition. In NeurIPS.

[24

[25]

[26]

&
=

[28

[29

[30

=
fla

[32

[33

[34

[35

[36

[37

[39

[40

[41

[42

[44

ACM MM, 2024, Melbourne, Australia

Yibo Hu Hailin Shi Jun Wang, Yinglu Liu and Tao Mei. 2021. FaceX-Zoo: A
PyTorh Toolbox for Face Recognition. Proceedings of the 29th ACM international
conference on Multimedia.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. In International
Conference on Learning Representation.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator
Architecture for Generative Adversarial Networks. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 4396-4405. https:
//doi.org/10.1109/CVPR.2019.00453

Jingzhi Li, Zidong Guo, Hui Li, Seungju Han, Ji-Won Baek, Min Yang, Ran Yang,
and Sungjoo Suh. 2023. Rethinking Feature-based Knowledge Distillation for Face
Recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 20156-20165.

Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. 2023. Improving Adver-
sarial Transferability via Intermediate-level Perturbation Decay. In Advances in
Neural Information Processing Systems.

Yanjie Li, Yiquan Li, Xuelong Dai, Songtao Guo, and Bin Xiao. 2023. Physical-
World Optical Adversarial Attacks on 3D Face Recognition. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 24699-24708.
https://doi.org/10.1109/CVPR52729.2023.02366

Zexin Li, Bangjie Yin, Taiping Yao, Junfeng Guo, Shouhong Ding, Simin Chen,
and Cong Liu. 2023. Sibling-Attack: Rethinking Transferable Adversarial Attacks
against Face Recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 24626—
24637. https://doi.org/10.1109/CVPR52729.2023.02359

Chumeng Liang, Xiaoyu Wu, Yang Hua, Jiaru Zhang, Yiming Xue, Tao Song,
Zhengui Xue, Ruhui Ma, and Haibing Guan. 2023. Adversarial example does good:
Preventing painting imitation from diffusion models via adversarial examples. In
International Conference on Machine Learning. PMLR, 20763-20786.

Xuannan Liu, Yaoyao Zhong, Yuhang Zhang, Lixiong Qin, and Weihong Deng.
2023. Enhancing Generalization of Universal Adversarial Perturbation through
Gradient Aggregation. In IEEE/CVF International Conference on Computer Vision.
IEEE, 4412-4421.

Yiran Liu, Xin Feng, Yunlong Wang, Wu Yang, and Di Ming. 2023. TRM-UAP: En-
hancing the Transferability of Data-Free Universal Adversarial Perturbation via
Truncated Ratio Maximization. In IEEE/CVF International Conference on Computer
Vision. IEEE, 4739-4748.

Yuyang Long, Qilong Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian
Zhang, and Jingkuan Song. 2022. Frequency Domain Model Augmentation
for Adversarial Attack. In European conference on computer vision, Vol. 13664.
549-566.

Dong Lu, Zhigiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng
Zheng. 2023. Set-level guidance attack: Boosting adversarial transferability of
vision-language pre-training models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 102-111.

Dong Lu, Zhigiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng
Zheng. 2023. Set-level Guidance Attack: Boosting Adversarial Transferability of
Vision-Language Pre-training Models. In IEEE/CVF International Conference on
Computer Vision. IEEE, 102-111.

Qiang Meng, Shichao Zhao, Zhida Huang, and Feng Zhou. 2021. MagFace:
A Universal Representation for Face Recognition and Quality Assessment. In
IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision
Foundation / IEEE, 14225-14234.

Duan Mingxing, Kenli Li, Lingxi Xie, Qi Tian, and Bin Xiao. 2021. Towards
multiple black-boxes attack via adversarial example generation network. In
Proceedings of the 29th ACM International Conference on Multimedia. 264-272.
Krishna kanth Nakka and Mathieu Salzmann. 2021. Learning Transferable Ad-
versarial Perturbations. In Advances in Neural Information Processing Systems,
Vol. 34. Curran Associates, Inc., 13950-13962.

Muzammal Naseer, Ahmad Mahmood, Salman Khan, and Fahad Khan. 2023.
Boosting Adversarial Transferability using Dynamic Cues. In International Con-
ference on Learning Representation.

Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, and Bo Li. 2020.
Semanticadv: Generating adversarial examples via attribute-conditioned image
editing. In Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part XIV 16. Springer, 19-37.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 815-823.

Fahad Shamshad, Muzammal Naseer, and Karthik Nandakumar. 2023.
CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversar-
ial Latent Search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 20595-20605.

Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. 2024. Jailbreak in pieces:
Compositional adversarial attacks on multi-modal language models. In The
Twelfth International Conference on Learning Representations.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044


https://arxiv.org/abs/2308.04995
https://arxiv.org/abs/1809.08352
https://arxiv.org/abs/2307.12499
https://doi.org/10.1109/TPAMI.2021.3087709
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR52729.2023.02366
https://doi.org/10.1109/CVPR52729.2023.02359

1045
1046
1047
1048
1049
1050

1051

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

ACM MM, 2024, Melbourne, Australia

[45]

[46

[47

[50]

[51

[52]

[53]

[54

[55

[56]

[57

[58]

[59]

[60

[61

[62]

(63

[66

Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein Hazimeh, Otilia
Stretcu, Wei Qiao, Yintao Liu, Merve Kaya, Cyrus Rashtchian, Ariel Fuxman,
Mehmet Tek, and Sven Gowal. 2023. Benchmarking Robustness to Adversarial
Image Obfuscations. In Advances in Neural Information Processing Systems.
Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao
Wang, and Yichen Wei. 2020. Circle Loss: A Unified Perspective of Pair Similarity
Optimization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Naufal Suryanto, Yongsu Kim, Harashta Tatimma Larasati, Hyoeun Kang, Thi-
Thu-Huong Le, Yoonyoung Hong, Hunmin Yang, Se-Yoon Oh, and Howon Kim.
2023. ACTIVE: Towards Highly Transferable 3D Physical Camouflage for Univer-
sal and Robust Vehicle Evasion. In IEEE/CVF International Conference on Computer
Vision. IEEE, 4282-4291.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.).

Donghua Wang, Wen Yao, Tingsong Jiang, Chao Li, and Xiaoqian Chen. 2023.
RFLA: A Stealthy Reflected Light Adversarial Attack in the Physical World. In
IEEE/CVF International Conference on Computer Vision. IEEE, 4432-4442.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. 2018. CosFace: Large Margin Cosine Loss for Deep Face
Recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen Wang. 2023. Boost-
ing Adversarial Transferability by Block Shuffle and Rotation. arXiv preprint
arXiv:2308.10299 (2023).

Xiaosen Wang and Kun He. 2021. Enhancing the Transferability of Adversarial
Attacks Through Variance Tuning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1924-1933.

Xiaobo Wang, Shifeng Zhang, Shuo Wang, Tianyu Fu, Hailin Shi, and Tao Mei.
2020. Mis-Classified Vector Guided Softmax Loss for Face Recognition. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence. AAAI Press, 12241—
12248.

Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. 2023. Structure invari-
ant transformation for better adversarial transferability. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 4607-4619.

Xingxing Wei, Yao Huang, Yitong Sun, and Jie Yu. 2023. Unified Adversarial Patch
for Cross-modal Attacks in the Physical World. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 4445-4454.

Xingxing Wei, Yao Huang, Yitong Sun, and Jie Yu. 2023. Unified Adversarial
Patch for Cross-modal Attacks in the Physical World. In IEEE/CVF International
Conference on Computer Vision. IEEE, 4422-4431.

Xingxing Wei, Jie Yu, and Yao Huang. 2023. Physically Adversarial Infrared
Patches with Learnable Shapes and Locations. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. IEEE, 12334-12342.

Shixian Wen and Laurent Itti. 2020. Beneficial Perturbations Network for De-
fending Adversarial Examples. arXiv preprint arXiv:2009.12724 (2020).

Zihao Xiao, Xianfeng Gao, Chilin Fu, Yinpeng Dong, Wei Gao, Xiaolu Zhang, Jun
Zhou, and Jun Zhu. 2021. Improving Transferability of Adversarial Patches on
Face Recognition with Generative Models. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 11840-11849.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and
Alan L. Yuille. 2019. Improving Transferability of Adversarial Examples With
Input Diversity. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2730-2739.

Zhuoer Xu, Zhangxuan Gu, Jianping Zhang, Shiwen Cui, Changhua Meng, and
Weigiang Wang. 2023. Backpropagation Path Search On Adversarial Transferabil-
ity. In IEEE/CVF International Conference on Computer Vision. IEEE, 4640-4650.
Xiao Yang, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu, Yuefeng Chen, and
Hui Xue. 2021. Towards Face Encryption by Generating Adversarial Identity
Masks. In Proceedings of the IEEE International Conference on Computer Vision.
3877-3887.

Xiao Yang, Chang Liu, Longlong Xu, Yikai Wang, Yinpeng Dong, Ning Chen,
Hang Su, and Jun Zhu. 2023. Towards Effective Adversarial Textured 3D Meshes
on Physical Face Recognition. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 4119-4128. https://doi.org/10.1109/CVPR52729.
2023.00401

Bangjie Yin, Wenxuan Wang, Taiping Yao, Junfeng Guo, Zelun Kong, Shouhong
Ding, Jilin Li, and Cong Liu. 2021. Adv-Makeup: A New Imperceptible and
Transferable Attack on Face Recognition. In International Joint Conference on
Artificial Intelligence. 1252-1258.

Shengming Yuan, Qilong Zhang, Lianli Gao, Yaya Cheng, and Jingkuan Song.
2022. Natural Color Fool: Towards Boosting Black-box Unrestricted Attacks. In
Advances in Neural Information Processing Systems.

Zheng Yuan, Jie Zhang, and Shiguang Shan. 2022. Adaptive Image Transforma-
tions for Transfer-Based Adversarial Attack. In European Conference on Com-
puter Vision, Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (Eds.). 1-17.

Anonymous Authors

[67] Dan Zeng, Hailin Shi, Hang Du, Jun Wang, Zhen Lei, and Tao Mei. 2020. NPCFace:

Negative-Positive Collaborative Training for Large-scale Face Recognition.
Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenxuan Wang,
Yuxin Su, and Michael R. Lyu. 2022. Improving Adversarial Transferability
via Neuron Attribution-based Attacks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 14973-14982.

Jiaming Zhang, Qi Yi, and Jitao Sang. 2022. Towards adversarial attack on
vision-language pre-training models. In Proceedings of the 30th ACM International
Conference on Multimedia. 5005-5013.

Yaoyao Zhong and Weihong Deng. 2021. Towards Transferable Adversarial
Attack Against Deep Face Recognition. IEEE Transactions on Information Forensics
and Security 16 (2021), 1452-1466.

Fengfan Zhou, Hefei Ling, Yuxuan Shi, Jiazhong Chen, and Ping Li. 2024. Improv-
ing Visual Quality and Transferability of Adversarial Attacks on Face Recognition
Simultaneously with Adversarial Restoration. In IEEE International Conference
on Acoustics, Speech and Signal Processing. 4540-4544.

Fengfan Zhou, Hefei Ling, Yuxuan Shi, Jiazhong Chen, Zongyi Li, and Ping Li.
2023. Improving the Transferability of Adversarial Attacks on Face Recognition
With Beneficial Perturbation Feature Augmentation. IEEE Transactions on Compu-
tational Social Systems (2023), 1-13. https://doi.org/10.1109/TCSS.2023.3291565
Ziqi Zhou, Shengshan Hu, Minghui Li, Hangtao Zhang, Yechao Zhang, and Hai
Jin. 2023. Advclip: Downstream-agnostic adversarial examples in multimodal
contrastive learning. In Proceedings of the 31st ACM International Conference on
Multimedia. 6311-6320.

Hegui Zhu, Yuchen Ren, Xiaoyan Sui, Lianping Yang, and Wuming Jiang. 2023.
Boosting Adversarial Transferability via Gradient Relevance Attack. In IEEE/CVF
International Conference on Computer Vision. IEEE, 4718-4727.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160


https://doi.org/10.1109/CVPR52729.2023.00401
https://doi.org/10.1109/CVPR52729.2023.00401
https://doi.org/10.1109/TCSS.2023.3291565

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Rethinking Impersonation and Dodging Attacks on Face Recognition Systems ACM MM, 2024, Melbourne, Australia

A THE PSEUDO-CODE OF ADVERSARIAL PRUNING ATTACK METHOD
The pseudo-code of our proposed method based on the Lagrangian attack is illustrated in Algorithm 1.

Algorithm 1 Adversarial Pruning Attack Based on Lagrangian

Input: Negative face image pair {x*, x’}, the number of the iterations of Priming stage n, the maximum number of iterations m, maximum
allowable perturbation magnitude €, the surrogate FR model ¥, the step size  and y.

Output: An adversarial face example led”
1: xgdz’ =x°
2: fort=1,...,ndo
3 LP=AL+ LY > Priming Stage

4 x0d0 = xadv _ gsjon (andlz;Lp)
p
x?du =11 (x;zdv)
x5,€
: end for
T = |x3dv _ x5 > Pruning Stage
: Q =Sort (¥ (1))
W =Q|[: ks]
10: Get M by Eq. (8).
11: xﬁdu =x5+ (xﬂd” - xs) oM
122 A=1-M
13 fort=n+1,...,mdo
4 Lr=)Liyrd > Restoration Stage
15 x40 = xffi’ — ysign (andlv-cr)
pi
6 p=AO (xfd” - xgdv)

17: xt“d“ =11 (xgd” +p)

x3,e

o

Y P N

18: end for

B THE OPTIMIZATION OBJECTIVE OF THE IMPERSONATION AND DODGING ATTACKS

The objective of impersonation attacks in our research is to craft an adversarial example x®¢? that causes the model %! to incorrectly
classify it as the target sample x!, while simultaneously maintaining a high degree of visual similarity between x?4?

x%. To be more specific, the objective can be expressed as follows:

Ao _ arf:;})in (D (?vd (xadv) ,Foct (xt))) (13)

adv

and the original sample

s.t[lx? —x%|lp, < e

where D refers to a predefined distance metric, while € specifies the maximum magnitude of permissible perturbation.
In contrast, the dodging attacks introduced in this study aim to prevent the model F%! from correctly recognizing x
sample x°. This is achieved while maintaining a visually similar appearance between the adversarial example xadv
In a manner similar to impersonation attacks, the objective of dodging attacks can be formulated as follows:
xadu = arg max (D (.7_—th (xadv) ) 7_—vct (xs)))
xadu (14)
s.t.][x%40 — x|l <e

adv a5 the source

C THE PROOF OF THE SUPREMUM OF THE ABSOLUTE VARIANCE

In this section, we will provide the proof of the supremum of the absolute variance of the output of # before and after pruning. The absolute
variance can be expressed as follows:

p=IIF (x+6)-F (x) | (15)
where § is the adversarial perturbation, || - || is the 2-norm.

Let us revisit an early hypothesis posited by Goodfellow et al. [14], suggesting that the linear nature of modern DNN, resembling linear
models trained on the same dataset, is the underlying cause of adversarial examples and their surprising transferability [15]. Based on the

and the original input x°.
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Table 4: Comparisons of ASR results (%) of dodging attack and impersonation attacks on the LFW dataset using the negative
cosine similarity loss. The models in the second row are the victim models.

ASRY ASR?

IR152 FaceNet MF
Baseline 2.2 16.1 99.4 25.4
Baseline + Lagrangian 4.0 26.5 100.0  26.0
Baseline + ours 8.1 39.7 100.0 26.2

hypothesis, the FR model # can be represented in the following linear form:
F(x)=wx+b (16)
where o is the weight vector, and b is the bias term.
Hence, the absolute variance of the output of the function ¥ can be articulated as:
p=IIF (x+6) - F (x) |l
=llo(x+8)+b—(wx+Db)]||
= 1wl < ol I8l = o2 )

The supremum of the absolute variance is given by ||w||Z. Within the context of gradient-based adversarial attacks, the parameters of
the neural networks are typically held constant. Consequently, the vector w can be treated as a constant. From this, we can deduce that
the supremum of the absolute variance in the output of ¥ is directly proportional to the priority measure 7. It follows that adversarial
perturbations of greater magnitude are more prioritized, as they exert a more pronounced influence on the output of the face recognition
model 7.

D THE CALCULATION METHOD OF THE ATTACK SUCCESS RATE

Due to the different objectives of the impersonation and dodging attacks, the calculation methods for the ASR also vary between the two
attack types. When it comes to impersonation attacks on FR, the ASR can be computed as:

Zj\ipl 1 (.@ (7_-zzct (xadv) | Foct (xt)) < ti)
Np

ASR! = (18)

where N, refers to the total number of face pairs and t! represents the impersonation attack threshold. For dodging attacks on FR systems,

the ASR can be computed via the following formula:

Zf\ip] 1 (Z) (.7rvct (xadv))fvct (XS)) > td)
Np

ASR? = (19)

where the value of t¢ represents the threshold for dodging attacks.

E THE CALCULATION METHOD OF THE MULTI-IDENTITY SAMPLE RATIO

Multi-identity Sample Ratio (MSR) is the proportion of multi-identity samples that can be recognized as both the attacker and victim identities
in the adversarial face examples capable of executing successful impersonation attacks. The detailed calculation method of MSR be expressed

as:
|S1 NSy

| Szl
where 81 and S, are the set of the adversarial examples that are identified as the attacker and victim identities, respectively. Therefore, the
8, is the set of adversarial face examples that can perform a successful impersonation attack.

MSR = (20)

F RESULTS ON NEGATIVE COSINE SIMILARITY LOSS

Apart from the normalized L, distance loss (i.e. Eq. (1) and Eq. (2)), the negative cosine similarity loss is also a commonly used loss function
in adversarial attacks on FR systems. In this section, we will assess the effectiveness of our proposed method regarding the negative cosine
similarity loss.

For impersonation attacks, the negative cosine similarity loss can be expressed as:

Lé =1-cos (7" (x“dz’) ,F (xt)) (21)

where cos (e, ¢’) is the function to calculate the cosine similarity between e and e’.
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Table 5: The results (%) on the LFW dataset using MF as the surrogate model. The models on the first row are the victim models.

ASR? ASR!

IR152 FaceNet MF
SA 99.4 45.9 2.1 44.5
SA + Lagrangian | 100.0 49.2 34 448
SA + ours 100.0 54.9 4.7 464

Table 6: The results (%) on the LFW dataset using MF as the surrogate model. The models on the first row are the victim models.

Attack | Metric | IR152 FaceNet MF
MSR | 95.6 75.7 0.8
DI ASR! | 184 32.9 100.0
ASRY | 22 18.2 99.2
MSR | 97.0 88.6 0.3
VMI ASR! | 136 202 100.0
ASRY | 1.0 8.4 99.7
MSR | 986 928 15
SSA ASRI | 138 19.6 100.0
ASRY | 0.7 5.9 98.5
MSR | 9856 9.6 0.4
DFANet | ASR! 7.0 11.9  100.0
ASRY | 0.2 15 99.6
MSR | 974 83.9 1.6
SIA ASR! | 157 267 100.0

ASRY | 1.0 10.6 98.4
MSR | 981 96.8 15.1
BSR ASR! 5.4 9.5 100.0
ASRY | 04 3.7 84.9

MSR | 96.2 92.1 2.3
BPFA | ASR! | 158 17.8 100
ASRY | 09 46 97.7

Similarly, the negative cosine similarity loss for dodging attacks can be formulated as follows:
£4 =1+ cos (7" (x“d”) F (xs)) (22)

To evaluate the effectiveness of our proposed method on the negative cosine similarity loss, we use DI as the Baseline to craft adversarial
face examples using the negative cosine similarity loss £} and Lgl as L1 and £9, respectively. The performance is demonstrated in Table 4.

Table 4 demonstrates that the performance of both impersonation and dodging improves after integrating our proposed attack method
into the Baseline attack. This further highlights the effectiveness of our method regarding the negative cosine similarity loss.

G RESULTS ON SIBLING-ATTACK

Sibling-Attack [30] (abbreviated as SA) is a cutting-edge adversarial attack on FR that demonstrates considerable effectiveness in enhancing
the transferability of adversarial attacks on FR. SA employs a surrogate model with a two-branch multi-task neural network, which differs
from the surrogate models discussed in Section 4.2. Consequently, we exclusively consider SA for comparison with our method.

We aligned the attack setting with the official SA implementation and integrated our proposed Adv-Pruning with SA. The FFHQ dataset,
provided by the official SA page!, is chosen as the dataset for generating adversarial face examples. The results are depicted in Table 5.

Table 5 demonstrates that the incorporation of our proposed method results in enhancements in both dodging and impersonation
performance. This further demonstrates the effectiveness of our proposed attack method in enhancing the dodging attack performance
without compromising the impersonation attack performance.

Thttps://github.com/Tencent/TFace/tree/ Adv-Attack-Defense/security/tasks/ Adv-Attack-Defense/Sibling-Attack
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H RESULTS ON MSR OF PREVIOUS IMPERSONATION ATTACKS

Following the same experimental setting of Section 4.4, we conduct experiments on various previous impersonation attacks. The results are
shown in Table 6.

As indicated by Table 6, the majority of the crafted adversarial face examples are multi-identity samples in the black-box setting. This
observation suggests that the majority of adversarial face examples, which are generated through the previous impersonation attacks, fail to
achieve a successful dodging attack in the black-box setting.

I HOW DOES OUR WORK CONTRIBUTE TO MULTIMEDIA PROCESSING?

Face images are crucial components of multimedia. Consequently, investigating adversarial attacks on FR is of great importance for bolstering
security and privacy of multimedia processing. Our work contributes to multimedia processing by enhancing the robustness and reliability
of face images in the multimedia sphere by exposing more blind spots. By identifying vulnerabilities in these multimedia systems using face
images through adversarial attacks, we can develop more robust algorithms and techniques to improve the security and privacy of these
multimedia systems. This contributes to the overall improvement of security and privacy in multimedia processing applications where face
images are used, such as virtual makeup try-ons, photo tagging, and social media filters.
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