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Abstract

This paper introduces MatKG, a novel graph database of key concepts in material
science spanning the traditional material-structure-property-processing paradigm.
MatKG is autonomously generated through transformer-based, large language
models and generates pseudo ontological schema through statistical co-occurrence
mapping. At present, MatKG contains over 2 million unique relationship triples
derived from 80,000 entities. This allows the curated analysis, querying, and
visualization of materials knowledge at unique resolution and scale. Further,
Knowledge Graph Embedding models are used to learn embedding representations
of nodes in the graph which are used for downstream tasks such as link prediction
and entity disambiguation. MatKG allows the rapid dissemination and assimilation
of data when used as a knowledge base, while enabling the discovery of new
relations when trained as an embedding model.

1 Introduction

Comprehensive knowledge of a given material requires the integration of disparate streams of infor-
mation that include compositional data, thermodynamic parameters, applications, phase/symmetry
labels, synthesis and processing routines, as well as physical, chemical, thermal, optical, and func-
tional propertiesWilliam and Callister [1989]. In general, it is difficult to find all this information in
one place, with the result that comprehensive knowledge of a given material is often missing, even
when the data are available. Given the rate at which new data are being accumulated, the amount of
available data is far greater than what can be accessed or assimilated. The standard paradigm of data
sharing and storage - through peer reviewed scientific publications and relational databases - remains
inadequate for the Materials Genome Age where artificial intelligence is increasingly employed
to accelerate materials discovery and design Tshitoyan et al. [2019], Dima et al. [2016], de Pablo
et al. [2019], De Pablo et al. [2014]. The task of data organization has been approached through
custom ontologies that build relations between data points through manual expert input. While several
domain specific ontologies such as NanomineMcCusker et al. [2020], ChemosRoch et al. [2018], etc.
have been written over the years, no field-wide ontology exists focused on materials science. Given
the onerous task of assigning a relation among individual pairs of data, even highly generalizable
ontologies such as SKOSMiles and Bechhofer [2009] have not been applied to materials at scale.

In this paper, we introduce MatKG, a novel graph database that links major conceptual entities in the
discipline using transformer-based large language models. The database is autonomously extracted
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from over 4 million papers on the topic of materials and includes chemistry, structure, property,
application, synthesis, and characterization data that are aggregated in the form of relational triples
<subject, predicate, object>. MatKG has over 2 million unique relationships among over 80,000
unique entities.

2 Methods

Entity Generation: A Named Entity Recognition (NER) Nadeau and Sekine [2007] model was used
to extract 80,000 unique entities from the abstracts and figure captions of over 4 million scientific
publications Kim et al. [2017] in the field of material science. Being information dense, these contain
low ‘noise’ and are hence particularly suitable for large scale autonomous data miningVenugopal
et al. [2021a, 2019, 2021b]. The NER model follows the scheme developed in MatScholar Weston
et al. [2019] and is built on MatBERT Weston et al. [2019], a Large Language Model (LLM) trained
on a material science text corpus that classifies text tokens into one of the following seven categories:
Material (CHM), Property (PRO), Application (APL), Synthesis Method (SYN), Characterization
Method (CMT), Descriptor (DSC), and Symmetry/Phase Label (SPL). Derived from the traditional
structure-property-processing-application paradigm in material scienceWilliam and Callister [1989],
these entities encapsulate the sum total of the knowledge of any given concept, be it a particular
chemistry, process, property, or application. Where possible, each entity is linked to an identifier
in Wikipedia using procedure developed in Spitkovsky and Chang [2012] or the corresponding
descriptor page in the Materials ProjectJain et al. [2013]. This allows the mapping of entities to
broader knowledge bases such as DBpediaAuer et al. [2007] and YAGOSuchanek et al. [2007],
thereby allowing holistic integration of MatKG with the larger knowledge graph community.

Link Generation : If entities e1 and e2 have the NER tags T [e1] and T [e2], they are assigned the
relationship T [e1]_T [e2] and the weight v(e1, e2) according to the method detailed in Appendix 5.1.
Subsequently, they are either filtered based on a predefined threshold to form knowledge triples of
the form <e1, T [e1]_T [e2] , e2> (1) or as a quartet of the form <e1, T [e1]_T [e2] , e2, v(e1, e2)> (2)
(See Appendix 5.1). (1) allows the extraction of 160,000 high fidelity links between about 12,000
unique entities, while (2) results in 2 million relations from up to 80,000 unique entities, thereby
demonstrating that a weighted link extraction approach captures far more data - increasing the scope
of the knowledge base.

Graph Representation Learning : The vector representations for the entities in the graph are learnt
using knowledge graph embedding models (KGE)Bordes et al. [2013],Yang et al. [2015], Trouillon
et al. [2016]. The models are evaluated using mean reciprocal rank (MRR) and hits@(1,10,100)
metrics on the test set as described in KGE literature Cai et al. [2018]. All models are implemented
using the publicly available AmpliGraph LibraryCostabello et al. [2019]. The model with the highest
MRR on the test set was used to perform downstream tasks that are described later.

3 Results

3.1 Knowledge base creation

The autonomously created highly interconnected knowledge graph for materials consists of the seven
NER categories and 49 relations (including inverse relations such as APL_PRO and PRO_APL).
The KG is thus a bidirectional digraph. The three most common types of entities are PRO, CHM ,
and CMT , while the most frequent relations are CHM_PRO, PRO_DSC, and CHM_CMT
(see Appendix, Table 1, 2). The large number of material-property (108 k) and material-application
(89 k) triples could correspond to the type of information usually present in abstracts, while char-
acterization related information originate from figure captions. Many papers in the corpus relate to
inorganic synthesisKim et al. [2017] which explains the high number of SMT_CHM (80 k) and
SMT_PRO (67 k) relations.

Together, the acquired data allows the extraction of subgraphs corresponding to wildcard triples such
as <TiO2, CHM_PRO, ?>, which correspond to the customized query: “what are the properties of
TiO2?”. Further, by accounting for the co-occurrence frequency, a confidence score can be assigned
to each triple as is visually represented in Fig 1(a, b) where the applications and phase labels of TiO2
are separately extracted and presented as individual bipartite graphs such that the size of the node
is proportional to v(TiO2, e). We see that the most common symmetry/phase labels associated with
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Figure 1: (a) Applications and (b) Symmetry Phase Labels of TiO2. (c) Applications and (d) Properties
of CdTe. The size of the node is proportional to the co-occurence frequency of the link.

Figure 2: Partitioned (a) application-material (b) application-property subgraphs showing the highest
weighted material and property for some select applications

TiO2 are ‘rutile’ and ‘anastase’, while the most frequent applications are as electrodes, catalyts and
for coating. These are in agreement with the widely available literature on the materialGuo et al.
[2019]. There is much less information on CdTe by comparison (18153 vs 1500 triples), but Fig 1(c,
d) extracted from MatKG still enables a high-level understanding with some specificity, such as the
knowledge that CdTe is used in solar cells and electrodes, and is an optical material as deduced from
its propertiesShin et al. [1983].

In addition to material specific queries, MatKG can be partitioned into relation specific subgraphs such
as the application-material and application – property graphs in Fig 2 (a-b), which shows the highest
weighted material and property respectively for some select applications. Platinum, perhaps the most
widely used metallic catalyst, appears with both ‘catalyst’ and ’hydrogen evolution’. Aluminum
is identified as a coating material while LiPF6 is seen to be an electrolyte, both of which are well
known applications of each respectively. In Fig 2 (b) the most common property associated with
electrodes is ’cycling performance’, while that of catalyst is ‘activity’. Both are in accordance with
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Table 1: Selected entities and their similarities, demonstrating semantic convergence at the embedding
level

Entities Similarity
(qspr, quantitative structure property relationship) 0.90
(qmom, quadrature method of moments) 0.91
(electromagnetic acoustic resonance, emar) 0.89
(ner, net energy ratio) 0.92
(let, linear energy transfer) 0.91

our understanding of these concepts. Therefore, MatKG allows the curated visualization and querying
of materials specific data directly extracted from literature at unprecedented scale and resolution.

3.2 Embedding representation learning

The TransEBordes et al. [2013] model with 150 dimensions is found to have the highest MRR
(0.49) on the test set. This model was chosen for discovering new links and for performing entity
disambiguation.

Entity Linking: The similarity between embeddings can be used as a measure of the semantic
similarity between entities, in turn becoming a useful tool for both co-reference resolution as well
as similar – chemical mapping. As shown in Table 1, several pairs of entities such as ‘qspr’ and
‘quantitative structure property relationship’, or ‘ner’ and ‘net energy ratio’ occupy almost identical
positions in MatKG and consequently have very similar graph embeddings. This suggests that they
are the same semantic token, even though their lexical distance can be substantial. This form of
co-reference resolution is currently not an easy task, especially for the sciencesUzuner et al. [2012].

Link Prediction: Finally, the KGE model was used to make new link predictions between existing
entities in the graph. In this way, the model can be used to discover new applications and properties of
existing materials, new properties that can be useful to a given application, or a new characterization
method for an existing property, etc. This results in a fuller and more integrated knowledge graph,
allowing a holistic analysis of structure-property-processing relations, even when such data is absent
in the training literature.

While the MRR and hits@(1,10,100) are good measures of link predictiveness of the modelKhetan
et al. [2021], it is desirable to quantify this inference ability further. To this end, 150 random link
predictions were generated by the model across all relationship categories. The top three entities
with the highest score for each prediction is manually ranked according to the following criteria:
Rank1 if the relationship can be classified as of type SKOS: Narrow, Rank 2 if it is of type SKOS:
Broad, and 3 otherwise, where ’narrow’ and ’broad’ are ontological schema specificed in SKOS Miles
and Bechhofer [2009]. An example triple is shown in Table 2, Appendix, which lists the top three
model predictions for the applications of Fe2O3. Some lithium-ion batteries use lithium-iron-oxide as
an electrode, which is usually made by the solid-state reaction of Li2CO3 and Fe2O3, which could
explain the first prediction. Since ‘lithium-ion batteries’ is not a direct application of Fe2O3, this
triple is ranked 2. However, ‘air batteries’ directly use iron/iron oxide as an electrodeRequies et al.
[2013] and hence this triple is assigned rank 1.

Of the 150 x 3 predictions made by the model, 47 % were found to have a rank 1, 29 % had a rank of
2, and the rest had a rank of 3 (See Appendix, Table 3 for examples). The utility of this approach
is seen in Fig 3, where previously empty application and characterization subgraphs of Bismuth
Telluride (as extracted from MatKG) are populated with meaningful entities through successful link
prediction.

4 Broader Impact

MatKG is the first step towards the complete synthesis of materials knowledge that allows for the
richer databases not just for materials but also for applications, properties, and characterization
methods. The ability to predict new links between entities in the graph allows the discovery of new
materials for existing applications and properties, in finding new applications of existing materials,
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Figure 3: (a) Original Triples extracted from MatKG and (b) model predicted triples for Bismuth
Telluride demonstrating the utility of KGE in complementing material knowledge bases

and novel correlations between synthesis, characterizations and properties. Consequently, MatKG
has broad impact for all the three categories of AI-guided materials design, Automated Synthesis
and for Automated Characterization .
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5 Appendix

5.1 KG construction

For every entity e, the lexical frequency L(e) is defined as the fraction of documents where e is
present at least once, where a document could either be one of Na abstracts or Nc figure captions. For
every pair of entities (e1, e2) in a given document, a co-occurrence function CO(e1, e2) is defined
such that:

CO(e1, e2) =

{
1 if both e1 and e2 present in the document
0 otherwise

(1)

The co-occurrence frequency v(e1, e2) is then defined as :

v(e1, e2) =

∑Na+Nc CO(e1, e2)

Na +Nc
(2)

v(e1, e2) therefore is a measure of how many times the given pair of entities (e1, e2) co-occur
in the document corpus. Subsequently, two approaches are employed to assign a link to (e1, e2).
Approach (1) is based on the premise that if v(e1, e2) >

L(e1)∗L(e2)
(Na+Nc)2

, then the entities e1 and e2 are
strongly correlated as they occur far more often than their conditional probabilities allow. Approach
(2) however, retains all entity pairs but appends their co-occurrence frequency as a weight in the
knowledge representation model
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Table 3: Selected relationships and their instance count in MatKG.

Relationship Number of Triple
CHM_CHM 499994
PRO_PRO 368381
CHM_PRO 252714
PRO_DSC 146929
CMT_CHM 141955
CHM_DSC 139740
CMT_PRO 108233
CMT_CMT 100675
APL_PRO 91466
CHM_APL 89117
CHM_SMT 80349

Table 4: Model predictions for the triple <Fe2O3, CHM_PRO, X> where X is a property. The
triples are ranked according to the scheme described in Results

Subject relationship Object Rank
Fe2O3 CHM_APL lithium ion batteries 2
Fe2O3 CHM_APL electrocatalyts 1
Fe2O3 CHM_APL air batteries 1

Table 5: Top three model predicted links for selected examples with model score, custom rank, and
cited doi

Subject relationship Object Score Rank Citation url
optical material APL_CHM In2O3 5.5 1 https://en.wikipedia.org/wiki/Indium(III)_oxide
optical material APL_CHM CdO 5.27 1 https://en.wikipedia.org/wiki/Cadmium_oxide
optical material APL_CHM Zinc Oxide 5.26 1 https://en.wikipedia.org/wiki/Zinc_oxide
anodic electrode APL_CHM Graphite 3.00 1 10.1016/j.ensm.2020.12.027
anodic electrode APL_CHM Carbon-fiber 3.00 1 10.1016/C2015-0-00574-3
anodic electrode APL_CHM LiClO4 2.90 2 https://en.wikipedia.org/wiki/Lithium_perchlorate
nuclear reactor APL_CHM Beryllium 7.02 1 https://www.energy.gov/ehss/about-beryllium
nuclear reactor APL_CHM Carbide 6.41 2 https://en.wikipedia.org/wiki/Uranium_carbide
nuclear reactor APL_CHM Tungsten 6.38 1 10.1016/j.ijhydene.2016.02.019
smes APL_PRO dmain 0.34 3 N/A

smes APL_PRO
transmitted
current 0.28 1 https://en.wikipedia.org/wiki/Superconducting

_magnetic_energy_storage
smes APL_PRO u11 0.20 3 N/A
reverse water gas
shift reaction APL_CHM C6H5OH 5.22 3 N/A

reverse water gas
shift reaction APL_CHM Naphtha 5.22 3 N/A

reverse water gas
shift reaction APL_CHM diethylether 4.79 3 N/A
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