
A Detailed Discussion of Related Work

Below, we provide a detailed discussion of relevant work.

•Reward Corruption Attacks in Stochastic Bandits. In the single-agent setting, there is a rich body
of work that studies the effect of reward-corruption in stochastic bandits, both for the unstructured
multi-armed bandit problem [25–28], and also for structured linear bandits [29–32]. In these works,
an adversary can modify the true stochastic reward/feedback on certain rounds; a corruption budget
C captures the total corruption injected by the adversary over the horizon T . The attack model we
study is fundamentally different: the adversaries in our setting can inject corruptions of arbitrary
magnitude in all rounds, i.e., there are no budget constraints. As such, the algorithmic techniques in
[25–31] do not apply to our model.

Continuing with this point, we note that in [28], the authors proved an algorithm-independent lower
bound of Ω(C) on the regret. This lower bound suggests that for the reward-corruption attack model,
when the attacker’s budget C scales linearly with the horizon T , there is no hope for achieving
sub-linear regret. In [60], the authors studied a reward-corruption model closely related to those in
[27–29], where in each round, with probability η (independently of the other rounds), the attacker
can bias the reward seen by the learner. Similar to the lower bound in [28], the authors in [60] proved
a lower bound of Ω(ηT) on the regret for their model. In sharp contrast to the fundamental limits
established in [28, 60], for our setup, as long as the corruption fraction α is strictly less than half,
we prove that with high-probability it is in fact possible to achieve sub-linear regret. The key is that
for our setting, the server can leverage “clean" information from the good agents in every round; of
course, the identities of such good agents are not known to the server. We finally note that beyond the
task of minimizing cumulative regret, the impact of fixed-budget reward-contamination has also been
explored for the problem of best-arm identification in [61].

•Multi-Agent Bandits. There is a growing literature that studies multi-agent multi-armed bandit
problems in the absence of adversaries, both over peer-to-peer networks, and also for the server-client
architecture model [33–52]. The main focus in these papers is the design of coordination protocols
among the agents that balance communication-efficiency with performance. A few very recent works
[53–56] also look at the effect of attacks, but for the simpler unstructured multi-armed bandit problem
[59]. Accounting for adversarial agents in the structured linear bandit setting we consider here
requires significantly different ideas that we develop in this paper. At this point, we should mention
that the concurrent work of [62] looks at a contextual bandit model somewhat different from what we
study; they identify fundamental performance limits and design efficient robust algorithms.

• Security in Distributed Optimization and Federated Learning. As we mentioned earlier, several
papers have studied the problem of accounting for adversarial agents in the context of supervised
learning [4–10, 63, 11–13, 64–66, 14, 67]. One of the primary applications of interest here is the
emerging paradigm of federated learning [1–3]. Different from the sequential decision-making setting
we investigate in our paper, the aforementioned works essentially abstract out the supervised learning
task as a static distributed optimization problem, and then apply some form of secure aggregation on
either gradient vectors or parameter estimates.

• Robust Statistics. The algorithms that we develop in this paper borrow tools from the literature
on robust statistics, pioneered by Huber [68, 69]. We point the reader to [18, 19, 70–72, 22], and
the references therein, to get a sense of some of the main results in this broad area of research. In a
nutshell, given multiple samples of a random variable - with a small fraction of samples corrupted
by an adversary - the essential goal of this line of work is to come up with statistically optimal and
computationally efficient robust estimators of the mean of the random variable. Notably, unlike
both the sequential bandit setting and the iterative optimization setting, the robust statistics literature
focuses on one-shot estimation. In other words, the adversary gets to corrupt the batch of samples
only once, and the effect of such corruption does not compound over time or iterations.

16

B Further Comments on our Algorithms

In what follows, we comment on certain key aspects of our proposed algorithms.

• On the knowledge of the corruption fraction. In practice, if we do not know the corruption
fraction α, but have access to an upper bound on α, say α̃, we can essentially use α̃ as a proxy for
α, both in our algorithms and their analyses. In this case, all our results go through identically by
simply replacing α with α̃ in the bounds. However, if we have no idea at all about α, then it is not
clear whether one can design a robust algorithm that achieves minimax-optimal rates for the setting
we consider in this paper. The main reason is as follows. Note that although computing a median
does not require knowledge of α, the robust confidence threshold we use in line 9 of Algorithm 1
critically relies on the knowledge of the corruption fraction α (or an upper-bound on it). Moreover,
the correctness of our overall approach, and the fact that it is minimax-optimal, relies heavily on the
tightness of the robust confidence thresholds in Lemma 1. Thus, at the moment, we do not know of a
way that can achieve tight regret bounds without any knowledge whatsoever of α; investigating this
aspect further is an interesting topic of future research.

• Beyond Gaussian Noise. In what follows, we explain in detail that both our algorithms and analysis
apply, with slight modifications, to both sub-Gaussian noise, and more generally, noise with bounded
variance. The reason why we chose Gaussian noise was primarily for ease of exposition. Suppose the
noise samples are i.i.d. with zero-mean (a standard assumption) and unit variance (the argument we
present next trivially extends to bounded variance σ2). To deal with such general noise distributions,
we need to make two minor changes to Algorithm 1. First, we replace the Median operation in line 8
of Algorithm 1 with the scalar univariate trimmed mean estimator recently proposed in [72]. The
estimator in [72] is easily implementable and minimax-optimal. Second, we set the robust threshold
γℓ in line 9 to be γℓ = C(1 +

√
αM)ϵℓ, where C is a suitably large universal constant; note that the

only thing that has changed from before is the replacement of α by
√
α in γℓ. We will justify the

choice of this threshold shortly, but before that, we mention the implications.

Implications. With the two minor modifications to Algorithm 1 described above, we can establish
an analogue of Theorem 1 where for each good agent, with probability at least 1− δ, the regret is
bounded above by Õ

((√
α+

√
1/M

)√
dT
)

. Compared to the bound in Theorem 1, we note that

our new bound is worsened by the replacement of α with
√
α - this is the price paid to account for

general non-Gaussian distributions. For robust mean estimation with general noise distributions (with
bounded fourth moments), the additive

√
α factor is unavoidable; see [72], for instance. Thus, we

conjecture that the bound on regret we mentioned above is also minimax-optimal.

For sub-Gaussian distributions, we can achieve a tighter regret bound: by setting the robust con-
fidence threshold to be γℓ = C(1 + α

√
log(1/α)M)ϵℓ, we can achieve a per-agent regret bound

of Õ
((
α
√
log(1/α) +

√
1/M

)√
dT
)

. Hence, with sub-Gaussian noise, we essentially recover
the same bounds as with Gaussian noise (up to logarithmic factors). It is very likely that with
sub-Gaussian noise, the median will continue to yield the bound above, i.e., we may not even need
the univariate trimmed mean estimator from [72]. However, we do not have a concrete proof of this
fact yet.

Changes in Analysis. We now go over the minor changes that need to be made to the analysis of
Theorem 1 in view of replacing the median operator by the trimmed mean estimator in [72]. We first
need an analog of Lemma 2 in Appendix C. This is supplied by Theorem 1 in [72] that provides
guarantees on the univariate trimmed mean estimator. Suppose we are given M data samples, where
all the good samples are i.i.d. with mean µ and variance σ2. Moreover, suppose the fraction of bad
samples is at most 1/2. With probability at least 1− δ, we then have

|µ̂− µ| ≤ C

(
√
α+

√
log(1/δ)

M

)
σ,

where µ̂ is the output of the univariate trimmed mean estimator. Equipped with this result, one can
follow the exact same steps as in the proof of Lemma 1 to justify the choice of the robust confidence
threshold γℓ = C(1 +

√
αM)ϵℓ. When the noise is additionally sub-Gaussian, the above bound can

be tightened by replacing
√
α with α

√
log(1/α). The rest of the proof goes through identically.

17

To sum up, we have argued that with minor modifications to both our algorithm and analysis, our
overall approach can handle both sub-Gaussian noise, and noise with bounded variance.

• Is it possible to tolerate a corruption fraction α > 0.5? The key question here is: Who is the
learner? The agent or the server? As we explain shortly, the answer to this question has significant
implications for whether or not we can tolerate the α > 0.5 case. Suppose the learners are the agents,
in that each good agent is capable of taking their own decisions (actions). If it is known ahead of time
that α > 0.5, then acting alone is the most natural thing to do. This is because there is nothing to be
gained by collaborating: no robust aggregation scheme can provide any guarantees when α > 0.5;
indeed, α = 0.5 is a fundamental breakdown point when one considers an arbitrary corruption model.
On the other hand, when α < 0.5, one can significantly improve upon the trivial per-agent regret of
O(
√
dT) by using the approach developed in our paper. This is revealed not only by our theory, but

the simulations that we report in Section 7.

Now suppose the learner is the server, i.e., the actions are decided by the server, and the agents
interact with an unknown environment and report certain relevant statistics to the server. As a concrete
example, consider a web-advertising example where the server displays ads (actions) to a group of
people (agents), assesses their (potentially corrupted) feedback, and then decides upon subsequent ad
displays to maximize click-through rates. Crucially, unlike the previous setting (where the learners
were the agents), the only way the server can acquire feedback about the environment is by interacting
with the agents (some of whom might be adversarial). In other words, the server does not have at its
disposal the trivial option of not interacting with the agents, and acting alone. Since in this setting,
the server is forced to interact with potentially corrupted agents, α < 0.5 is the only scenario that
can lead to meaningful regret bounds. More precisely, when α > 0.5, there is no hope of achieving
sub-linear regret, let alone benefiting from collaboration.

18

C Analysis of RCLB: Proof of Theorem 1

In this section, we will prove Theorem 1. We start with a standard result from robust statistics on
the guarantees afforded by the median operator for robust mean estimation of univariate Gaussian
random variables; see, for instance, [19].

Lemma 2. Consider a set S = {x1, . . . , xM} of M samples partitioned as S = Sg ∪ Sb, such
that (i) all the samples in Sg are drawn i.i.d. from N (µ, σ2), where µ, σ2 ∈ R; (ii) the samples in
Sb are chosen by an adversary, and can be arbitrary; and (iii) |Sb| < α|S|, where α < 1/2. Let
µ̂ = Median ({xi}, i ∈ [M]) . Given any δ ∈ (0, 1), we then have that with probability at least 1− δ,

|µ̂− µ| ≤ C

α+

√
log(1δ)

M

σ, (15)

where C is a suitably large universal constant.

The next key lemma - a restatement of Lemma 1 in the main body of the paper - informs us about the
quality of the robust mean payoffs computed in line 8 of Algorithm 1. Before proceeding to prove
this result, we define by Fℓ the σ-algebra generated by all the actions and rewards up to the beginning
of epoch ℓ.

Lemma 3. (Robust Confidence Intervals) Fix any epoch ℓ. For each active arm b ∈ Aℓ, the
following holds with probability at least 1− δℓ:

|µ(ℓ)
b − ⟨θ∗, b⟩| ≤ γℓ, where γℓ =

√
2C
(
1 + α

√
M
)
ϵℓ, (16)

where C is as in Lemma 2.

Proof. Fix an epoch ℓ, an active arm b ∈ Aℓ, and a good agent i ∈ [M] \ B. We start by analyzing
the statistics of the quantity ⟨θ̂(ℓ)i , b⟩. From the definition of θ̂(ℓ)i and Ṽℓ in Eq.(3), we have

θ̂
(ℓ)
i = Ṽ −1

ℓ Yi,ℓ

= Ṽ −1
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa


= Ṽ −1

ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a

(
⟨θ∗, a⟩+ η̄

(ℓ)
i,a

)
a


= θ∗ + Ṽ −1

ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 .

(17)

For the third equality above, we used the observation model (1), and denoted by η̄(ℓ)i,a the average of
the noise terms associated with the rewards observed by agent i during phase ℓ for arm a. From (17),
we then have

⟨θ̂(ℓ)i , b⟩ = ⟨θ∗, b⟩+
∑

a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,a⟨Ṽ

−1
ℓ a, b⟩. (18)

Now conditioned on Fℓ, the only randomness in the above equation corresponds to the noise terms
{η̄(ℓ)i,a}a∈Supp(πℓ). Furthermore, based on our noise model, it is clear that η̄(ℓ)i,a ∼ N (0, 1/m

(ℓ)
a) for

each a ∈ Supp(πℓ). It then follows that

E
[
⟨θ̂(ℓ)i , b⟩|Fℓ

]
= ⟨θ∗, b⟩.

19

We also have

E
[(
⟨θ̂(ℓ)i − θ∗, b⟩

)2
|Fℓ
]
=

∑
a∈Supp(πℓ)

m(ℓ)
a

(
⟨Ṽ −1
ℓ a, b⟩

)2

= b′Ṽ −1
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a aa′

 Ṽ −1
ℓ b

= ∥b∥2Ṽ −1
ℓ
,

(19)

where we used the fact that the noise terms are independent across arms. We conclude that conditioned
on Fℓ,

⟨θ̂(ℓ)i , b⟩ ∼ N
(
⟨θ∗, b⟩, ∥b∥2Ṽ −1

ℓ

)
.

In each epoch ℓ, the server has access to a set S(ℓ)b = {⟨θ̂(ℓ)i , b⟩}i∈[M], where the samples corre-
sponding to agents in [M] \ B are independent and identically distributed as per the distribution
above. Moreover, at most α ∈ [0, 1/2) fraction of the samples in S(ℓ)b are corrupted. Recalling that

µ
(ℓ)
b = Median

(
{⟨θ̂(ℓ)i , b⟩, i ∈ [M]}

)
, and using Lemma 2, we immediately observe that conditioned

on Fℓ, with probability at least 1− δℓ,

|µ(ℓ)
b − ⟨θ∗, b⟩| ≤ C

α+

√
log(1

δℓ
)

M

 ∥b∥Ṽ −1
ℓ
. (20)

We now proceed to bound the term ∥b∥Ṽ −1
ℓ

. To that end, let us start by noting that

Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′

=
∑

a∈Supp(πℓ)

⌈
T

(ℓ)
a

M

⌉
aa′

≽
1

M

∑
a∈Supp(πℓ)

T (ℓ)
a aa′

≽
d

Mϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)aa
′

=
d

Mϵ2ℓ
log

(
1

δℓ

) ∑
a∈Aℓ

πℓ(a)aa
′

=
d

Mϵ2ℓ
log

(
1

δℓ

)
Vℓ(πℓ).

(21)

Thus, we have

Ṽ −1
ℓ ≼

Mϵ2ℓ

d log
(

1
δℓ

)V −1
ℓ (πℓ).

20

Using the above bound, we proceed as follows.

∥b∥Ṽ −1
ℓ

=

√
b′Ṽ −1

ℓ b

≤ ϵℓ

√√√√ M

d log
(

1
δℓ

)√b′V −1
ℓ (πℓ)b

≤ ϵℓ

√√√√ M

d log
(

1
δℓ

)√max
a∈Aℓ

∥a∥2V −1
ℓ (πℓ)

(a)
= ϵℓ

√√√√ M

d log
(

1
δℓ

)√gℓ(πℓ)
(b)

≤ ϵℓ

√√√√ 2M

log
(

1
δℓ

) .

(22)

In the above steps, we used the definition of gℓ(πℓ) for (a); for (b), we used the fact that based on the
approximate G-optimal design problem solved by the server in line 1 of RCLB, gℓ(πℓ) ≤ 2d. Plugging
the bound from (22) into (20), and using the fact that log

(
1
δℓ

)
≥ 1, we have that

P
(
|µ(ℓ)
b − ⟨θ∗, b⟩| ≥ γℓ|Fℓ

)
≤ δℓ. (23)

Consider the following event Eℓ ≜ {|µ(ℓ)
b − ⟨θ∗, b⟩| ≥ γℓ}. Now observe that

P(Eℓ) = E[1Eℓ
]

= E [E[1Eℓ
|Fℓ]]

= E [P(Eℓ|Fℓ)]
≤ δℓ,

(24)

where we used 1Eℓ
to denote an indicator random variable associated with the event Eℓ; also, for the

last line, we used (23).

In the following two results, we use the robust confidence intervals from Lemma 3 to construct clean
events that hold with high probability on which (i) the optimal arm a∗ is never eliminated (Lemma 4);
and (ii) any arm retained in epoch ℓ contributes at most O(γℓ) regret in each time-step within epoch ℓ
(Lemma 5). To proceed, for each a ∈ A, define the arm-gap ∆a = ⟨θ∗, a∗ − a⟩.

Lemma 4. Define the event G1 ≜ {a∗ ∈ Aℓ,∀ℓ ∈ [L]}, where L is the total number of epochs. It
then holds that P(G1) ≥ 1− 4δ̄.

Proof. Based on the arm-elimination criterion in line 9 of Algorithm 1, it follows that {a∗ ∈ Aℓ, a∗ /∈
Aℓ+1} =⇒ {∃b ∈ Aℓ : µ(ℓ)

b − µ
(ℓ)
a∗ > 2γℓ}. Now for any fixed b ∈ Aℓ, we have

µ
(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ

=⇒
(
µ
(ℓ)
b − ⟨θ∗, b⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓ)

a∗

)
> 2γℓ +∆b

=⇒
(
µ
(ℓ)
b − ⟨θ∗, b⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓ)

a∗

)
> 2γℓ,

(25)

where for the second step, we used the fact that ∆b ≥ 0. Thus, the event {µ(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ} implies

the occurrence of either {µ(ℓ)
b − ⟨θ∗, b⟩ > γℓ} or {⟨θ∗, a∗⟩ − µ(ℓ)

a∗ > γℓ}. From Lemma 3, we further
know that the probability of each of these latter events is at most δℓ. Putting these pieces together,

21

and using an union bound, we have

P(Gc1) ≤
∑
ℓ∈[L]

P(a∗ ∈ Aℓ, a∗ ̸∈ Aℓ+1)

≤
∑
ℓ∈[L]

P(∃b ∈ Aℓ : µ(ℓ)
b − µ

(ℓ)
a∗ > 2γℓ)

≤ 2K
∑
ℓ∈[L]

δℓ

= 2K
∑
ℓ∈[L]

δ̄

Kℓ2

≤ 2

∞∑
ℓ=1

δ̄

ℓ2

≤ 2δ̄

∫ ∞

x=1

1

x2
dx ≤ 4δ̄.

(26)

This completes the proof.

In our next result, we work towards bounding the regret incurred from playing each active arm in a
given epoch.
Lemma 5. Consider any arm a ∈ A \ {a∗}. Let ℓa be defined as ℓa ≜ min{ℓ : γℓ < ∆a

4 }. It then
holds that P(a ∈ Aℓa+1) ≤ 6δ̄.

Proof. Let us start by observing that
P(a ∈ Aℓa+1) = P(a ∈ Aℓa+1, a

∗ ∈ Aℓa) + P(a ∈ Aℓa+1, a
∗ ̸∈ Aℓa)

≤ P(a ∈ Aℓa+1, a
∗ ∈ Aℓa) + P(a∗ ̸∈ Aℓa)

≤ P(a ∈ Aℓa , a ∈ Aℓa+1, a
∗ ∈ Aℓa) + 4δ̄,

(27)

where for the last step, we used the fact that {a ∈ Aℓa+1} =⇒ {a ∈ Aℓa}, and Lemma 4. Now, to
bound P(a ∈ Aℓa , a ∈ Aℓa+1, a

∗ ∈ Aℓa), we note based on line 9 of RCLB that

P(a ∈ Aℓa , a ∈ Aℓa+1, a
∗ ∈ Aℓa) ≤ P

(
max
b∈Aℓa

µ
(ℓa)
b − µ(ℓa)

a ≤ 2γℓa

)
≤ P

(
µ(ℓa)
a∗ − µ

(ℓa)
a ≤ 2γℓa

)
≤ P

((
µ(ℓa)
a − ⟨θ∗, a⟩

)
+
(
⟨θ∗, a∗⟩ − µ(ℓa)

a∗

)
> ∆a − 2γℓa

)
≤ P

(
µ(ℓa)
a − ⟨θ∗, a⟩ > γℓa

)
+ P

(
⟨θ∗, a∗⟩ − µ(ℓa)

a∗ > γℓa

)
≤ 2δℓa ,

(28)
where we used ∆a > 4γℓa for the second last step, and Lemma 3 for the last step. Noting that
δℓa ≤ δ̄, and combining the bounds in equations (27) and (28) leads to the claim of the lemma.

We are now in place to prove Theorem 1.

Proof. (Proof of Theorem 1) We start by constructing an appropriate clean event E for our subsequent
analysis. Accordingly, let us define:

E = {a∗ ∈ Aℓ,∀ℓ ∈ [L]}
⋂
{∩a∈A\{a∗}{a /∈ Aℓa+1}}. (29)

Based on Lemmas 4 and 5, we then have

P(Ec) ≤ 4δ̄ +
∑

a∈A\{a∗}

P(a ∈ Aℓa+1)

≤ 4δ̄ + 6δ̄K

≤ 10δ̄K = δ,

(30)

22

as per the choice of δ̄ in Theorem 1. Thus, P(E) ≥ 1− δ. Throughout the rest of the proof, we will
condition on the clean event E . Based on the definition of the event E , it is easy to see that for any
epoch ℓ ∈ [L], a ∈ Aℓ =⇒ ∆a ≤ 8γℓ. Using this key fact, we now proceed to bound the regret of
any good agent i ∈ [M] \ B.

T∑
t=1

⟨θ∗, a∗ − ai,t⟩ =
L∑
ℓ=1

∑
a∈Supp(πℓ)

m(ℓ)
a ⟨θ∗, a∗ − a⟩

=

L∑
ℓ=1

∑
a∈Supp(πℓ)

⌈
T

(ℓ)
a

M

⌉
∆a

≤
L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆a︸ ︷︷ ︸

T1

+

L∑
ℓ=1

∑
a∈Supp(πℓ)

∆a︸ ︷︷ ︸
T2

.

(31)

We now bound T1 and T2 separately. For bounding T1, we have:

T1 =

L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆a

=
d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)∆a

≤ 8d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

)
γℓ

=
8
√
2C(1 + α

√
M)d

M

L∑
ℓ=1

1

ϵℓ
log

(
10K2ℓ2

δ

)

≤ 8
√
2C(1 + α

√
M)d

M
log

(
10K2L2

δ

) L∑
ℓ=1

2ℓ

= O

(
(1 + α

√
M)d

M
log

(
10K2L2

δ

)
2L

)
.

(32)

In the third step above, we used
∑
a∈Supp(πℓ)

πℓ(a) = 1. We now need an upper-bound on the term
2L. To that end, notice that the length of the horizon T is bounded below by the length of the last
epoch, i.e., the L-th epoch. Moreover, the duration of the L-th epoch corresponds to the number of
arm-pulls made by any single good agent during the L-th epoch. We thus have:

T ≥
∑

a∈Supp(πL)

T
(L)
a

M

≥ 4Ld

M

∑
a∈Supp(πL)

πL(a) log

(
1

δL

)

=
4Ld

M
log

(
10K2L2

δ

) ∑
a∈Supp(πL)

πL(a)

=
4Ld

M
log

(
10K2L2

δ

)
.

(33)

Thus, 2L ≤
√
MT/(d log (10K2L2/δ). Plugging this bound in (32), we obtain

T1 = O

((
α+

1√
M

)√
log

(
KT

δ

)
dT

)
= Õ

((
α+

1√
M

)√
dT

)
.

23

As for the term T2, we have

T2 =

L∑
ℓ=1

∑
a∈Supp(πℓ)

∆a

≤ 8

L∑
ℓ=1

γℓ|Supp(πℓ)|

(a)

≤ 384
√
2Cd log log d

(
1 + α

√
M
) L∑
ℓ=1

2−ℓ

= O
(
d log log d

(
1 + α

√
M
))

(b)
= Õ

((
α+

1√
M

)√
dT

)
.

(34)

In the above steps, for (a), recall from line 1 of RCLB that |Supp(πℓ)| ≤ 48d log log d based on the
approximate G-optimal design computation. For (b), we used the fact that by assumption, T ≥Md.
Combining the bounds on T1 and T2, and recalling that P(E) ≥ 1− δ, we have that with probability
at least 1− δ,

T∑
t=1

⟨θ∗, a∗ − ai,t⟩ = O

((
α+

1√
M

)√
log

(
KT

δ

)
dT

)
= Õ

((
α+

1√
M

)√
dT

)
. (35)

This concludes the proof.

The following is an immediate corollary of Theorem 1 on the group regret RT .
Corollary 1. (Bound on Group Regret) Under the conditions of Theorem 1, we have:

RT = Õ
((
αM +

√
M
)√

dT
)
. (36)

Proof. (Proof of Corollary 1) Recall from the proof of Theorem 1 that there exists a clean event E
of measure at least 1− δ on which the regret of every good agent is bounded above as per Eq. (35).
Let C̃ be an upper bound on the maximum instantaneous regret, i.e.,

max
a∈A
⟨θ∗, a∗ − a⟩ ≤ C̃.

Now set δ = 1
MT and observe that:

RT = E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩


= E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩
∣∣∣E
P(E) + E

 ∑
i∈[M]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩
∣∣∣Ec
P(Ec)

≤ C1

(
αM +

√
M
)√

log (KMT) dT + C̃MT × 1

MT

= O
((
αM +

√
M
)√

log (KMT) dT
)

= Õ
((
αM +

√
M
)√

dT
)
.

(37)

In the above steps, C1 is a suitably large universal constant.

24

D Lower Bound Analysis: Proof of Theorem 2

In this section, we will prove Theorem 2. Before diving into the technical details, we remind the
reader that we consider a slightly different adversarial model from the one considered throughout the
paper. In this modified model, with probability α, each agent is adversarial independently of the other
agents. We will consider a class of policies Π where at each time-step, the same action (decided by
the server) is played by every agent. Thus, the regret incurred by any individual agent is the same
as the regret incurred by the server. Finally, to prove the lower bound, we will focus on a class of
2-armed bandits where the reward distribution of each arm is Gaussian with unit variance; such a
class of bandits is succinctly denoted by E(2)N (1).

We will have occasion to use the following result [57, Theorem 14.2].

Lemma 6. (Bretagnolle-Huber Inequality) Let P and Q be two probability measures on the same
measurable space (Ω,F), and let A ∈ F be any arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−KL(P,Q)) ,

where Ac is the complement of the event A, and KL(P,Q) is the Kullback-Leibler distance between
P and Q.

Our proof comprises of two main steps. First, we construct two distinct bandit instances within the
class E(2)N (1) such that the two instances - although different - appear identical to the server. Second,
we devise an attack strategy and argue that regardless of the policy played by the server, it will end
up suffering a regret of Ω(α

√
T) upon interacting with at least one of the two instances; here, T is

the horizon for our problem. We now elaborate on these two steps.

• Step 1. Construction of the two bandit instances. We first take a detour and describe an idea that
is typically used to prove lower bounds for the robust mean estimation literature [18, 19]. It will soon
be apparent how such an idea can be exploited to construct the two bandit instances for our problem.
We show that there are two univariate Gaussian distributions P1 = N (µ1, 1), P2 = N (µ2, 1), and
two T -dimensional distributions Q1, Q2, such that ∥µ1 − µ2∥2 = Ω(α/

√
T), and:

(1− α)PT1 + αQ1 = (1− α)PT2 + αQ2, (38)

where PT1 (resp., PT2) is the joint distribution of T i.i.d. samples drawn from P1 (resp., P2). Clearly,
PT1 (resp., PT2) is equivalent to a T -dimensional Gaussian distributionN (µ1, IT) (resp.,N (µ2, IT)),
where µ1 (resp., µ2) is a T -dimensional vector with each entry equal to µ1 (resp., µ2). Let ϕ1 be the
p.d.f. of PT1 and ϕ2 be the p.d.f. of PT2 . Next, let µ1 and µ2 be chosen such that the total variation
distance δ(PT1 , P

T
2) between PT1 and PT2 is

1

2

∫
∥ϕ1 − ϕ2∥1dx =

α

1− α
.

Let Q1 be the distribution with p.d.f. 1−α
α (ϕ2 − ϕ1)1ϕ2≥ϕ1

, and Q2 be the distribution with p.d.f.
1−α
α (ϕ1 − ϕ2)1ϕ1≥ϕ2 . With such a construction of Q1 and Q2, one can verify that the equality in

Eq. (38) is satisfied; see, for instance, the arguments in Appendix E of [18]. Now from Pinsker’s
inequality, we know that: √

1

2
KL(PT1 , P

T
2) ≥ δ(PT1 , PT2) =

α

1− α
,

where we used KL(PT1 , P
T
2) to denote the Kullback-Leibler distance between PT1 and PT2 . We

conclude that:
1

2
∥µ1 − µ2∥22 = KL(PT1 , P

T
2) ≥ 2

(
α

1− α

)2

.

This, in turn, implies

√
T (|µ1 − µ2|) = ∥µ1 − µ2∥2 ≥

2α

1− α
≥ 2α.

25

We have thus shown that there exist µ1, µ2 ∈ R, satisfying |µ1 − µ2| ≥ 2α/
√
T , such that with

P1 = N (µ1, 1), P2 = N (µ2, 1), one can satisfy Eq. (38) with appropriately chosen T -dimensional
distributions Q1 and Q2. With these ideas in place, we now return to our bandit problem.

Without loss of generality, suppose µ2 > µ1, where µ2 and µ1 are as in the construction described
above. Let us construct two bandit instances ν and ν′, each involving two arms, i.e., A = {a1, a2}.
Let r(ν)ak and r(ν

′)
ak denote the reward distribution of arm ak, k ∈ {1, 2}, in instance ν and instance ν′,

respectively. These reward distributions are chosen as follows.

Instance ν : r(ν)a1 ∼ N
(
µ1 + µ2

2
, 1

)
; r(ν)a2 ∼ N (µ1, 1)

Instance ν′ : r(ν
′)

a1 ∼ N
(
µ1 + µ2

2
, 1

)
; r(ν

′)
a2 ∼ N (µ2, 1).

(39)

Thus, the distribution of the first arm is the same in both instances. However, as µ2 > µ1, the first
arm is the best arm in the first instance while the opposite is true for the second instance. The attack
strategy for the adversarial agents will be dictated by the distributions Q1 and Q2 in a manner to be
described shortly.

• Step 2. The attack strategy and regret analysis. Inspired by the argument in the proof of [17,
Theorem 5], we consider a full information setting where the server has access to t reward samples
from each arm from each agent at time-step t. Since this full information setting is simpler than the
bandit setting, a lower bound for the former implies one for the latter.

Here is the attack strategy. Suppose an agent is adversarial (which happens with probability α). In
either instance, for arm 1, it reports samples from the true distribution for arm 1 corresponding to
that instance. In other words, the reward samples for arm 1 are not corrupted by the agent. As for
arm 2, in instance ν (resp., ν′), the first t reward samples (where t ∈ [T]) corresponding to a2 are
generated from Qt1 (resp., Qt2) by the adversarial agent. Here, Qt1 (resp., Qt2) is the marginal of the
T -dimensional distribution Q1 (resp., Q2) corresponding to the first t components. To sum up, in
instance ν, the joint distribution D(ν)

a1 of rewards for a1 over the horizon T , as seen by the server from
any given agent, is the T -dimensional Gaussian distribution N (µ̄, IT), where µ̄ is a T -dimensional
vector with each component equal to µ1+µ2

2 . Based on our discussion above, D(ν)
a1 = D

(ν′)
a1 . Let

D
(ν)
a2 and D(ν′)

a2 have analogous meanings for arm a2. Then, we have:

D(ν)
a2 = (1− α)PT1 + αQ1; D(ν′)

a2 = (1− α)PT2 + αQ2. (40)

In light of Eq. (38), however, we have D(ν)
a2 = D

(ν′)
a2 . Essentially, what we have established is the

following: the joint distribution of rewards for each arm over the horizon T , as seen by the server
from each agent, is identical for both instances.

In what follows, given any two distributions D1 and D2, let D1 ⊗ D2 represent their product
distribution. Since the rewards across arms are independent, the joint distribution of rewards for both
arms is given by D(ν) ≜ D

(ν)
a1 ⊗D

(ν)
a2 in instance ν, and D(ν′) ≜ D

(ν′)
a1 ⊗D

(ν′)
a2 in instance ν′. Since

rewards across agents are independent, the joint distributions of rewards from all agents, as seen by
the server in each of the two instances, are given by:

D
(ν)
M ≜ D(ν) ⊗D(ν) ⊗ · · · ⊗D(ν)︸ ︷︷ ︸

M -fold product distribution

; D
(ν′)
M ≜ D(ν′) ⊗D(ν′) ⊗ · · · ⊗D(ν′)︸ ︷︷ ︸

M -fold product distribution

.

Let Eν [·] (resp., Eν′ [·]) represent the expectation operation w.r.t. the measure D(ν)
M (resp., D(ν′)

M). Let
us use Pν as a shorthand for D(ν)

M , and Pν′ as a shorthand for D(ν′)
M . Furthermore, let nk(T) be the

random variable representing the total number of times arm ak, k ∈ {1, 2}, is chosen by the server
over the horizon T . Finally, recall that R(s)

T (ν) (resp., R(s)
T (ν′)) is the regret incurred by the server

upon interaction with instance ν (resp., instance ν′).

In instance ν, each time arm 2 is chosen by the server, it incurs an instantaneous regret of (µ2−µ1)/2.
We thus have:

R
(s)
T (ν) =

(
µ2 − µ1

2

)
(T − Eν [n1(T)]) ≥

(µ2 − µ1)T

4
Pν
(
n1(T) ≤

T

2

)
. (41)

26

To see why the latter inequality is true, observe:

Eν [n1(T)] = Eν
[
n1(T)|n1(T) ≤

T

2

]
Pν
(
n1(T) ≤

T

2

)
+ Eν

[
n1(T)|n1(T) >

T

2

]
Pν
(
n1(T) >

T

2

)
≤ T

2
Pν
(
n1(T) ≤

T

2

)
+ T

(
1− Pν

(
n1(T) ≤

T

2

))
= T − T

2
Pν
(
n1(T) ≤

T

2

)
.

(42)

In instance ν′, each time arm 1 is chosen by the server, it incurs an instantaneous regret of (µ2−µ1)/2.
We thus have:

R
(s)
T (ν′) =

(
µ2 − µ1

2

)
Eν′ [n1(T)] ≥

(µ2 − µ1)T

4
Pν′

(
n1(T) >

T

2

)
. (43)

Combining Eq. (41) and Eq. (43) yields:

max{R(s)
T (ν), R

(s)
T (ν′)} ≥ 1

2

(
R

(s)
T (ν) +R

(s)
T (ν′)

)
≥ (µ2 − µ1)T

8

(
Pν
(
n1(T) ≤

T

2

)
+ Pν′

(
n1(T) >

T

2

))
(a)

≥ (µ2 − µ1)T

16
exp (−KL (Pν ,Pν′))

(b)

≥ α
√
T

8
exp (−KL (Pν ,Pν′))

(c)
=
α
√
T

8
.

(44)

In the above steps, we used the Bretagnolle-Huber inequality (namely, Lemma 6) for (a); for (b), we
used the fact that µ2 and µ1 were chosen in Step 1 to satisfy µ2 − µ1 ≥ 2α/

√
T ; and for (c), we

used KL (Pν ,Pν′) = 0. To see why KL (Pν ,Pν′) = 0, we use the chain-rule for relative entropies to
obtain:

KL (Pν ,Pν′) = KL
(
D

(ν)
M , D

(ν′)
M

)
=M

(
KL
(
D(ν), D(ν′)

))
=M

(
KL
(
D(ν)
a1 , D

(ν′)
a1

)
+ KL

(
D(ν)
a2 , D

(ν′)
a2

))
= 0,

(45)

where the last step is a consequence of the fact that D(ν)
a1 = D

(ν′)
a1 , and D(ν)

a2 = D
(ν′)
a2 . The claim of

Theorem 2 follows from noting that the resulting lower bound in Eq. (44) holds regardless of the
number of agents M .

■

Remark 3. The proof of Theorem 2 above reveals a constructive attack strategy for the adversarial
agents to follow. As future work, it would be interesting to see if similar ideas can be extended to
more general reinforcement learning problems.

27

Algorithm 4 Robust Collaborative Phased Elimination for Generalized Linear Bandits (RC-GLM)

Input: Action set A = {a1, . . . , aK}, confidence parameter δ, and corruption fraction α.
Initialize: ℓ = 1 and A1 = A.
1: Let Vℓ(π) ≜

∑
a∈Aℓ

π(a)aa′ and gℓ(π) ≜ maxa∈Aℓ
∥a∥2Vℓ(π)

−1 . Server solves an approximate
G-optimal design problem to compute a distribution πℓ over Aℓ such that gℓ(πℓ) ≤ 2d and
|Supp(πℓ)| ≤ 48d log log d.

2: For each a ∈ Aℓ, server computes m(ℓ)
a via Eq. (5), and broadcasts {m(ℓ)

a }a∈Aℓ
to all agents.

3: for i ∈ [M] \ B do
4: For each arm a ∈ Aℓ, pull it m(ℓ)

a times. Let r(ℓ)i,a be the average of the rewards observed by
agent i for arm a during phase ℓ.

5: Compute Ṽℓ and Yi,ℓ as follows.

Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′ ; Yi,ℓ =

∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa.

6: Transmit Yi,ℓ to server. Adversarial agents can transmit arbitrary vectors at this stage.
7: end for
8: Server computes a statistic Xℓ as follows:

Xℓ = ITW({Ṽ −1/2
ℓ Yi,ℓ, i ∈ [M]}),

where ITW(·) is the output of the Iteratively Reweighted Mean Estimator from [22].
9: Server computes a robust estimate θ̂(ℓ) of θ∗ by solving:

hℓ(θ̂
(ℓ)) = Ṽ

1/2
ℓ Xℓ.

10: Define robust confidence threshold γ̄ℓ = 4C1(k2/k1)
(√

d+ α
√
M log(1/α)

)
ϵℓ, where ϵℓ =

2−ℓ, and C1 is as in Lemma 8. Server performs phased elimination with the estimate θ̂(ℓ) and
confidence threshold γ̄ℓ to update active arm set:

Aℓ+1 = {a ∈ Aℓ : max
b∈Aℓ

µ(⟨θ̂(ℓ), b⟩)− µ(⟨θ̂(ℓ), a⟩) ≤ 2γ̄ℓ}. (46)

11: ℓ = ℓ+ 1 and Goto line 1.

E Algorithms and Analysis for the Generalized Linear Bandit Model

In this section, we first provide a detailed outline of the RC-GLM algorithm introduced in Section 5;
see Algorithm 4. We then proceed to analyze RC-GLM, and provide a proof for Theorem 3. Finally,
since RC-GLM uses the iteratively reweighted mean estimator from [22] as a sub-routine, we also
provide a description of this estimator to keep the paper self-contained; this description, however, is
deferred to the end of the section. We start by reminding the reader that the non-linear observation
model of interest to us in this section is as follows:

yi,t = µ (⟨θ∗, ai,t⟩) + ηi,t, (47)

where µ : R→ R is the link function. We also recall the definition of hℓ(θ):

hℓ(θ) ≜
∑

a∈Supp(πℓ)

m(ℓ)
a µ(⟨θ, a⟩)a,∀θ ∈ Θ.

From comparing RC-GLM (Algorithm 4) to RCLB (Algorithm 1), we note that while both algorithms
share the same general structure, the key difference between the two stems from the manner in which
the robust confidence thresholds are computed. In particular, to tackle the difficulty posed by the
non-linearity of the observation map, we first compute a robust estimate θ̂(ℓ) of θ∗ at the server - a
route that we avoided in RCLB - and then use such an estimate to devise a phased elimination rule.

28

E.1 Proof of Theorem 3

In this section, we prove Theorem 3. The crux of the analysis lies in deriving a robust confidence
bound akin to that in Lemma 1. To work towards such a result, we need to first go through a few
intermediate steps; these are as follows.

Step 1. Prove that conditioned on Fℓ, for each i ∈ [M] \ B, Ṽ −1/2
ℓ Yi,ℓ is a d-dimensional Gaussian

random variable with mean Ṽ −1/2
ℓ hℓ(θ∗), and covariance matrix Σ = Id.6

Step 2. Use the result from Step 1, along with the error-bounds of the iteratively reweighted Gaussian
mean estimator from [22], to derive a high-probability error-bound on ∥Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)∥.
Step 3. Exploit regularity properties of the link function in tandem with the bounds from Step 2, to
derive high-probability error bounds on |µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)|, for each a ∈ Aℓ.
We now proceed to formally establish each of the above steps, starting with step 1.
Lemma 7. For each epoch ℓ, and each good agent i ∈ [M] \ B, it holds that:

E
[
Ṽ

−1/2
ℓ Yi,ℓ|Fℓ

]
= Ṽ

−1/2
ℓ hℓ(θ∗); and (48)

E
[(
Ṽ

−1/2
ℓ Yi,ℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)(

Ṽ
−1/2
ℓ Yi,ℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)′
|Fℓ
]
= Id. (49)

Proof. Fix an epoch ℓ, and a good agent i ∈ [M] \ B. We start by observing that:

Yi,ℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa

=
∑

a∈Supp(πℓ)

m(ℓ)
a

(
µ (⟨θ∗, a⟩) + η̄

(ℓ)
i,a

)
a

= hℓ(θ∗) +
∑

a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa,

(50)

where for the last step, we used the definition of hℓ(θ∗). Just as in the proof of Theorem 1, we have
used η̄(ℓ)i,a to denote the average of the noise terms associated with the rewards observed by agent i
during phase ℓ for arm a. We thus have:

Ṽ
−1/2
ℓ Yi,ℓ = Ṽ

−1/2
ℓ hℓ(θ∗) + Ṽ

−1/2
ℓ

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 .

Now conditioned on Fℓ, the only randomness in the above equation stems from the noise terms
{η̄(ℓ)i,a}, a ∈ Supp(πℓ), that are each zero-mean. The claim in Eq. (48) thus follows.

Based on Eq. (50), we have:

E
[
(Yi,ℓ − hℓ(θ∗)) (Yi,ℓ − hℓ(θ∗))′ |Fℓ

]
= E

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

 ∑
a∈Supp(πℓ)

m(ℓ)
a η̄

(ℓ)
i,aa

′ ∣∣∣Fℓ


(a)
=

∑
a∈Supp(πℓ)

(
m(ℓ)
a

)2
E
[(
η̄
(ℓ)
i,a

)2]
aa′

(b)
=

∑
a∈Supp(πℓ)

m(ℓ)
a aa′

(c)
= Ṽℓ.

(51)
6Recall that Fℓ is the σ-algebra generated by all the actions and rewards up to the beginning of epoch ℓ.

29

In the above steps, (a) follows by observing that the noise terms are independent across different
arms; hence, the expectation of each of the cross-terms vanish. For (b), we used the fact that η̄(ℓ)i,a is

the average of m(ℓ)
a independent Gaussian noise terms, each with zero-mean and unit variance; hence,

E
[(
η̄
(ℓ)
i,a

)2]
= 1/(m

(ℓ)
a). For (c), we simply used the definition of Ṽℓ. In light of Eq. (51), it is easy

to see why Eq. (49) holds.

We now state - adapted to our notation - one of the main convergence guarantees from [22] for the
iteratively reweighted mean estimator.
Lemma 8. Suppose we are givenM d-dimensional samples x1, . . . , xM , such that (1−α)M of these
samples are drawn i.i.d. from N (v,Σ), where v ∈ Rd is an unknown mean vector, and Σ ∈ Rd×d
is a known covariance matrix. The remaining αM samples can be arbitrary. Let the corruption
fraction α satisfy α < (5−

√
5)/10, and let δ ∈ (16 exp (−M), 1) be a given tolerance level. Then,

with probability at least 1− δ, we have

∥v̂ − v∥2 ≤ C1∥Σ∥1/22

(√
d+ log(16/δ)

M
+ α

√
log

1

α

)
, (52)

where C1 is a suitably large universal constant, and v̂ is the output of the Iteratively Reweighted
Mean Estimator, namely Algorithm 1 in [22], when it takes as input the M samples, the covariance
matrix Σ, and the corruption fraction α.

Let us now see how the above bound can assist in our cause. Fix any epoch ℓ, and recall that
δℓ = δ̄/(Kℓ2), where δ̄ = δ/(10K), and δ is the given confidence parameter. Suppose we want
to derive an error-bound based on Lemma 8 that holds with probability at least 1− δℓ. For this to
happen, we need δℓ > 16 exp (−M). Since ℓ ≤ T , one can verify that the aforementioned condition
is satisfied as long as M is large enough in the following sense:

M > log

(
160K2T 2

δ

)
. (53)

From now on, we assume that the above condition holds. Next, recall that

Xℓ = ITW({Ṽ −1/2
ℓ Yi,ℓ, i ∈ [M]}).

Based on Lemma 7, Lemma 8, and the same line of reasoning as used to arrive at Eq. (24), we have
that with probability at least 1− δℓ:

∥Xℓ − Ṽ −1/2
ℓ hℓ(θ∗)∥ ≤ C1

(√
d+ log(16/δℓ)

M
+ α

√
log

1

α

)
. (54)

We will call upon the above bound later in our analysis. For now, this ends Step 2. As for Step 3, we
start with the following result.
Lemma 9. Consider any θ1, θ2 ∈ Θ, and any epoch ℓ. There exists a symmetric positive definite
matrix Gℓ(θ1; θ2) satisfying k1Ṽℓ ≼ Gℓ(θ1; θ2) ≼ k2Ṽℓ, such that:

hℓ(θ1)− hℓ(θ2) = Gℓ(θ1; θ2)(θ1 − θ2). (55)

Proof. For any θ ∈ Θ, let us denote by ∇hℓ(θ) the Jacobian matrix of hℓ(·) at θ. Such a matrix
exists based on Assumption 1. Now based on the mean value theorem, ∃α ∈ (0, 1) such that

hℓ(θ1)− hℓ(θ2) = (∇hℓ (αθ1 + (1− α)θ2)) (θ1 − θ2).
Let θ̄ = αθ1 + (1− α)θ2, and Gℓ(θ1; θ2) = ∇hℓ(θ̄). To complete the proof, we need to show that
the matrix Gℓ(θ1; θ2) defined above is symmetric, positive definite, and bounded above and below
(in the Loewner sense) by scalar multiples of Ṽℓ. To that end, observe that:

∇hℓ(θ̄)
(a)
=

∑
a∈Supp(πℓ)

m(ℓ)
a µ̇(⟨θ̄, a⟩)aa′

(b)

≽ k1

 ∑
a∈Supp(πℓ)

m(ℓ)
a aa′


= k1Ṽℓ.

(56)

30

In the above steps, we used the definition of hℓ(·) for (a); and for (b), we used Assumption 1. From
the above steps, it is clear that Gℓ(θ1; θ2) is symmetric. That it is also positive definite follows from
the fact that Ṽℓ ≻ 0. Finally, using the fact that µ(·) is k2-Lipschitz, and a similar line of reasoning,
one can show that Gℓ(θ1; θ2) ≼ k2Ṽℓ. This concludes the proof.

We now have all the pieces required to establish an analogue of Lemma 1.
Lemma 10. (Robust Confidence Intervals for RC-GLM) SupposeM satisfies the condition in Eq. (53),
and α < (5−

√
5)/10. Fix any epoch ℓ. For each arm a ∈ Aℓ, with probability at least 1− δℓ, it

holds that:

|µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)| ≤ γ̄ℓ, where γ̄ℓ = 4C1
k2
k1

(√
d+ α

√
M log(1/α)

)
ϵℓ, (57)

and C1 is as in Lemma 8.

Proof. Let us start by conditioning on the event of measure at least 1− δℓ on which Eq. (54) holds.
Invoking Lemma 9, we know that there exists a symmetrix positive definite matrix Gℓ such that
k1Ṽℓ ≼ Gℓ ≼ k2Ṽℓ, and:7

Gℓ

(
θ̂(ℓ) − θ∗

)
= hℓ(θ̂

(ℓ))− hℓ(θ∗)

= Ṽ
1/2
ℓ Xℓ − hℓ(θ∗)

= Ṽ
1/2
ℓ

(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)
.

(58)

For the second step above, we used the fact that based on line 9 of RC-GLM, hℓ(θ̂(ℓ)) = Ṽ
1/2
ℓ Xℓ.

Now fix any arm a ∈ Aℓ, and observe that:

⟨θ̂(ℓ) − θ∗, a⟩ =
〈
G−1
ℓ Ṽ

1/2
ℓ

(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)
, a
〉
.

This, in turn, implies:

|⟨θ̂(ℓ) − θ∗, a⟩| ≤
∥∥∥∥G−1

ℓ Ṽ
1/2
ℓ

(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)∥∥∥∥

Ṽℓ︸ ︷︷ ︸
T1

∥∥a∥∥
Ṽ −1
ℓ

. (59)

We bound T1 as follows.

T1 =

√(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)′
Ṽ

1/2
ℓ G−1

ℓ ṼℓG
−1
ℓ Ṽ

1/2
ℓ

(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)

(a)

≤ 1√
k1

√(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)′
Ṽ

1/2
ℓ G−1

ℓ Ṽ
1/2
ℓ

(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)

(b)

≤ 1

k1

√(
Xℓ − Ṽ −1/2

ℓ hℓ(θ∗)
)′ (

Xℓ − Ṽ −1/2
ℓ hℓ(θ∗)

)
(c)

≤ C1

k1

(√
d+ log(16/δℓ)

M
+ α

√
log

1

α

)
.

(60)

For both (a) and (b) above, we used k1Ṽℓ ≼ Gℓ; for (c), we invoked the bound in Eq. (54). Now
recall from Eq. (22) that ∥∥a∥∥

Ṽ −1
ℓ

≤ ϵℓ

√√√√ 2M

log
(

1
δℓ

) .
Combining the above bound with the ones in Eq. (59) and Eq. (60), and using log(1/δℓ) ≥ 1, we
obtain

|⟨θ̂(ℓ) − θ∗, a⟩| ≤
√
2C1

k1

(√
d+

log(16/δℓ)

log(1/δℓ)
+ α

√
M log

1

α

)
ϵℓ.

7Here, we have dropped the dependence of Gℓ on θ̂(ℓ) and θ∗ to lighten the notation.

31

Elementary calculations coupled with the fact that log(1/δℓ) ≥ 1 yields:

log(16/δℓ)

log(1/δℓ)
≤ 4.

Putting all the pieces together, and simplifying, we arrive at the following bound:

|⟨θ̂(ℓ) − θ∗, a⟩| ≤
4C1

k1

(
√
d+ α

√
M log

1

α

)
ϵℓ. (61)

Using the fact that µ(·) is k2-Lipschitz then yields:

|µ(⟨θ̂(ℓ), a⟩)− µ(⟨θ∗, a⟩)| ≤ k2|⟨θ̂(ℓ) − θ∗, a⟩| ≤ 4C1
k2
k1

(
√
d+ α

√
M log

1

α

)
ϵℓ,

which is the desired claim. This completes the proof.

Having derived the robust confidence bounds for RC-GLM, we can complete the proof of Theorem 3.

Proof. (Proof of Theorem 3). Using essentially the same arguments as those used to prove Lemmas
4 and 5, we can prove that there exists a clean event, say E , of measure at least 1− δ, such that on E ,
the following hold: (i) a∗ ∈ Aℓ,∀ℓ ∈ [L], where L is the total number of epochs; and (ii) for any
epoch ℓ ∈ [L], a ∈ Aℓ =⇒ ∆̃a ≤ 8γ̄ℓ. Here, ∆̃a = µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, a⟩). Let us condition on
this clean event E . The remainder of the proof follows the same line of reasoning as that of Theorem
1. For any good agent i ∈ [M] \ B, we can bound the regret as follows.

T∑
t=1

(µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, ai,t⟩)) =
L∑
ℓ=1

∑
a∈Supp(πℓ)

m(ℓ)
a (µ(⟨θ∗, a∗⟩)− µ(⟨θ∗, a⟩))

=

L∑
ℓ=1

∑
a∈Supp(πℓ)

⌈
T

(ℓ)
a

M

⌉
∆̃a

≤
L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆̃a︸ ︷︷ ︸

T1

+

L∑
ℓ=1

∑
a∈Supp(πℓ)

∆̃a︸ ︷︷ ︸
T2

.

(62)

As in the proof of Theorem 1, we bound T1 and T2 separately. For bounding T1, we have:

T1 =

L∑
ℓ=1

∑
a∈Supp(πℓ)

T
(ℓ)
a

M
∆̃a

=
d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

) ∑
a∈Supp(πℓ)

πℓ(a)∆̃a

≤ 8d

M

L∑
ℓ=1

1

ϵ2ℓ
log

(
1

δℓ

)
γ̄ℓ

=
32C1d

(√
d+ α

√
M log(1/α)

)
M

(
k2
k1

) L∑
ℓ=1

1

ϵℓ
log

(
10K2ℓ2

δ

)

≤
32C1d

(√
d+ α

√
M log(1/α)

)
M

(
k2
k1

)
log

(
10K2L2

δ

) L∑
ℓ=1

2ℓ

= O

(k2
k1

) d
(√

d+ α
√
M log(1/α)

)
M

log

(
10K2L2

δ

)
2L

 .

(63)

32

Recall the following fact that we proved earlier for Theorem 1:

2L ≤

√
MT

d log (10K2L2/δ)
.

Plugging this bound in Eq. (63), we obtain:

T1 = O

((
k2
k1

)(
α
√
log(1/α) +

√
d

M

)√
log

(
KT

δ

)
dT

)
.

One can upper-bound T2 using the same bound as above using exactly the same steps as in the proof
of Theorem 1. Combining the bounds on T1 and T2 leads to the desired claim.

• Comments on solving for θ̂(ℓ) in RC-GLM. Recall that line 9 of Algorithm RC-GLM requires the
server to solve for θ̂(ℓ) based on the following equation:

hℓ(θ̂
(ℓ)) = Ṽ

1/2
ℓ Xℓ. (64)

Based on Lemma 9, we have that for any θ1, θ2 ∈ Θ such that θ1 ̸= θ2:

(θ1 − θ2)′ (hℓ(θ1)− hℓ(θ2)) = (θ1 − θ2)′Gℓ(θ1; θ2) (θ1 − θ2) > 0,

since Gℓ(θ1; θ2) is positive-definite. Thus, the map hℓ : Rd → Rd is injective, and h−1
ℓ is well-

defined. This, in turn, implies that Eq. (64) has a unique solution.

E.2 The Iteratively Reweighted Mean Estimation Algorithm

In this section, we briefly explain the main idea behind the Iteratively Reweighted Mean Estimation
Algorithm in [22]. Suppose we are given an α-corrupted set X of samples, namely, M d-dimensional
samples x1, . . . , xM , such that (1 − α)M of these samples are drawn i.i.d. from N (v,Σ), and
the remaining αM samples are arbitrarily corrupted by an adversary. The goal is to recover the
unknown mean vector v ∈ Rd, given knowledge of the samples X , the corruption fraction α, and
the covariance matrix Σ. To see how this is done, let us define a couple of quantities for any pair of
vectors w ∈ [0, 1]d and µ ∈ Rd:

x̄w =

M∑
i=1

wixi; G(w, µ) = λmax

(
M∑
i=1

wi (xi − µ) (xi − µ)′ − Σ

)
. (65)

The basic idea is to find a weight vector ŵ within the d-dimensional probability simplex such that
the weighted average x̄ŵ is close to the true mean v. Intuitively, a “small" value of G(ŵ, x̄ŵ) is an
indicator of a good candidate for such a weight vector. This is essentially the strategy pursued in
Algorithm 5 where one iteratively updates the weight vectors, and the associated weighted averages,
so as to minimize the function G(·, ·) defined in Eq. (65). At the termination of this algorithm, say
after N iterations, the goal is to output a weight vector ŵN that mimics the ideal weight vector w∗

defined by: w∗
j = 1(j ∈ I)/|I|, where I is the set of good samples (inliers). The steps of the

Iteratively Reweighted Mean Estimator are outlined in Algorithm 5.

33

Algorithm 5 Iteratively Reweighted Mean Estimator (ITW)

1: Input: α-corrupted set of M samples X , corruption fraction α, and covariance matrix Σ.
2: Output: Robust estimate of the mean v̂.

3: Initialize: Compute v̂0 as a minimizer of argmin
µ

M∑
i=1

∥xi − µ∥.

4: Let N = 0 ∨
⌈

log(4rΣ)−2 log(α(1−2α))
2 log((1−2α))−log(α)−log(1−α)

⌉
. Here, rΣ = Trace(Σ)/∥Σ∥2.

5:
6: for k = 1 to N do
7: Compute current weights:

w ∈ argmin
(M−Mϵ)∥w∥∞≤1

λmax

(
M∑
i=1

wi(xi − v̂k−1)(xi − v̂k−1)
′ − Σ

)
∨ 0.

8: Update the estimator:

v̂k =

M∑
i=1

wixi.

9: end for
10: Return v̂ = v̂K .

34

F Analysis for the Contextual Bandit Setting: Proof of Theorem 4

The proof of Theorem 4 proceeds in multiple steps. We start with an analysis of the Robust
BaseLinUCB subroutine, namely Algorithm 2.
Lemma 11. (Bounds for Robust BaseLinUCB) Suppose the input index set Ψt is constructed so
that for fixed xτ,aτ , τ ∈ Ψt, the rewards {ri,τ}τ∈Ψt

are independent random variables for each good
agent i ∈ [M] \ B. Then, for each a ∈ [K], with probability at least 1− δ̄, it holds that:

|r̂t,a − ⟨θ∗, xt,a⟩| ≤

α+ 2C

√
log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
, (66)

where C is as in Lemma 2.

Proof. Fix any agent i ∈ [M] \ B. Now from the expression for θ̂i,t in Algorithm 2, observe that:

θ̂i,t = A−1
t bi,t

= A−1
t

(∑
τ∈Ψt

ri,τxτ,aτ

)

= A−1
t

(∑
τ∈Ψt

(⟨θ∗, xτ,aτ ⟩+ ηi,τ)xτ,aτ

)

= A−1
t

(∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
θ∗ +A−1

t

(∑
τ∈Ψt

ηi,τxτ,aτ

)

=

(
Id −

A−1
t

M

)
θ∗ +A−1

t

(∑
τ∈Ψt

ηi,τxτ,aτ

)
,

(67)

where we used ηi,τ as a shorthand for ηi,τ (aτ). Now consider any a ∈ [K]. Using the above
expression, we will now decompose the error in estimation of ⟨θ∗, xt,a⟩ into a bias term and a
variance term:

⟨θ̂i,t − θ∗, xt,a⟩ = −
1

M
⟨A−1

t θ∗, xt,a⟩︸ ︷︷ ︸
bias term

+
∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ︸ ︷︷ ︸
variance term

. (68)

For a fixed set of feature vectors, under our assumption that {ri,τ}τ∈Ψt
are independent random

variables, the variance term is a sum of independent zero-mean Gaussian noise variables. Thus,

E

[∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ

]
=
∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩E [ηi,τ] = 0.

Furthermore, we have:

E

(∑
τ∈Ψt

⟨A−1
t xτ,aτ , xt,a⟩ηi,τ

)2
 = x′t,aA

−1
t

(∑
τ∈Ψt

E
[(
η2i,τ
)]
xτ,aτx

′
τ,aτ

)
A−1
t xt,a

= x′t,aA
−1
t

(∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
A−1
t xt,a

≤ x′t,aA−1
t

(
Id
M

+
∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
︸ ︷︷ ︸

At

A−1
t xt,a

= ∥xt,a∥2A−1
t
.

(69)

35

From the above arguments, we conclude that for each i ∈ [M] \ B,

⟨θ̂i,t, xt,a⟩ ∼ N
(
⟨θ∗ −

A−1
t θ∗
M

,xt,a⟩, σ2

)
, where σ2 ≤ ∥xt,a∥2A−1

t
.

Since the noise samples are independent across agents, we also know that {⟨θ̂i,t, xt,a⟩}i∈[M]\B are

independent. Recalling that r̂t,a = Median
(
{⟨θ̂i,t, xt,a⟩, i ∈ [M]}

)
, and invoking Lemma 2, we

then have that with probability at least 1− δ̄,

|r̂t,a − ⟨θ∗ −
A−1
t θ∗
M

,xt,a⟩| ≤

α+ C

√
log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
. (70)

This immediately implies:

|r̂t,a − ⟨θ∗, xt,a⟩| ≤
1

M
|⟨A−1

t θ∗, xt,a⟩|+

α+ C

√
log
(
1
δ̄

)
M

 ∥xt,a∥A−1
t
. (71)

It remains to bound the first term in the above display. To that end, we proceed as follows:
1

M
|⟨A−1

t θ∗, xt,a⟩| =
1

M
|⟨A−1

t xt,a, θ∗⟩|

≤ 1

M
∥A−1

t xt,a∥∥θ∗∥

(a)

≤ 1√
M

√
x′t,aA

−1
t

Id
M
A−1
t xt,a

≤ 1√
M

√√√√x′t,aA
−1
t

(
Id
M

+
∑
τ∈Ψt

xτ,aτx
′
τ,aτ

)
A−1
t xt,a

=
1√
M
∥xt,a∥A−1

t

(b)

≤ C

√
log
(
1
δ̄

)
M

∥xt,a∥A−1
t
,

(72)

where for (a), we used the fact that ∥θ∗∥ ≤ 1 by assumption; and for (b), we usedC ≥ 1, log
(
1
δ̄

)
≥ 1.

Combining the above bound with the one in Eq.(71) leads to the desired claim.

For Lemma 11 to hold, the crucial requirement is for the rewards corresponding to indices in Ψt to
be independent. Our next result shows that this is indeed the case; the proof of this lemma essentially
follows the same arguments as that of [24, Lemma 14], we reproduce these arguments here only for
completeness.
Lemma 12. (Independence of Samples) Fix any agent i ∈ [M] \ B. For each s ∈ [S] and each
t ∈ [T], given any fixed sequence of feature vectors {xτ,aτ }τ∈Ψ

(s)
t

, the rewards {ri,τ}τ∈Ψ
(s)
t

are
independent random variables.

Proof. Let us start by observing that a time-step t can be added to Ψ
(s)
t only in line 6 of Algorithm 3.

Thus, the event {t ∈ Ψ
(s)
t } only depends on all prior phases ∪ℓ<sΨ(ℓ)

t , and on the confidence width
w

(s)
t,a . From the definition of w(s)

t,a in line 7 of Algorithm 2, we note that w(s)
t,a depends only on the

feature vectors xτ,aτ , τ ∈ Ψ
(s)
t , and xt,a. Combining the above observations, it is easy to see that

{t ∈ Ψ
(s)
t } only depends on the feature vectors. Noting that the feature vector sequence is fixed, and

cannot be controlled by the adversarial agents, leads to the claim of the lemma.

The next result tells us that with high-probability, at each time-step t ∈ [T], (i) the best arm a∗t is
retained in all stages of the screening process; and (ii) an active arm in phase s can contribute to at
most 8/(2s

√
M) instantaneous regret.

36

Lemma 13. With probability at least 1 − δ̄KST , for any t ∈ [T] and any s ∈ [S], the following
hold:

(i) |r̂(s)t,a − ⟨θ∗, xt,a⟩| ≤ w
(s)
t,a ,∀a ∈ As.

(ii) a∗t ∈ As.

(iii) ⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,a⟩ ≤ 8/(2s
√
M),∀a ∈ As.

Proof. Part (i) of the result follows directly from Lemma 11, and an union bound over all time-steps,
phases and arms.

For part (ii), let us condition on the clean event, say E , on which part (i) holds. From the rules
of Algorithm 3, it holds trivially that a∗t ∈ As for s = 1. Now suppose there exists some phase
s > 1 such that a∗t ∈ As−1, but a∗t /∈ As. From line 8 in Algorithm 3, we must have w(s−1)

t,a ≤
21−s/

√
M, ∀a ∈ As−1. From the phased elimination strategy in line 8 of Algorithm 3, a∗t /∈ As

implies the existence of some arm a ∈ As such that:(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
−
(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
>

22−s√
M

(a)
=⇒ ⟨θ∗, xt,a⟩+ 2w

(s−1)
t,a −

(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
>

22−s√
M

(b)
=⇒ ⟨θ∗, xt,a − xt,a∗t ⟩+ 2w

(s−1)
t,a >

22−s√
M

(c)
=⇒ 2w

(s−1)
t,a >

22−s√
M
,

(73)

which leads to a contradiction as w(s−1)
t,a ≤ 21−s/

√
M . In the above steps, both (a) and (b) follow

from the defining property of the clean event E ; for (c), we used ⟨θ∗, xt,a − xt,a∗t ⟩ ≤ 0 from the
optimality of a∗t . This completes the proof of part (ii).

For part (iii), let us once again condition on the clean event E on which part (i) holds. Now
a ∈ As =⇒ a ∈ As−1. We also know from part (ii) that a∗t ∈ As−1. The retention of arm a in As
implies (based on line 8 of Algorithm 3),

(
r̂
(s−1)
t,a∗t

+ w
(s−1)
t,a∗t

)
−
(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
≤ 22−s√

M

(a)
=⇒ ⟨θ∗, xt,a∗t ⟩ −

(
r̂
(s−1)
t,a + w

(s−1)
t,a

)
≤ 22−s√

M

(b)
=⇒ ⟨θ∗, xt,a∗t − xt,a⟩ ≤

22−s√
M

+ 2w
(s−1)
t,a

(c)
=⇒ ⟨θ∗, xt,a∗t − xt,a⟩ ≤

8

2s
√
M
,

(74)

which is the desired claim. Here, for (a) and (b) we used the defining property of E . As for (c), we
used the fact that w(s−1)

t,a ≤ 21−s/
√
M .

The final piece needed in the proof of Theorem 4 is a bound on |Ψ(s)
T | for each s ∈ [S].

To that end, we will make use of the elliptical potential lemma from [16].

Lemma 14. (Elliptical Potential Lemma) Let {Xt}∞t=1 be a sequence in Rd, V a d × d positive
definite matrix, and define V̄t = V +

∑t
τ=1XτX

′
τ . If ∥Xt∥ ≤ L for all t, then we have that

T∑
t=1

min{1, ∥Xt∥2V̄ −1
t−1
} ≤ 2 log

det(V̄T)

det(V)
≤ 2(d log ((trace(V) + TL2)/d)− log(detV)).

37

We have the following result.

Lemma 15. (Bound on |Ψ(s)
T |) Fix any s ∈ [S]. The following then holds:

|Ψ(s)
T | ≤ 2s

√
M

α+ 2C

√
log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log(2M |Ψ

(s)
T |). (75)

Proof. Fix any phase s ∈ [S]. Now consider any time-step t ∈ Ψ
(s)
T . Since t ∈ Ψ

(s)
T , based on line 6

of Algorithm 3, it must be that:

1

2s
√
M

< w
(s)
t,at =

α+ 2C

√
log
(
1
δ̄

)
M

 ∥xt,at∥A−1
s,t
, where (76)

As,t =

 Id
M

+
∑

τ∈Ψ
(s)
t

xτ,aτx
′
τ,aτ

 .

Also, since s ≥ 1, we have the following trivial inequality:

1

2s
√
M

<

α+ 2C

√
log
(
1
δ̄

)
M

 .

Combining the above inequality with the one in (76), we note that for each t ∈ Ψ
(s)
T , it holds that:

1

2s
√
M

<

α+ 2C

√
log
(
1
δ̄

)
M

min{1, ∥xt,at∥A−1
s,t
}.

Summing the above display over all indices in Ψ
(s)
T yields:

|Ψ(s)
T |

2s
√
M

<

α+ 2C

√
log
(
1
δ̄

)
M

 ∑
t∈Ψ

(s)
T

min{1, ∥xt,at∥A−1
s,t
}

(a)

≤

α+ 2C

√
log
(
1
δ̄

)
M

√√√√|Ψ(s)
T |

∑
t∈Ψ

(s)
T

min{1, ∥xt,at∥
2
A−1

s,t
}

(b)

≤

α+ 2C

√
log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log

(
1 +

M

d
|Ψ(s)
T |
)

≤

α+ 2C

√
log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log

(
2M |Ψ(s)

T |
)
,

(77)

where (a) follows from Jensen’s inequality, and (b) follows from an application of Lemma 14.
Reorganizing the resulting inequality above leads to the desired claim.

We are now ready to prove Theorem 4.

Proof. (Proof of Theorem 4) Since S = ⌈log T ⌉, we have 1/(2S
√
M) ≤ 1/(

√
MT). Thus, from

the rules of Algorithm 3, it is apparent that at every time-step t, an action at is always chosen, either
based on line 6, or on line 7. If we use ΞT to store those time steps in [T] where an action is chosen
based on line 7 of Algorithm 3, then the above reasoning implies: [T] = ΞT ∪

⋃
s∈[S] Ψ

(s)
T .

Throughout the rest of the proof, we will condition on the clean event on which items (i)-(iii) in
Lemma 13 hold. We also recall that this clean event has measure at least 1− δ̄KST . Now fix any

38

good agent i ∈ [M] \ B, and note that the same action at is played by every good agent at time t.
The cumulative regret for agent i can thus be decomposed as follows:

T∑
t=1

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,ai,t⟩

)
=
∑
t∈ΞT

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
︸ ︷︷ ︸

T1

+

S∑
s=1

∑
t∈Ψ

(s)
T

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
︸ ︷︷ ︸

T2

.

(78)
Let us first bound T2 as follows.

T2 =

S∑
s=1

∑
t∈Ψ

(s)
T

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
(a)

≤
S∑
s=1

∑
t∈Ψ

(s)
T

8

2s
√
M

=

S∑
s=1

8

2s
√
M
|Ψ(s)
T |

(b)

≤
S∑
s=1

8

α+ 2C

√
log
(
1
δ̄

)
M

√2d|Ψ(s)
T | log(2M |Ψ

(s)
T |)

(c)

≤ 8S

α+ 2C

√
log
(
1
δ̄

)
M

√2dT log(2MT)

≤ 8(1 + log(T))

α+ 2C

√
log
(
1
δ̄

)
M

√2dT log(2MT),

(79)

where for (a), we used item (iii) of Lemma 13; for (b), we invoked Lemma 15 to bound |Ψ(s)
T |; and

for (c), we used the trivial bound |Ψ(s)
T | ≤ T . With δ̄ = δ/(KST), the bound on T2 reads as follows:

T2 = O

α+ 2C

√
log
(
KT
δ

)
M

 log(T)
√

2dT log(2MT)

 . (80)

Now let us turn to bounding T1. Consider any time-step t ∈ ΞT where the action at is chosen based
on line 7 of Algorithm 3. Since a∗t is never eliminated on the clean event (item (ii) of Lemma 13),
and since at has the highest robust upper confidence bound among all active arms, it must be that:

r̂
(s)
t,a∗t

+ w
(s)
t,a∗t
≤ r̂(s)t,at + w

(s)
t,at

=⇒ ⟨θ∗, xt,a∗t − xt,at⟩ ≤ 2w
(s)
t,at

=⇒ ⟨θ∗, xt,a∗t − xt,at⟩ ≤
2√
MT

,

(81)

where for the first implication, we used item (i) of Lemma 13; and for the second, we used the fact for
an action to be chosen based on line 7, it’s confidence width must be bounded above by 1/(

√
MT).

We conclude that

T1 =
∑
t∈ΞT

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
= O

(√
T

M

)
.

39

Combining the above bound on T1 with that on T2 in Eq. (80), we have that with probability at least
1− δ, the following is true for each good agent i ∈ [M] \ B:

T∑
t=1

(
⟨θ∗, xt,a∗t ⟩ − ⟨θ∗, xt,at⟩

)
= O

α+ 2C

√
log
(
KT
δ

)
M

 log(T)
√

2dT log(2MT)


= Õ

((
α+

√
1/M

)√
dT
)
.

(82)

This completes the proof.

40

G Alternate Strategies for Robust Collaborative Phased Elimination can lead
to Sub-Optimal Regret Bounds.

In Section 3, where we introduced RCLB, we alluded to the fact that certain natural candidate strategies
may lead to sub-optimal regret bounds. In this section, we elaborate on this point. Note that our end
goal is to come up with a phased elimination step akin to line 9 of RCLB. To achieve this, in every
epoch ℓ, we need estimates of ⟨θ∗, a⟩ along with associated confidence intervals for each a ∈ Aℓ. In
what follows, we will consider two natural candidate strategies for the same, and demonstrate that
they each lead to confidence bounds that are looser than the ones we derived in Lemma 1. As such,
using such bounds in the phased elimination step will lead to regret guarantees that are sub-optimal
in their dependence on the model dimension d.

• Candidate Strategy 1. Suppose in every epoch ℓ, the server collects the local model estimates
{θ̂(ℓ)i }i∈[M], and aims to first construct a robust estimate θ̂(ℓ) of θ∗. Subsequently, it uses ⟨θ̂(ℓ), a⟩ as
an estimate of ⟨θ∗, a⟩ for each active arm a ∈ Aℓ. To extract θ̂(ℓ) from the local estimates {θ̂(ℓ)i }i∈[M],
we need a high-dimensional robust mean estimator. One natural candidate for this is the Iteratively
Reweighted Mean Estimator from [22] since it leads to minimax-optimal error bounds. However,
there is an immediate obstacle to directly applying the estimator from [22] on the model estimates
{θ̂(ℓ)i }i∈[M]. This stems from the observation that although θ̂(ℓ)i is an unbiased estimate of θ∗ for
each good agent i, the covariance matrix associated with such an estimate may be ill-conditioned. In
particular, it is not hard to verify that for each i ∈ [M] \ B:

E
[(
θ̂
(ℓ)
i − θ∗

)(
θ̂
(ℓ)
i − θ∗

)′ ∣∣∣Fℓ] = Ṽ −1
ℓ .

Thus, if we were to construct θ̂(ℓ) as

θ̂(ℓ) = ITW({θ̂(ℓ)i , i ∈ [M]}),

then based on Lemma 8, the error bound ∥θ̂(ℓ)−θ∗∥ would scale with ∥Ṽ −1
ℓ ∥

1/2
2 .8 This is undesirable

as ∥Ṽ −1
ℓ ∥

1/2
2 can potentially take on a large value. To bypass this problem, we can use the same trick

as we did for RC-GLM, and compute θ̂(ℓ) as follows:

θ̂(ℓ) = Ṽ
−1/2
ℓ

(
ITW({Ṽ 1/2

ℓ θ̂
(ℓ)
i , i ∈ [M]})

)
.

The rationale behind the above approach is that the covariance matrix associated with Ṽ 1/2
ℓ θ̂

(ℓ)
i , i ∈

[M] \ B, is Id. Using Lemma 8, and following similar arguments as used to arrive at Lemmas 1 and
10, one can show that for each a ∈ Aℓ, with probability at least 1− δℓ, it holds that:

|⟨θ̂(ℓ), a⟩ − ⟨θ∗, a⟩| = O
((√

d+ α
√
M log(1/α)

)
ϵℓ

)
. (83)

It is instructive to compare the above estimate on ⟨θ∗, a⟩ with the estimate µ(ℓ)
a we used in RCLB.

Specifically, recall from Lemma 1 that for each a ∈ Aℓ, with probability at least 1− δℓ, it holds that

|µ(ℓ)
a − ⟨θ∗, a⟩| = O

((
1 + α

√
M
)
ϵℓ

)
.

Comparing the above upper bound with the one in Eq. (83), we note that while the former is
independent of the dimension d, the latter does exhibit a dependence via the

√
d term. Now suppose

we use the upper-bound from Eq. (83) to construct a robust confidence threshold - say γ̃ℓ - and use it
to devise a phased elimination step as the one in line 9 of RCLB. Then, following the reasoning as that
used to prove Theorem 1, one can establish a per-agent regret bound of

Õ

((
α
√
log(1/α) +

√
d

M

)
√
dT

)
,

which is unfortunately weaker than the guarantee we have in Theorem 1.
8Recall that we use ITW(·) to represent the output of the Iteratively Reweighted Mean Estimator from [22],

namely Algorithm 5.

41

• Candidate Strategy 2. The main idea is as follows. In every epoch ℓ, the server queries each agent
i ∈ [M] to report their aggregate observation r(ℓ)i,a for each arm a ∈ Supp(πℓ). Recall that r(ℓ)i,a is the
average of the rewards for arm a observed by agent i during epoch ℓ. The server next computes an
aggregate “clean" observation r̃(ℓ)a for each a ∈ Supp(πℓ) as follows:

r̃(ℓ)a = Median
(
{r(ℓ)i,a, i ∈ [M]}

)
.

It then uses these clean observations to compute an estimate θ̂(ℓ) of θ∗ as follows:

θ̂(ℓ) = V̄ −1
ℓ Yℓ, where V̄ℓ =

∑
a∈Supp(πℓ)

T (ℓ)
a aa′ ; Yℓ =

∑
a∈Supp(πℓ)

T (ℓ)
a r̃(ℓ)a a,

and

T (ℓ)
a =

⌈
πℓ(a)d

ϵ2ℓ
log

(
1

δℓ

)⌉
.

The quantity θ̂(ℓ) obtained above is now used to compute ⟨θ̂(ℓ), a⟩ as an estimate of the true mean
payoff ⟨θ∗, a⟩ of each arm a ∈ Aℓ.9 As before, our goal is to bound |⟨θ̂(ℓ), a⟩ − ⟨θ∗, a⟩| for each
a ∈ Aℓ. To that end, we start by noting that for each good agent i, r(ℓ)i,a ∼ N

(
⟨θ∗, a⟩, 1

m
(ℓ)
a

)
.

Invoking Lemma 2 then tells us that with probability at least 1− δℓ,

|r̃(ℓ)a − ⟨θ∗, a⟩| ≤ C

α+

√
log(1

δℓ
)

M

 1√
m

(ℓ)
a

≤ C

(
α
√
M +

√
log

(
1

δℓ

))
1√
T

(ℓ)
a

. (84)

For our subsequent discussion, let us condition on the event on which the above bound holds for
every arm in Aℓ. On this event, we can say that for each a ∈ Aℓ, r̃(ℓ)a = ⟨θ∗, a⟩+ e

(ℓ)
a , where e(ℓ)a is

an error term satisfying the bound in Eq. (84). Now fix any b ∈ Aℓ. Simple calculations reveal that:

|⟨θ̂(ℓ) − θ∗, b⟩| =
∣∣∣ ∑
a∈Supp(πℓ)

T (ℓ)
a ⟨V̄ −1

ℓ a, b⟩e(ℓ)a
∣∣∣

≤
∑

a∈Supp(πℓ)

T (ℓ)
a |⟨V̄ −1

ℓ a, b⟩||e(ℓ)a |

(a)

≤ C

(
α
√
M +

√
log

(
1

δℓ

)) ∑
a∈Supp(πℓ)

√
T

(ℓ)
a |⟨V̄ −1

ℓ a, b⟩|

︸ ︷︷ ︸
T1

(b)

≤ C

(
α
√
M +

√
log

(
1

δℓ

))√√√√√|Supp(πℓ)|

b′V̄ −1
ℓ

 ∑
a∈Supp(πℓ)

T
(ℓ)
a aa′

 V̄ −1
ℓ b


≤ C

(
α
√
M +

√
log

(
1

δℓ

))√
|Supp(πℓ)| ∥b∥V̄ −1

ℓ

(c)

≤ C

(
α
√
M +

√
log

(
1

δℓ

))√
48d log log d ∥b∥V̄ −1

ℓ

(d)
= Õ

(√
d
(
1 + α

√
M
)
ϵℓ

)
.

(85)

9Note that the observations obtained from each agent i, namely r
(ℓ)
i,a, a ∈ Supp(πℓ), provide direct infor-

mation about the mean payoffs of arms only in Supp(πℓ). However, for the phased elimination step, we need
estimates of the mean payoffs of all arms in Aℓ, not just the ones in Supp(πℓ) ⊆ Aℓ. This is precisely why we
need to go through an intermediate regression step to first compute an estimate of θ∗.

42

In the above steps, for (a) we used the bound from Eq. (84); for (b), we used Jensen’s inequality; for
(c), we used the fact that |Supp(πℓ)| ≤ 48d log log d; and for (d), following a similar argument as in
the proof of Lemma 1, we used that

∥b∥V̄ −1
ℓ

= O

(
ϵℓ√

log (1/δℓ)

)
.

Comparing the bound in Eq. (85) with the one in Lemma 1, we once again note that while the
latter bound is d-independent, the former has a clear dependence on

√
d. At the risk of sounding

repetitive, if one were to employ the bound in Eq. (85) to construct a confidence threshold for phased
elimination, and run through the same arguments as in the proof of Theorem 1, one would end up
with a per-agent regret bound of

Õ
((

1 + α
√
M
)
d
√
T
)
.

Unlike the near-optimal guarantee we have in Theorem 1, the above bound is clearly off by a factor
of
√
d from the optimal dependence on the model dimension d. The looseness in the bound mainly

stems from the following fact: the error terms {e(ℓ)a }a∈Supp(πℓ) are not necessarily sub-Gaussian
random variables that are independent across arms. One can contrast this to the analysis in Lemma
1, where the noise terms {η̄(ℓ)i,a}a∈Supp(πℓ) were in fact Gaussian, and independent across arms. It is

precisely the lack of nice statistical properties for the error terms {e(ℓ)a }a∈Supp(πℓ) that compels us to
use Jensen’s inequality to bound the term T1 in Eq. (85). At the moment, it is unclear to us whether
one can come up with a tighter bound for this candidate strategy.

Main Takeaway. The main message from this section is that deriving robust confidence intervals that
lead to near-optimal bounds (such as the one in Theorem 1) is non-trivial, and requires a lot of care.
In particular, the above discussion serves to highlight the significance of our algorithmic approach.

43

Figure 2: Performance of a vanilla non-robust distributed phased elimination algorithm vs RCLB for
the attack model in Eq. (86).

H Experimental Results

In this section, we will provide various simulation results on synthetic data to corroborate the theory
developed in our work. We start by describing the experimental setup for the linear bandit setting
considered in Section 7.

H.1 Experiments for the Linear Bandit Setting

Linear Bandit Experimental Setup. We generate 50 arms a1, a2, . . . , a50 ∈ Rd, where d = 5.
Each arm aj , j ∈ [50], is generated by drawing each of the arm’s coordinates i.i.d from the interval
[− 1√

d
, 1√

d
]. It thus follows that ∥aj∥2 ≤ 1,∀j ∈ [50]. The model parameter θ∗ is chosen to be

a 5-dimensional vector with each entry equal to 1/
√
d. The rewards are generated based on the

observation model in Eq. (1). We now describe the attack model for the linear bandit setting.

Attack Model for Linear Bandit Setting. The collective goal of the adversarial agents is to
manipulate the server into selecting sub-optimal arms. To that end, each adversarial agent i employs
the simple strategy of reducing the rewards of the good arms and increasing the rewards of the bad
arms. More precisely, in each epoch ℓ, upon pulling an arm a and observing the corresponding reward
ya, an adversarial agent i does the following: if ya > p⟨θ∗, a∗⟩, then this reward is corrupted to
ỹa = ya−β; and if ya ≤ p⟨θ∗, a∗⟩, then the reward is corrupted to ỹa = ya+β. For this experiment,
we fix p = 0.6 and β = 5. Agent i ∈ B then uses all the corrupted rewards in epoch ℓ to generate the
local model estimate θ̂(ℓ)i that is transmitted to the server.

An Alternate Attack Model. To further test the robustness of RCLB, we consider an attack model
different from the one in Section 7. In this attack, in each epoch ℓ, every adversarial agent i ∈ B
generates and transmits the following corrupted local model estimate to the server:

θ̂
(ℓ)
i = −M

|B|
θ∗ −

1

|B|
∑

j∈[M]\B

θ̂
(ℓ)
j . (86)

The idea behind the above attack is to trick the server into thinking that the true model estimate is−θ∗,
as opposed to θ∗, by shifting the average of the agents’ local model estimates towards−θ∗. As we can
see from Figure 2, the adversarial agents succeed in doing so when one employs a vanilla non-robust
distributed phased elimination algorithm. However, our proposed approach RCLB continues to remain
immune to such attacks, and guarantees sub-linear regret as suggested by our theory.

H.2 Experiments for the Contextual Bandit Setting

The goal of this section is to validate our proposed robust collaborative algorithm for the contextual
bandit setting, namely Algorithm 3.

Contextual Bandit Experimental Setup. As in the linear bandit experiment, we set the number of
arms K to be 50, the model dimension d to be 5, and the true parameter θ∗ to be a d-dimensional

44

vector with each entry equal to 1/
√
d. At each time-step t, for each a ∈ A, we generate the feature

vector xt,a by drawing each of its entries i.i.d from the interval [− 1√
d
, 1√

d
]. The rewards are then

generated based on the observation model in Eq. (12).

Attack Model for Contextual Bandit Setting. We use an attack strategy similar in spirit to the
first attack model for the linear bandit setting. Specifically, at each time-step t, each adversarial
agent i ∈ B does the following: if ri,t > p⟨θ∗, xt,a∗t ⟩, then the attacker sets r̃i,t = ri,t − β; if
ri,t < p⟨θ∗, xt,a∗t ⟩, then the attacker sets r̃i,t = ri,t + β. The corrupted reward r̃i,t is then sent to the
server. In this experiment, we fixed p = 0.6 and β = 5.

Discussion of Simulation Results. Figure 3 illustrates the results for the contextual linear bandit
experiment. In Figure 3(a), we compare our proposed algorithm, namely Algorithm 3, to a naive
distributed implementation of Algorithm 3 that does not account for adversarial agents. Similar to
what we observed in Figure 1(a), while the non-robust algorithm incurs linear regret in the presence
of adversaries, Algorithm 3 continues to guarantee sub-linear regret bounds. The plots in Figures
3(b)-(d) are analogous to the ones in Figures 1(b)-(d). In short, these plots once again indicate a clear
benefit of collaboration (for small α) in the presence of adversarial agents, thereby highlighting the
importance of Algorithm 3, and validating Theorem 4.

45

(a) (b)

(c) (d)

Figure 3: Plots of per-agent regret for the contextual bandit experiment. (a) Comparison between
our proposed algorithm, namely Algorithm 3, and a vanilla non-robust distributed contextual bandit
algorithm. (b) Performance of Algorithm 3 for varying number of agents M, with α = 0.1. (c)
Performance of Algorithm 3 for varying corruption fraction α, with M = 100. (d) Comparison
of Algorithm 3 to a non-robust contextual bandit algorithm where the agents do not collaborate;
here, α = 0.1 and M = 100. We also plotted theoretical upper bounds: g1(T) = 3

√
dT and

g2(T) = 17(α+
√

1
M)
√
dT .

46

