Large Language Models Engineer Too Many Simple Features for Tabular Data

Jaris Küken¹, Lennart Purucker¹, Frank Hutter^{2,1} 14 December 2024

¹University of Freiburg ²ELLIS Institute Tübingen

Background – Feature Engineering for Tabular Data

Goal: Create new features that improve predictive accuracy

Age	Past Treatment	# Pills Taken	Age + # Pills Taken	Reaction to Drug
59	Yes	5	64	Positively
42	No	10	52	Negatively
67	Yes	6	73	Negatively

Background – LLMs for Feature Engineering for Tabular Data

Goal: Use an LLM to suggest new features based on their world knowledge that improve predictive accuracy

CAAFE:

Noah Hollmann et al. "Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering" NeurIPS (2023)

Our Research Question:

Do LLMs exhibit a bias that negatively impacts the quality of engineered features?

Method – Overview

1. Select a suitable list of datasets (unknown to the LLM)

2. Feature Engineering:

- a) Engineer new features with an LLM
- b) Search the optimal features with black-box automated feature engineering (OpenFE)
- 3. Compare the frequency of operators used during feature engineering

Results – Feature Engineering with LLMs is Biased Towards Simple Operators

Results – Details

Method/Model	Operator (Max Freq.)	Frequency (in %)	Operator (Min Freq.)	Frequency (in %)
OpenFE	groupbythenrank	13.42	absolute	0.11
GPT-4o-mini	multiply	32.27	min/groupbythenmean	0.00
Gemini-1.5-flash	divide	26.87	min	0.02
Llama3.1-8B	groupbythenmean	18.96	round	0.00
Mistral-7B-v0.3	groupbythenmean	21.13	round	0.09

Model	Operators	Count	Cumulative Frequency (in %)
OpenFE	groupbythenrank, subtract, divide, add	10	90.40
	combinethenf.e., multiply, max,		
	combine, min, frequencyencoding		
GPT-4o-mini	multiply, add, combine, divide, subtract	5	93.63
Gemini-1.5-flash	divide, subtract, combine, groupbythenmean,	7	91.68
	combinethenf.e., groupbythenstd, absolute		
Llama3.1-8B	groupbythenmean, subtract, multiply, add,	10	91.62
	divide, log, groupby then max, max,		
	combinethenf.e., absolute		
Mistral-7B-v0.3	groupbythenmean, subtract, divide,	10	91.23
	add, groupbythenrank, log, frequencyencoding,		
	combinethenf.e., multiply, invalid-operator		

Results – The Bias of LLMs Negatively Impacts Feature Engineering

Ablation – More Powerful Models

Conclusions

Key Takeaways

- LLMs heavily favor simple operators
- OpenFE outperforms feature engineering with LLMs
- Consider the existing bias when using context aware automated feature engineering with LLMs

This work is a call for action to...

- **Develop mitigation strategies** (e.g. in-context learning, fine-tuning,...) to reduce bias
- Enhance LLM robustness in order to reliably identify and favor optimal operators for feature generation
- Improve automation, such that LLMs cam serve as dependable, automated feature engineering experts

Thank You!

Corresponding Authors

Jaris Küken

University of Freiburg kuekenj@cs.uni-freiburg.de Lennart Purucker University of Freiburg purucker@cs.uni-freiburg.de

Paper

Code

