Under review as a conference paper at ICLR 2024

A PROOF FOR THEOREM 1

Consider 7y (d|sy) as the distribution over the action trajectory from a state s; which describes the
problem context. Let A, denote the space of action-trajectories associated with the solution x.

H(mo(d|s1)) = — > _ mo(d|s1) log mg(ds)
aed
- Z Z mo(dls1) log mo(dls1)
TEX Ge A,
3% pym(@le)p(@]s1) (1og pym(@le) + log plx|s1))
xeX anm
= H(p($|81)) + EwNp(w\ﬂ)H(psym(a'x))
< H(p(|s1)) + Eanpals) H(Uz(dl2)),
where U, (@|x) is a uniform distribution over action-trajectories associated with the solution x. The
third equality stems from the fact that my(d|s1) = mp(d, x|s1) since x is fixed given @. One can

show that the final upper-bound is the entropy of distribution obtained from replacing peym(d|x) by
Uz (dlz).

12

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION DETAILS

B.1 PROXIMAL POLICY OPTIMIZATION (PPO)

We use AM architecture (Kool et al., 2018) on TSP and Devformer architecture (Kim et al., 2023)
on DPP for parameterizing compositional policy m(x|s1) = Hi\; 1 m(a¢|s). Then, we implement
based on the following equation as follows:

. m(x|s1)) m(x]s1))}
N = A N e A N 1 e 1 —].
L(x;51) = min | A(x; Sl)ﬂold(51)’ (z; s1)clip (Wold(51)’ e,1+¢ell,

A(x;s1) = R(z;81) — V(s1),

where R stands for reward function and V' stands for value function. Since we implement PPO on
compositional MDP setting, we train value function in the context of s; by following actor-critic
implementation of Kool et al. (2018).

Hyperparameters. We systematically investigate a range of hyperparameter combinations involv-
ing different baselines ([rollout, critic]), various values for clipping epsilon ([0.1, 0.2, 0.3]), and
numbers of inner loops ([5, 10, 20]). Our observations reveal that the critic baseline consistently
enhances training stability across all tasks, leading to reduced variation when modifying the training
seeds. The best configurations for each task are provided in Table 4.

Table 4: Hyperparameter configurations for PPO.

TSP Chip-package PDN HBM PDN

Baseline critic critic critic
Eps. clip 0.2 0.1 0.2
Number of inner loops & 5 20 10

B.2 GENERATIVE FLOW NETWORK (GFLOWNET)

Similar to the PPO implementation, we employ the Attention Model (AM) architecture (Kool et al.,
2018) on the Traveling Salesman Problem (TSP), and the DevFormer architecture (Kim et al., 2023)
on DPP, for parameterizing the compositional forward policy Pr(7|s1) = Hivz 1 Pr(a|s:). Subse-
quently, we configure the backward policy Pg as a uniform distribution for all possible parent nodes,
following the methodology outlined in (Malkin et al., 2022). Lastly, we parameterize Z(s1) using
a two-layer perceptron with ReLU activation functions, where the number of hidden units matches
the embedding dimension of the AM or DevFormer. This two-layer perceptron takes input from the
mean of the encoded embedding vector obtained from the encoder of the AM or DevFormer and
produces a scalar value to estimate the partition function.

To train the GFlowNet model, we use trajectory balance loss introduced in Malkin et al. (2022) as
follows:

L(r;s1) = (log(Z(s1)Pr(r|s))>>2 3)

e—BE(m§51)PB(T|51

The trajectory 7 includes a terminal state represented as x. Subsequently, we employ an on-policy
optimization method to minimize Eq. (3), with trajectories 7 sampled from the training policy Pr.
In this context, F(x; s1) represents the energy, which is essentially the negative counterpart of the
reward R(x; s1). The hyperparameter 3 plays the role of temperature adjustment in this process.

Hyperparameters. We explore a spectrum of hyperparameter combinations, varying 3 ([5, 10,
20]) and numbers of inner loops ([2, 5, 10]). The best configurations for each task are provided in
Table 5.

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameter configurations for GFlowNet.

TSP Chip-package PDN HBM PDN

I6] 20 10 10
Number of inner loops & 10 2 2

C EXPERIMENTAL DETAILS

C.1 TRAVELING SALESMAN PROBLEMS (TSP)

Since we employ the AM architecture, we use the same hyperparameters for the model architecture
and training parameters except for the batch and epoch data sizes.® Initially, the Attention Model
(AM) employed a batch size of 512 and an epoch data size of 1,280,000. Notably, the evaluation
of the greedy rollout baseline was conducted every epoch. When the number of available training
samples is constrained, utilizing a smaller batch size and epoch data size becomes advantageous.
Consequently, we adjusted these parameters to be 100 for batch size and 10,000 for epoch data size.
In symmetric self-distillation (Step B), the distillation coefficients are meticulously set to scale the
SSD loss. As a rough guideline, we establish a coefficient that renders the SSD loss approximately
10 to 100 times smaller than the RL loss. Additionally, for the number of symmetric transformations
(L in Eq. (1)) is set as the number of inner loops. Seec Table 6 in details.

Table 6: Distillation coefficient and the number of symmetric transformations in TSP.

A2C PG-Rollout PPO GFlowNet

Distillation coefficient 0.001 0.001 0.00001 0.1
L 1 1 5(=k 10(=k)

C.2 DECAP PLACEMENT PROBLEMS (DPP)

Similar to the experiments on TSP, we follow the setting of DevFormer.* We set the batch size
as 100 and epoch data size as 600. Note that the maximum number of reward calls is set 15K,,
a considerably smaller limit compared to TSP. Regarding the distillation coefficient and the num-
ber of symmetric transformations, we maintain consistency with the principles applied in the TSP
experiments as follows:

Table 7: Distillation coefficient and the number of symmetric transformations in DPP tasks.

A2C PG-Rollout PPO GFlowNet

Distillation coefficient 0.01 0.01 0.01 0.1
L 1 1 20 (= k) 2(=k)

C.3 PRACTICAL MOLECULAR OPTIMIZATION (PMO)

We basically follow the experimental setting (e.g., batch size) in the practical molecular optimization
(PMO) benchmark.’ In the symmetric self-distillation step, we utilize reward-prioritized sampling
for the online buffer, which contains molecules generated during online learning. For the REIN-
VENT, where the replay buffer is already incorporated, we set the number of distillation samples
equal to the replay buffer size, i.e., 24, and the distillation coefficient to 0.001. Regarding the
GFlowNet method, we configure the number of distillation samples to match the batch size of 64.
Furthermore, we set the distillation coefficient to 1.0, given that the RL loss in GFlowNet is much
higher compared to REINVENT.

SAM: https://github.com/wouterkool/attention-learn-to-route
‘DevFormer: https://github.com/kaist-silab/devformer
SPractical molecular optimization: https://github.com/wenhao—-gao/mol_opt

14

Under review as a conference paper at ICLR 2024

141 —— A2C (base)

—— RL Loss
13 A SRT Loss (ours)
o 121
[%]
o
O
11 A

6.0 1 T T T T T T T T
0.0M 0.2M 0.5M 0.8M 1.0M 1.2M 1.5M 1.8M 2.0M
Num. of reward calls

Figure 8: Validation cost over computation budget on TSP50.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY FOR LOSS FUNCTIONS ON TSP50

This subsection provide the results of ablation study for using imitation loss in symmetric replay
training. The experiments are conducted with the same RL loss (denoted as ‘RL Loss’) and the
proposed imitation loss (denoted as ‘SRT Loss’). Since we employ the A2C as the base, RL loss is
as follows:

B
1
Lrr =5 Z; (R(z|s1) — V(s1)) log mo(a]s1),
where B is batch size. As shown in Figure 8, it is evident that symmetric replay training with RL
loss exhibits instability. This is a natural consequence since the symmetric trajectories often diverge
significantly from the current policy.

15

Under review as a conference paper at ICLR 2024

Table 8: Experimental results on sample efficient Euclidean CO problems.

N =50 N =100
Method K = 200K K =2M K = 200K K =2M
AM Critic 6.541 £ 0.075 6.129 £ 0.021 9.600 £0.090 8917 £0.115
o AM Rollout 6.708 £ 0.077 6.199 £0.014 11.891 £1.008 9.193 + 0.053
»vs POMO 7.910 £+ 0.055 7.074 £0.010 12.766 +0.358 10.964 £ 0.171
& Sym-NCO 7.035 + 0.209 6.334 £0.045 10.776 £ 0.362 9.159 + 0.056
SRT (ours) 6.450 + 0.053 6.038 +0.005 9.521 +0.098 8.573 + 0.019
AM Rollout 13.366 +0.199 11.921 £0.026 23.414 +0.238 19.088 £+ 0.232
& POMO 13.799 £ 0310 12.661 £0.065 22.939 £0.245 20.785 £ 0.403
5 Sym-NCO 13.406 + 0.204 12.215 £ 0.124 21.860 +0.422 18.630 = 0.106
SRT (ours) 12.922 +0.071 11.721 £ 0.093 21.582 + 0.149 18.304 + 0.109
N =50 N =100 N=50 N =100
~=- AM Critic 14 ~=- AM Critic 1 —— AM Rollout 2 \V —— AM Rollout
8.0 —— AM Rollout —— AM Rollout —— POMO 23 ~—— POMO
—— POMO 13 —— POMO —— Sym-NCO —— Sym-NCO

—— Sym-NCO

SymRD (ours)

SymRD (ours)

SymRD (ours)

0.5M 10M 15M
Num. of reward calls

0.5M 1.0M 1.5M
Num. of reward calls

0.5M 1.0M 1.5M
Num. of reward calls

2.0M 0.5M 1.oM 1.5M

Num. of reward calls

2.0M

(a) TSP (b) CVRP

Figure 9: Validation cost over computation budget on cuclidean CO problems.

D.2 EXPERIMENTS ON VARIOUS SYNTHETIC CO PROBLEMS

The experiments in this section cover various sample-efficient tasks in Euclidean and non-Euclidean
combinatorial optimization. Note that we assume the expensive black-box reward function in
sample-efficient tasks. In Euclidean CO tasks, the features of variables, such as their two-
dimensional coordinates, satisfy Euclidean conditions (e.g., cost coefficients are defined as Eu-
clidean distances). On the other hand, non-Euclidean CO problems lack these constraints, necessi-
tating the encoding of higher-dimensional data, such as a distance matrix.

D.2.1 EUCLIDEAN CO PROBLEMS

Experimental settings. We select two representative routing tasks — the travelling salesman prob-
lem (TSP) and the capacitated vechicle routing problem (CVRP) with 50 and 100 customers. The
CVRP assumes multiple salesmen (i.e., vehicles) with limited carrying capacity; thus, if the ca-
pacity is exceeded, the vehicle must return to the depot. For base DRL methods, we employ the
best-performing DRL methods, AM for TSP and Sym-NCO for CVRP. We follow reported hyper-
parameters for the model in their original paper.°

Results. The results in Table 8 and Fig. 9 indicate that SRT consistently outperforms baseline
methods in terms of achieving the lowest cost over the training budget. Note that ours employs
the AM with critic baseline for TSP and Sym-NCO with the reduced number of augmentations
for CVRP. As depicted in Table 8, the most significant improvement over the base DRL models
is observed in TSP100, with a percentage decrease of 3.86%, and CVRP50, with a percentage
decrease of 4.04%. While POMO and Sym-NCO consider the symmetric nature of CO, the required
number of samples cancels out the benefits. In contrast, our method utilizes the symmetric pseudo-
labels generated via the training policy for free, enabling the policy to explore the symmetric space
without increasing the number of required samples. As a result, SRT successfully improves sample
efficiency.

®Sym-NCO: https://github.com/alstnl12088/Sym-NCO

16

Under review as a conference paper at ICLR 2024

Table 9: Experimental results on sample efficient non-Euclidean CO problems.

N =50 N =100
Method K — 200K K —2M K — 200K K —2M
a. MatNet-Fixed 3.139£0.024 2.000 £0.002 4.400 £0.040 3.227 £ 0.016
£ MatNet-Sampled 3.2354+0.021 2.0194+0.005 4.324 £0.036 2.915 & 0.040
< SRT (ours) 2.845 +£0.039 1945+ 0.003 3.771 £ 0.012 2.513 £ 0.022
o, MatNet-Fixed 56.350 £0.170 55.341 +£0.118 96.461 +£0.206 95.107 £+ 0.072
¥ MatNet-Sampled 56.347 £0.234 55.172 +£0.032 96.256 £ 0.140 94.978 4 0.055
= SRT (ours) 56.104 £ 0.125 55.110 £ 0.061 96.030 £ 0.132 94.934 + 0.051
N=50 N =100 N=50 N =100

3.6
3.4
3.2

—— MatNet-Fixed
-- MatNet-Sampled
MatNet + SRT (ours)

4.54 Y
\

—— MatNet-Fixed
-- MatNet-Sampled
MatNet + SRT (ours)

—— MatNet-Fixed
-- MatNet-Sampled
MatNet + SRT (ours)

—— MatNet-Fixed
-- MatNet-Sampled
v MatNet + SRT (ours)

3.0
2.8

Cost

2.6
2.4
2.2
2.0

0.0M 0.5M 1.0M 1.5M

Num. of reward calls

2.0M 0.5M 1.0M 1.5M

Num. of reward calls

2.0M 0.0M 0.5M 1.0M 1.5M 2.0M

Num. of reward calls

0.0M 0.5M 1.0M 1.5M 2.0M
Num. of reward calls

(a) ATSP (b) FFSP

Figure 10: Validation cost over computation budget on non-Euclidean CO problems.

D.2.2 NON-EUCLIDEAN CO PROBLEMS

Experimental settings. Based on the work of Kwon et al. (2021), we have selected two bench-
mark tasks, namely the asymmetric TSP (ATSP) and flexible flow-shop scheduling problems
(FSSP). The ATSP is non-Euclidean TSP where the distance matrix could be non-symmetric, i.e.,
dist(7, j) # dist(j,4), where 7 and j indicate cities. The FSSP is an important scheduling problem
that assigns jobs to multiple machines to minimize total completion time. As a baseline, we employ
Matrix Encoding Network (MatNet) proposed to solve non-Euclidean CO.” We compare ours with
two versions of MatNet: MatNet-Fixed and MatNet-Sampled. MatNet-Fixed, the original version,
explores N heterogeneous starting points of trajectories, while MatNet-Sampled explores less than
N number of multiple trajectories with sampling strategy.

Results. The superior performance of SRT over MatNet-Fixed and MatNet-Sampled is demon-
strated in both Table 9 and Fig. 10. We employ MatNet-Sampled as a base DRL method for both
tasks and use the same number of multi-starting in ours and MatNet-Sampled. Notably, SRT outper-
forms MatNet-Sampled by a significant margin in the case of ATSP, with a performance gap of about
12% at N = 100, K = 200K, where SRT achieves 3.771 and MatNet-Sampled achieves 4.324.

"MatNet: https://github.com/yd-kwon/MatNet

17

