
Supplementary Material:

Efficient Adversarial Training without Attacking: Worst-Case-Aware
Robust Reinforcement Learning

A Theoretical Analysis

Similar to the worst-attack action value, we can define the worst-attack value as below:

Definition A.1 (Worst-attack Value). For a given policy ⇡, define the worst-attack value of ⇡ as

V ⇡(s) := EP [
1X

t=0

�tR (st,⇡(h
⇤(st))) | s0 = s], (9)

where h⇤ is the optimal attacker which minimizes the victim’s cumulative reward under the ✏
constraint.

Proof of Theorem 4.2. First, we show that T ⇡ is a contraction.
For any two Q functions Q1 : S ⇥A! R and Q2 : S ⇥A! R, we have

kT ⇡Q1 � T ⇡Q2k1

= max
s,a

�����
X

s02S

P
�
s0 | s, a

� 
R(s, a) + � min

a02Aadv(s0,⇡)
Q1

�
s0, a0��R(s, a) + � min

a02Aadv(s0,⇡)
Q2

�
s0, a0�

������

= �max
s,a

�����
X

s02S

P
�
s0 | s, a

� 
min

a02Aadv(s0,⇡)
Q1

�
s0, a0�� min

a02Aadv(s0,⇡)
Q2

�
s0, a0�

������

 �max
s,a

X

s02S

P
�
s0 | s, a

� ���� min
a02Aadv(s0,⇡)

Q1

�
s0, a0�� min

a02Aadv(s0,⇡)
Q2

�
s0, a0�

����

 �max
s,a

X

s02S

P
�
s0 | s, a

�
max

a02Aadv(s0,⇡)

��Q1

�
s0, a0��Q2

�
s0, a0���

= �max
s,a

X

s02S

P
�
s0 | s, a

�
kQ1 �Q2k1

= � kQ1 �Q2k1

The second inequality comes from the fact that,����min
x1

f(x1)�min
x2

g(x2)

����  max
x

|f(x)� g(x)|

The operator T ⇡ satisfies,
kT ⇡Q1 � T ⇡Q2k1  � kQ1 �Q2k1

so it is a contraction in the sup-norm.

Recall the definition of worst-attack action value:

Q⇡(s, a) := EP [
1X

t=0

�tR (st,⇡(h
⇤(st))) | s0 = s, a0 = a], (10)

where h⇤ is the optimal attacker which minimizes the victim’s cumulative reward under the ✏
constraint. That is, the optimal attacker h⇤ lets the agent select the worst possible action among all
achievable actions in Aadv. Hence, we have Q⇡(s, a) = T ⇡Q⇡(s, a). Therefore, Q⇡(s, a) is the
fixed point of the Bellman operator T ⇡ .

16

(a) Vanilla Training (b) Lipschitz-driven (c) Attack-driven (d) Our WocaR-RL

Figure 8: Geometric understanding of different training methods following the polytope theory by [8] and [42].
x, y axes represent the policy value for s1 2 S and s2 2 S. The grey polytope depicts the value space of all
policies, while the pink polytope (referred to as value perturbation polytope) contains the values of policy ⇡
under all attacks with given constraint (✏-radius `p perturbations on the state input to the policy). V ⇡ denotes
the value of a learned policy, and V ⇡ stands for the worst-attack value of this policy ⇡ (located at the bottom
leftmost vertex of the value perturbation polytope).
Two relations between the value perturbation polytope and policy robustness: The more distant the pink
value perturbation polytope’s bottom leftmost vertex is from the origin, the higher worst-attack value ⇡ has.
The smaller the pink value perturbation polytope is, the less vulnerable the policy is (i.e., an ✏-bounded state
perturbation can not lead to a drastic change of the policy value).
Our method: WocaR-RL makes a policy more robust via worst-attack value estimation, worst-case-aware
policy optimization and value-enhanced state regularization, which shrink the value perturbation polytope and
move the value perturbation polytope’s bottom leftmost vertex away from the origin.

B Geometric Understanding of WocaR-RL

B.1 A Closer Look at Robust RL

In real-world applications where observations may be noisy or perturbed, it is important to ensure
that the agent not only makes good decisions, but also makes safe decisions.

Existing Robust RL Approaches. There are many existing robust training methods for RL, and
we summarize the common ideas as the following two categories.
(1) Lipschitz-driven methods: encourage the policy to output similar actions for any pair of clean state
and perturbed state, i.e., min✓ maxs2S,s̃2B✏(s) Dist(⇡✓(s),⇡✓(s̃)), where Dist can be any distance
metric. Therefore, the policy function (network) has small local Lipschitz constant at each clean state.
Note that this idea is similar to many certifiable robust training methods [14] in supervised learning.
For example, Fischer et al. [9] achieve provable robustness for DQN by applying the DiffAI [31]
approach, so that the DQN agent selects the same action for any element inside B✏(s). Zhang et
al. [54] propose to minimize the total variance between ⇡(s) and ⇡(s̃) using convex relaxations of
NNs. Although Lipschitz-driven methods are relatively efficient in training, they usually treat all
states equally, and do not explicitly consider long-term rewards. Therefore, it is hard to obtain a
non-vacuous reward certification, especially in continuous-action environments.
(2) Attack-driven methods: train the agent under adversarial attacks, which is analogous to Adversarial
Training (AT) [28]. However, different from AT, a PGD attacker may not induce a robust policy
in an RL problem due to the uncertainty and complexity of the environment. Zhang et al. [52]
propose to alternately train an agent and an RL-based “optimal” adversary, so that the agent can
adapt to the worst-case input perturbation. Therefore, attack-driven method can be formulated as
max✓ V

⇡✓ . Zhang et al. [52] and a follow-up work by Sun et al. [42] apply the alternate training
approach and obtain state-of-the-art robust performance. However, learning the optimal attacker using
RL algorithms doubles the learning complexity and the required samples, making it hard to apply
these methods to large-scale problems. Moreover, although these attack-driven methods improve the
worst-case performance of an agent, the natural reward can be sacrificed.
Note that we discuss methods that improve the robustness of deep policies during training. Therefore,
the focus is different from some important works [27, 49, 23] that directly use non-robust policies
and execute them in a robust way.

Our Motivation: Geometric Understanding of Robust RL. The robustness of a learned RL
policy can be understood from a geometric perspective. Dadashi et al. [8] point out that the value
functions of all policies in a finite MDP form a polytope, as shown by the grey area in Figure 8. Sun
et al. [42] further find that V ⇡̃ , possible values of a policy ⇡ under all ✏-constrained `p perturbations,
also form a polytope (pink area in Figure 8), which we refer to as the value perturbation polytope.

17

Recall that in robust RL, we pursue a high natural value V ⇡ , and a high worst-case value V ⇡ which
is the lower leftmost vertex of the value perturbation polytope. A vulnerable policy that outputs a
different action for a perturbed state as a larger value perturbation polytope. Lipschitz-driven methods,
as Figure 8(a) shows, attempts to shrink the size of the value perturbation polytope, but does not
necessarily result in a high V ⇡ . Attack-driven methods, as Figure 8 shows, improves V ⇡ , but have no
control over the size of the value perturbation polytope, and may not obtain a high natural value V ⇡ .

Our Proposed Robust RL Principle. In contrast to prior Lipschitz-driven methods and Attack-
driven methods, we propose to both “lift the position” and “shrink the size” of the value perturbation
polytope. To achieve the above principle in an efficient way, we propose to (1) directly estimate
and optimize the worst-case value of a policy without training the optimal attacker (worst-attack
value estimation and worst-case-aware policy optimization mechanisms of WocaR-RL), and (2)
regularize the local Lipschitz constants of the policy with value-enhanced weights (value-enhanced
state regularization mechanism of WocaR-RL). See Section 4 for more details of the proposed
algorithm.

C Algorithm Details

C.1 Computing Aadv by Network Bounding Techniques

Recall that Aadv(s,⇡) = {a 2 A : 9s̃ 2 B✏(s) s.t. ⇡(s̃) = a} is the set of actions that ⇡ may be
misled to select in state s. Computing the exact Aadv is difficult due to the complexity of neural
networks, so we use relaxations of network such as Interval Bound Propagation (IBP) [48, 15] to
approximately calculate Aadv.

A Brief Introduction to Convex Relaxation Methods. Convex relaxation methods are techniques
to bound a neural network that provide the upper and lower bound of the neural network output given
a bounded lp perturbation to the input. In particular, we take l1 as an example, which has been
studied extensively in prior works. Formally, let f✓ be a real-valued function parameterized by a
neural network ✓, and let f✓(s) denote the output of the neural network with the input s. Given an l1
perturbation budget ✏, convex relaxation method outputs (f✓(s), f✓(s)) such that

f✓(s)  min
ks0�sk1✏

f✓(s
0)  max

ks0�sk1✏
f✓(s

0)  f✓(s)

Recall that we use ⇡✓ to denote the parameterized policy being trained that maps a state observation
to a distribution over the action space, and ⇡ denotes the deterministic policy refined from ⇡✓ with
⇡(s) = argmaxa2A⇡✓(a|s). Aadv(s,⇡) contains actions that could be selected by ⇡ (with the highest
probability in ⇡✓’s output) when s is perturbed within a ✏-radius ball. Our goal is to approximately
identify a superset of Aadv(s,⇡), i.e., Âadv(s,⇡), via the convex relaxation of networks introduced
above.
Computing Aadv in Continuous Action Space. The most common policy parameterization in
a continuous action space is through a Gaussian distribution. Let µ✓(s) be the mean of Gaussian
computed by ⇡✓(s), then ⇡ = µ(s). Therefore, we can use network relaxation to compute an upper
bound and a lower bound of µ✓ with input B✏(s). Then, Âadv(s,⇡) = [µ✓(s), µ✓(s)], i.e., a set of
actions that are coordinate-wise bounded by µ✓(s) and µ✓(s). For other continuous distributions,
e.g., Beta distribution, the computation is similar, as we only need to find the largest and smallest
actions. In summary, we can compute Âadv(s,⇡) = [⇡✓(s),⇡✓(s)].

Computing Aadv in Discrete Action Space. For a discrete action space, the output of ⇡✓ is a
categorical distribution, and ⇡ selects the action with the highest probability. Or equivalently, in
value-based algorithms like DQN, the Q network (can be regarded as ⇡✓) outputs the Q estimates
for each action, and ⇡ selects the action with the highest Q value. In this case, we can compute the
upper and lower bound of ⇡✓ in every dimension (corresponding to an action), denoted as ai, ai,
81  i  |A|. Then, an action ai 2 A is in Âadv if for all 1  j  |A|, j 6= i, we have ai > aj .

Implementation details of Aadv For a continuous action space, interval bound propagation (IBP) is
the cheapest method to implement convex relaxation. We use IBP+Backward relaxation provided by
auto_LiRPA library, following [54] to efficiently produce tighter bounds Aadv for the policy networks

18

⇡theta. For a discrete action space, we compute the layer-wise output bounds for the Q-network by
applying robustness verification algorithms from [33].

C.2 Worst-case-aware Robust PPO (WocaR-PPO)

In policy-based DRL methods [38, 25, 39] such as PPO, the actor policy ⇡✓ is optimized so that it
increases the probability of selecting actions with higher critic values. Therefore, we combine our
worst-attack critic and the original critic function, and optimize ⇡✓ such that both the natural value
(LRL) and the worst-attack action value Q⇡

�
(Lwst) can be increased (LRL and Lwst). At the same

time, ⇡✓ is also regularized by Lreg.

We provide the full algorithm of WocaR-PPO in Algorithm 1 and highlight the differences with the
prior method SA-PPO. WocaR-PPO needs to train an additional worst-attack critic Q⇡

�
to provide

the robust-PPO-clip objective. The perturbation budget ✏t increases slowly during training. The
implementation of Lreg is the same as the SA-regularizer [54]. For computing the state importance
weight wst , because there is no Q-value network in PPO, we provide a different formula to measure
the state importance without extra calculation (Line 11 in Algorithm 1).

C.3 Worst-case-aware Robust DQN (WocaR-DQN)

For value-based DRL methods [32, 16, 47] such as DQN, a Q network is learned to evaluate the
natural action value. Although the policy is not directly modeled by a network, the Q network induces
a greedy policy by ⇡(s) = argmaxaQ(s, a). To distinguish the acting policy and the natural action
value, we keep the original Q network, and learn a new Q network that serves as a robust policy. This
new Q network is called a robust Q network, denoted by Qr, which is used to take greedy actions
a = ⇡(s) := argmaxaQr(s, a) In addition to the original vanilla Q network Qv and the robust Q
network Qr, we learn the worst-attack critic network Q⇡

�
, which evaluates the worst-attack action

value of the greedy policy induced by Qr. Then, we update Qr by assigning higher values for actions
with both high natural Q value and high worst-attack action value (LRL and Lwst), while enforcing
the network to output the same action under bounded state perturbations (Lreg).

WocaR-DQN is presented in Algorithm 2. WocaR-DQN trains three Q-value functions including
a vanilla Q network, a worst-case Q network, and a robust Q network. The worst-case Q Q⇡

�
is

learned to estimate the worst-case performance and the robust Q is updated using the vanilla value and
worst-case value together. Moreover, a target Q network is used as the original DQN implementation,
to compute the target value when updating the vanilla Q network (Line 8 to 10 in Algorithm 2). To
learn the worst-case critic Q⇡

�
, we select the worst-attack action from the estimated possible perturbed

action set Âadv to compute the worst-case TD loss Lest (Line 11 to 15). The implementation of Lreg

is the same as the SA-regularizer [54], where the robust Q network is regularized. To update the
robust Q, we use a special yri which combines the target Q Qv0 and Qr for the next state to compute
the TD loss, and minimize the Lreg weighted by the state importance w(si) (Line 16 to 17). In
WocaR-DQN, we use an increasing ✏t schedule and a more slowly increasing worst-case schedule
wst(t) for robust Q training.

C.4 Worst-case-aware Robust A2C (WocaR-A2C)

We also provide WocaR-A2C based on A2C implementation in Algorithm 3. Differ from the original
A2C, WocaR-A2C needs to learn an additional Q⇡

�
similar to WocaR-PPO. To learn Q⇡

�
, we compute

the output bounds for the policy network ⇡✓⇡ under ✏-bounded perturbations and then select the worst
action ât+1 to calculate the TD-loss Lest (Line 6 to 9). The solutions for state importance weight
w(st) and regularization Lreg are same as WocaR-PPO (Line 10-11). To learn the policy network
⇡✓⇡ , we minimize the Q⇡

�
value together with the original actor loss (Line 12).

C.5 Extension to Action Attacks

Although our paper mainly focuses on state attack, our proposed techniques and algorithms based on
the worst-attack Bellman operator can be easily extended to action attack, which is another threat
model studied in previous works [35, 44, 45]. In fact, for action attack, we even do not need to apply

19

Algorithm 1 Worst-case-aware Robust PPO (WocaR-PPO). We highlight the difference compares
with SA-PPO [54] in blue.
Input: Number of iterations T , a schedule ✏t for the perturbation radius ✏, weights wst,reg

1: Initialize policy network ⇡✓⇡ (a | s) , value network V✓V (s) and worst-attack critic network
Q⇡

�
(s, a) with parameters ✓⇡ , ✓V and �

2: for k = 0, 1, ..., T do
3: Collect a set of trajectories D = {⌧k} by running ⇡✓⇡ in the environment, each trajectory ⌧k

contains ⌧k := {(st, at, rt, st+1)} , t 2 [|⌧k|]
4: Compute rewards-to-go R̂t for each step t in every trajectory k with discount factor �
5: Compute advantage estimation Ât based on the current value function V✓V (st) and cumulative

reward R̂t for each step t
6: Update parameters of value function ✓V by regression on mean-squared error:

✓V argmin
✓V

1

|D| |⌧k|
X

⌧k2D

|⌧k|X

t=0

⇣
V✓V (st)� R̂t

⌘2

7: Use IBP to compute bounds of current policy network ⇡:
Find the upper bound ⇡ (st+1, ✏; ✓) and lower bound ⇡ (st+1, ✏; ✓) of the policy network ⇡✓⇡

8: Select the worst action for next states:
Calculate the action satisfied ât+1 = argmin

a2[⇡,⇡]
Q⇡

�
(st+1, a) with the worst-attack critic network

Q⇡
�

using gradient descent.
9: Compute next worst-case value:

Set y
t
=

⇢
rt for terminal st+1

rt + �Q⇡
�
(st+1, ât+1) for non-terminal st+1

10: Update parameters of worst-attack critic network � by minimizing the TD-error (Lest):

� argmin
�

1

|D| |⌧k|
X

⌧k2D

|⌧k|X

t=0

(y
t
�Q⇡

�
(st, at))

2

11: For each state st, calculate a state importance weight wst by V✓V (st)�min
a

Q⇡
�
(st, a) for st

12: Solve the value-enhanced state regularization loss by SGLD (Stochastic gradient Langevin
dynamics [12]) (from SA-PPO [54]):

Lreg(⇡✓) =
1

N

NX

t=1

w(st) max
s̃t2B✏(st)

Dist(⇡✓(st),⇡✓(s̃t))

13: Update the policy network by minimizing the Robust-PPO-Clip objective (via ADAM):

✓⇡ argmin
✓0
⇡

1
|D||⌧k|

hP
⌧k2D

P|⌧k|
t=0 min

⇣
⇢✓0

⇡
(at | st)(Ât + wstQ

⇡
�
(st, at)), g(⇢✓0

⇡
(at | st)

⌘
(Ât + wstQ

⇡
�
(st, at))) + regw(si)Lreg(⇡✓)

i

where ⇢✓0
⇡
(at | st) :=

⇡✓0⇡
(at|st)

⇡✓⇡ (at|st) , g(⇢) := clip
�
⇢✓0

⇡
(at | st) , 1� ✏clip, 1 + ✏clip

�

14: end for

IBP for the worst-attack Bellman backup. We could just simply replace Aadv with the set of actions
that the agent could take under attack, then the rest of the algorithms will follow the exact same as
the ones presented here.

20

Algorithm 2 Worst-case-aware Robust DQN (WocaR-DQN). We highlight the difference compares
with SA-DQN [54] in blue.
Input: Number of iterations T , target network update coefficient ⌧ , a schedule ✏t for the perturbation

radius ✏, a worst-case schedule wst(t) for weight wst, regularization weight reg

1: Initialize a vanilla Q network Qv(s, a), target Q network Qv0(s, a) , a robust Q network Qr(s, a),
and a worst-attack critic Q⇡

�
(s, a) with parameters ✓Qv , ✓Qv0 , ✓Qr , and �

2: Initialize replay buffer B
3: for k = 0, 1, ..., T do
4: With probability � select random action at, otherwise select at = argmax

a
Qr(st, a|✓Qr)

5: Execute action at in environment and observe reward rt and the next state st+1.
6: Store transition {st, at, rt, st+1} in B
7: Sample random a minibatch of N transitions {si, ai, ri, si+1} from B

8: Set yi =
⇢

ri for terminal si+1

ri + �maxa0 Qv0 (si+1, a0; ✓) for non-terminal si+1

9: Compute TD-loss for the vanilla Q network: L(si, ai, si+1; ✓) = (yi � Qv(si, ai; ✓))2 and
optimize ✓Qv

10: Soft update the target action-value network: ✓Qv0 ⌧✓Qv + (1� ⌧)✓Qv0

11: Computing bounds of robust action-value function:
For each action a in action space A, calculate the output bounds of robust action-value
function Qr under ✏t-bounded perturbations using IBP to input si+1: Ql(st+1, a, ✏t) and
Qu(st+1, a, ✏t).

12: Find the possible perturbed action set:
For every action a 2 A, if Qu(st+1, a, ✏t) > Ql(st+1, a0, ✏t), 8a0 2 A, then add a in the
perturbed action set Âadv

13: Calculate the worst-attack action: âi+1 = argmin
a2Âadv

Q⇡
�
(si+1, a).

14: Set y
i
=

⇢
ri for terminal si+1

ri + �Q⇡
�
(si+1, âi+1; ✓) for non-terminal si+1

15: Compute TD-loss for worst-attack critic: Lest = (y
i
�Q⇡

�
(si, ai;�))2 and perform a gradient

descent step with respect to the parameters �
16: Calculate the state importance wsi for each si by normalizing max

a
Qv(st, a)�min

a
Qv(st, a)

17: Update the robust Q function Qr based on the modified TD-Loss and value-enhanced state
regularization:

L(si, ai, si+1; ✓Qr) = (yri �Qr(si, ai; ✓))
2 + regw(si)Lreg(✓Qr)

where yri = ri + �maxa0

h
wst(t)Qv0 (si+1, a0; ✓) + (1� wst(t))Q

⇡
�
(si+1, a0; ✓)

i
if si+1

is a non-terminal state, otherwise yri = ri
18: end for

D Experiment Details and Additional Results

D.1 Implementation Details

For reproducibility, the reported results are selected from 30 agents for different training methods
with medium performance due to the high variance in RL training.

D.1.1 PPO in MuJoCo

(a) PPO Baselines
Vanilla PPO We use the optimal hyperparameters from [54] with the original fully connected
(MLP) structure as the policy network for vanilla PPO training on all environments. On Hopper,
Walker2d and Halfcheetah, we train for 2 million steps (976 iterations) , and 10 million steps (4882
iterations) on Ant to ensure convergence, which are consistent with other baselines (except ATLA
methods).

21

Algorithm 3 Worst-case-aware Robust A2C (WocaR-A2C). We highlight the difference compares
with SA-A2C [54] in blue.
Input: Number of iterations T , a schedule ✏t for the perturbation radius ✏, weights wst,reg

1: Initialize policy network ⇡✓⇡ (a | s) , value network V✓V (s) and worst-attack critic network
Q⇡

�
(s, a) with parameters ✓⇡ , ✓V and �

2: for k = 0, 1, ..., T do
3: Collect a set of trajectories D = {⌧k} by running ⇡✓⇡ in the environment, each trajectory ⌧k

contains ⌧k := {(st, at, rt, st+1)} , t 2 [|⌧k|]
4: Compute advantage function At by

At = rt + �V✓V (st+1)� V✓V (st)

5: Update parameters of value function ✓V by regression on mean-squared error:

✓V argmin
✓V

1

|D| |⌧k|
X

⌧k2D

|⌧k|X

t=0

A2
t

6: Use IBP to compute bounds of current policy network ⇡:
Find the upper bound ⇡ (st+1, ✏; ✓) and lower bound ⇡ (st+1, ✏; ✓) of the policy network ⇡✓⇡

7: Select the worst action for next states:
Calculate the action satisfied ât+1 = argmin

a2[⇡,⇡]
Q⇡

�
(st+1, a) with the worst-attack critic network

Q⇡
�

using gradient descent.
8: Compute next worst-case value:

Set y
t
=

⇢
rt for terminal st+1

rt + �Q⇡
�
(st+1, ât+1) for non-terminal st+1

9: Update parameters of worst-attack critic network � by minimizing the TD-error (Lest):

� argmin
�

1

|D| |⌧k|
X

⌧k2D

|⌧k|X

t=0

(y
t
�Q⇡

�
(st, at))

2

10: For each state st, calculate a state importance weight w(st) by V✓V (st)�min
a

Q⇡
�
(st, a) for

st
11: Solve the value-enhanced state regularization loss [53] by SGLD (Stochastic gradient Langevin

dynamics [12]):

Lreg(⇡✓⇡) =
1

N

NX

t=1

w(st) max
s̃t2B✏(st)

Dist(⇡✓⇡ (st),⇡✓⇡ (s̃t))

12: Update the policy network by (via ADAM)

✓⇡ argmin
✓0
⇡

1
|D||⌧k|

hP
⌧k2D

P|⌧k|
t=0(Atlog⇡✓⇡ (st) + wstQ

⇡
�
(st, at))

i

13: end for

SA-PPO We use the hyperparameters using a grid search and solve the regularizer using convex
relaxation with the IBP+Backward scheme to solve the regularizer. The regularization parameter
kappa is chosen in {0.01, 0.03, 0.1, 0.3, 1.0}.
ATLA-PPO The hyperparameters for both policy and adversary are tuned for vanilla PPO with
LSTM models. A larger entropy bonus coefficient is set to allow sufficient exploration. We set
Nv = N⇡ = 1 for all experiments. We train 2441 iterations for Hopper, Walker2d, and Halfcheetah
as well as 4882 iterations for Ant.
PA-ATLA-PPO We use the hyperparameters similar to ATLA-PPO and conduct a grid search for
a part of adversary hyperparameters including the learning rate and the entropy bonus coefficient.

22

RADIAL-PPO RADIAL-PPO applies the same value of hyperparameters from [33]. We train
agents with the same iterations aligning vanilla PPO for fair comparison.

(b) PPO Attackers
For Random and MaxDiff attack, we directly use the implementation from [52]. The reported
rewards under RS attack are from 30 trained robust value function, which is used to attack agents.
For SA-RL attack, a grid search of the optimal hyperparameters for each robust agents is conducted
to find the strongest attacker. The strength of the regularization  is set as 1⇥ 10�6 to 1.
For PA-AD attack, the adversaries are trained by PPO with a grid search of hyperparameters to obtain
the strongest adversary.
For different types of RL-based attacks, we respectively train 100 adversaries and report the worst
rewards among all trained adversaries.

(c) WocaR-PPO We use the same LSTM structure (single layer with 64 hidden neurons as in
vanilla PPO agents. With a grid search experiment, we find the optimal hyperparameters for WocaR-
PPO. Specially, we use PGD to compute bounds for the policy network and convex relaxation to
solve the state regularization. The number of WocaR-PPO training steps in all environments are the
same as those in vanilla PPO. We tune the adjustable weight wst and increase wst from 0 to the
target value. For Hopper, Walker2d and Halfcheetah, wst is linearly increasing and we set the target
value as 0.8. For Ant, we choose the exponential increase and the target value as 0.5.

D.1.2 DQN in Atari

(a) DQN Baselines
Vanilla DQN We follow [54] and [33] in hyperparameters and network structures for vanilla
DQN training. The implementation of all our baselines applies Double DQN [17] and Prioritized
Experience Replay [37]. For each Atari environment without framestack, we normalize the pixel
values to [0, 1] and clip rewards to [�1,+1]. For reliably convergence, we run 6⇥ 106 steps for all
baselines on all environments. Additionally, we use a replay buffer with a capacity of 5⇥ 10. During
testing, we evaluate agents without epsilon greedy exploration for 1000 episodes.
SA-DQN SA-DQN use the same settings of network structures and hyperparameters as in vanilla
DQN. The regularization parameter  is chosen from 0.005, 0.01, 0.02 and the schedule of ✏ during
training also follows [54].
RADIAL-DQN Following the original implementation from [33], we reproduce the results of
RADIAL-DQN with our environment settings.

(b) DQN Attackers
For PGD attacks, we apply 10-step untargeted PGD attacks. We also try 50-step PGD attacks, but we
find that the rewards of robust agents do not further reduce.
For MinBest attacks, we use FGSM to compute state perturbations following [19].
For PA-AD attacks, the PA-AD attackers are learned with the ACKTR algorithm. We use a learning
rate 0.0001 and train the attackers for 5 million frames.

(c) WocaR-DQN For WocaR-DQN, we keep the same network architectures and hyperparameters
as in vanilla DQN agents. During training, we set the adjustable weight wst as 0 for the first 2⇥ 106

steps, and then exponentially increase it from 0 to 0.5 for 4⇥ 106 steps.

D.2 Additional Experiment Results on Robustness Performance

MuJoCo Experiments We reported all results in Table 2 including episode rewards of well-trained
robust models under various adversarial attacks. Under this full adversarial evaluation, we provide a
robustness comparison between baselines and our algorithm from a comprehensive angle. We report
the attack performance under a common chosen perturbation budget ✏ following [54, 52]. Results in
all four MuJoCo environments show that our WocaR-PPO is the most robust method. We emphasize
that Table 2 reports the final performance of all robust training baselines after convergence, but some
baselines takes much more steps than our WocaR-PPO. Table 5 in Appendix D.3.2 compares all
methods under the same number of training steps, where WocaR-PPO outperforms baselines more
significantly.

23

Environment Model Natural
Reward Random MAD RS SA-RL PA-AD

Halfcheetah
state-dim: 17

✏=0.15

PPO (vanilla) 7117 ± 98 5486 ± 1378 1836 ± 866 489 ± 758 -660 ± 218 -356 ± 407
SA-PPO 3632 ± 20 3619 ± 18 3624 ± 23 3283 ± 20 3028 ± 23 2512 ± 16

ATLA-PPO 6157 ± 852 6164 ± 603 5790 ± 174 4806 ± 392 5058 ± 418 2576 ± 548
PA-ATLA-PPO 6289 ± 342 6215 ± 346 5961 ± 253 5226 ± 114 4872 ± 379 3840 ± 273
RADIAL-PPO 4724 ± 14 4731 ± 42 3994 ± 156 3864 ± 232 3253 ± 131 2674 ± 168

WocaR-PPO (Ours) 6032 ± 68 5969 ± 149 5850 ± 228 5319 ± 220 5365 ± 54 4269 ± 172

Hopper
state-dim: 11

✏=0.075

PPO (vanilla) 3167 ± 542 2101 ± 793 1410 ± 655 794 ± 238 636 ± 9 160 ± 136
SA-PPO 3705 ± 2 2710 ± 801 2652 ± 835 1130 ± 42 1076 ± 791 856 ± 21

ATLA-PPO 3291 ± 600 3165 ± 576 2814 ± 725 2244 ± 618 1772 ± 802 1232 ± 350
PA-ATLA-PPO 3449 ± 237 3325 ± 239 3145 ± 546 3002 ± 329 1529 ± 284 2521 ± 325
RADIAL-PPO 3740 ± 44 3729 ± 100 3214 ± 142 2141 ± 232 1722 ± 186 1439 ± 204

WocaR-PPO (Ours) 3616 ± 99 3633 ± 30 3541 ± 207 3277 ± 159 2390 ± 145 2579 ± 229

Walker2d
state-dim: 17

✏=0.05

PPO (vanilla) 4472 ± 635 3007 ± 1200 2869 ± 1271 1336 ± 654 1086 ± 516 804 ± 130
SA-PPO 4487 ± 61 4465 ± 39 3668 ± 689 3808 ± 138 2908 ± 336 1042 ± 353

ATLA-PPO 3842 ± 475 3927 ± 368 3836 ± 492 3239 ± 294 3663 ± 707 1224 ± 770
PA-ATLA-PPO 4178 ± 529 4129 ± 78 4024 ± 272 3966 ± 307 3450 ± 178 2248 ± 131
RADIAL-PPO 5251 ± 12 5184 ± 42 4494 ± 150 3572 ± 239 3320 ± 245 1395 ± 194

WocaR-PPO (Ours) 4156 ± 495 4244 ± 157 4177 ± 176 4093 ± 138 3770 ± 196 2722 ± 173

Ant
state-dim: 111

✏=0.15

PPO (vanilla) 5687 ± 758 5261 ± 1005 1759 ± 828 268 ± 227 -872 ± 436 -2580 ± 872
SA-PPO 4292 ± 384 4986 ± 452 4662 ± 522 3412 ± 1755 2511 ± 1117 -1296 ± 923

ATLA-PPO 5359 ± 153 5366 ± 104 5240 ± 170 4136 ± 149 3765 ± 101 220 ± 338
PA-ATLA-PPO 5469 ± 106 5496 ± 158 5328 ± 196 4124 ± 291 3694 ± 188 2986 ± 364
RADIAL-PPO 5076 ± 254 5031 ± 142 4777 ± 156 3731 ± 177 3188 ± 115 1544 ± 194

WocaR-PPO (Ours) 5596 ± 225 5558 ± 241 5284 ± 182 4339 ± 160 3822 ± 185 3164 ± 163

Table 2: Average episode rewards ± standard deviation over 50 episodes on five baselines and WocaR-PPO on
Hopper, Walker2d, Halfcheetah, and Ant. Natural reward and rewards under five types of attacks are reported.
Under each column corresponding to an evaluation metric, we bold the best results. And the row for the most
robust agent is highlighted as gray . Note that ATLA-PPO, PA-ATLA-PPO and RADIAL-PPO are trained with

more than 2⇥ steps than WocaR-PPO, as reported in Table 6.

Atari Experiments In Table 3, we present performance based on DQN on four Atari environments
under 1/255 and 3/255 ✏ attack. Under ✏ of 1/255, our WocaR-DQN achieves competitive performance
under PGD attacks and outperforms all baselines under MinBest and PA-AD attacks, which shows
better robustness of WocaR-DQN under weaker attacks.
Based on vanilla A2C, we implement SA-A2C[54] and PA-ATLA-A2C[42] as robust baselines. We
implement WocaR-A2C to compare with ATLA methods on Atari. In Table 4, under any ✏ value, our
WocaR-A2C outperforms other robust baselines across different attacks. We can conclude that our
method considerably enhance more robustness than ATLA methods on Atari.

Environment Model Natural
Reward

PGD (10 steps) MinBest PA-AD
✏=1/255 ✏=3/255 ✏=1/255 ✏=3/255 ✏=1/255 ✏=3/255

Pong

DQN 21.0 ± 0.0 -21.0 ± 0.0 -21.0 ± 0.0 -7.4 ± 2.8 -9.7 ± 4.0 -18.2 ± 2.3 -19.0 ± 2.2
SA-DQN 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 20.6 ± 3.5 20.4 ± 1.8 18.7 ± 2.6

RADIAL-DQN 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 19.5 ± 2.1 20.3 ± 2.5 13.2 ± 1.8
WocaR-DQN (Ours) 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0 20.8 ± 3.3 21.0 ± 0.2 19.7 ± 2.4

Freeway

DQN 34.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 9.5 ± 3.0 5.5 ± 1.8 9.3 ± 2.7 4.7 ± 2.9
SA-DQN 30.0 ± 0.0 30.0 ± 0.0 30.0 ± 0.0 27.2 ± 3.4 18.3 ± 3.0 20.1 ± 4.0 9.5 ± 3.8

RADIAL-DQN 33.1 ± 0.2 33.1 ± 0.2 33.2 ± 0.2 22.6 ± 3.3 16.4 ± 2.3 18.5 ± 4.2 10.8 ± 3.6
WocaR-DQN (Ours) 31.2 ± 0.4 31.2 ± 0.5 31.4 ± 0.3 29.6 ± 2.5 19.8 ± 3.8 24.9 ± 3.7 12.3 ± 3.2

BankHeist

DQN 1308 ± 24 54 ± 20 0 ± 0 210 ± 79 119 ± 65 213 ± 111 102 ± 92
SA-DQN 1245 ± 14 1245 ± 10 1176 ± 63 1148 ± 36 1024 ± 31 1054 ± 11 489 ± 106

RADIAL-DQN 1178 ± 4 1178 ± 4 1176 ± 63 1049 ± 27 928 ± 113 1035 ± 46 508 ± 85
WocaR-DQN (Ours) 1220 ± 12 1220 ± 3 1214 ± 7 1192 ± 12 1045 ± 20 1096 ± 19 754 ± 102

RoadRunner

DQN 45527 ± 4894 0 ± 0 0 ± 0 14962 ± 6431 2985 ± 1440 842 ± 41 203 ± 65
SA-DQN 44638 ± 2367 43970 ± 975 20678 ± 1563 39736 ± 2315 4214 ± 2587 38432 ± 3574 5516 ± 4684

RADIAL-DQN 44675 ± 5854 44605 ± 1094 38576 ± 1960 38060 ± 1799 8476 ± 3964 36310 ± 9149 1290 ± 4015
WocaR-DQN (Ours) 44156 ± 2279 44079 ± 2154 38720 ± 1765 40758 ± 3369 10545 ± 2984 38954 ± 3647 8239 ± 2766

Table 3: Average episode rewards ± standard deviation over 1000 episodes on baselines and WocaR-DQN on
Pong, Freeway, BankHeist, and RoadRunner. Natural reward and rewards under different attacks with ✏ of 1/255
and 3/255 are reported. We bold the best results for each evaluation metric. And the row for the most robust
agents on all environments are highlighted by gray.

24

0.00 0.05 0.10 0.15 0.20

1,000

2,000

3,000

4,000

5,000

Epsilon of Robust Sarsa attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(a) Hopper: Robust Sarsa

0.00 0.05 0.10 0.15 0.20
0

1,000

2,000

3,000

4,000

5,000

Epsilon of SA-RL attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(b) Hopper: SA-RL

0.00 0.05 0.10 0.15 0.20
0

1,000

2,000

3,000

4,000

Epsilon of PA-AD attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(c) Hopper: PA-AD

0.00 0.10 0.20 0.30
0

2,000

4,000

6,000

Epsilon of Robust Sarsa attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(d) Walker2d: Robust Sarsa

0.00 0.10 0.20 0.30
0

2,000

4,000

6,000

Epsilon of SA-RL attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(e) Walker2d: SA-RL

0.00 0.10 0.20 0.30
0

1,000

2,000

3,000

4,000

5,000

Epsilon of PA-AD attacker

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO
ATLA-PPO
PA-ATLA-PPO
WocaR-PPO (Ours)

(f) Walker2d: PA-AD

Figure 9: Comparisons under different attacks w.r.t. different budget ✏’s on Hopper and Walker2d.

Environment Model Natural
Reward

PGD (10 steps) MinBest PA-AD
✏=1/255 ✏=3/255 ✏=1/255 ✏=3/255 ✏=1/255 ✏=3/255

BankHeist

A2C 1228 ± 93 67 ± 14 0 ± 0 972 ± 99 697 ± 153 636 ± 74 314 ± 116
SA-A2C 1029 ± 152 1029 ± 156 976 ± 54 902 ± 89 786 ± 52 836 ± 70 644 ± 153

PA-ATLA-A2C 1076 ± 56 1075 ± 79 1013 ± 69 957 ± 78 842 ± 154 862 ± 106 757 ± 132
WocaR-A2C (Ours) 1089 ± 34 1089 ± 78 1035 ± 102 1043 ± 29 937 ± 65 1004 ± 94 879 ± 128

Table 4: Average episode rewards ± standard deviation over 1000 episodes on baselines and VaR-A2C on
BankHeist. Natural reward and rewards under different attacks with ✏ of 1/255 and 3/255 are reported. We
bold the best results for each evaluation metric. And the row for the most robust agents on all environments are
highlighted by gray.

D.3 Additional Evaluation and Ablation Studies

D.3.1 Robustness Evaluation Using Multiple ✏

To study how WocaR-PPO performs under attacks with different value of ✏, Figure 9 shows the
evaluation of our algorithms under different ✏ attacks compared with the baselines in Hopper and
Walker2d. We can conclude that our robustly trained model universally and significantly outperforms
other robust agents considering various attack budget ✏.

D.3.2 Additional Evaluation on Sample Efficiency

In Table 5, we report the performance of WocaR-PPO and all robust PPO baselines using the same
training steps. We find that under limited training steps, ATLA-PPO, PA-ATLA-PPO and RADIAL-
PPO obtain sub-optimal robustness, which suggests that these methods are more sample-hungry.
In contrast, WocaR-PPO converges under fewer steps and achieves best performance with a large
advantage, which shows the higher efficiency of WocaR-PPO.

D.3.3 Additional Results of Time Efficiency

We show the training efficiency of WocaR-PPO from three aspects including time, training iterations,
and sampling in MuJoCo environments by comparing with SA-PPO and state-of-the-art methods
ATLA-PPO, PA-ATLA-PPO, and RADIAL-PPO in Table 6. For a fair comparison, we use the same
GeForce RTX 1080 Ti GPUs to train all the robust agents.
It needs to mention that in continuous action spaces when estimating the worst-case value, we
solve minâ2Âadv

Q⇡
�
(st+1, â) using 50-step gradient descent. The running time of this 50-step

25

Environment Model Natural
Reward Random MAD RS SA-RL PA-AD

Halfcheetah
state-dim: 17

✏=0.15

ATLA-PPO 4817 ± 277 4809 ± 186 4584 ± 100 4074 ± 285 4129 ± 348 1856 ± 294
PA-ATLA-PPO 5023 ± 282 5076 ± 149 4720 ± 334 4392 ± 158 4159 ± 248 3085 ± 295
RADIAL-PPO 4683 ± 97 4625 ± 190 3674 ± 222 3529 ± 173 2893 ± 165 2197 ± 251

WocaR-PPO (Ours) 6032 ± 68 5969 ± 149 5850 ± 228 5319 ± 220 5365 ± 54 4269 ± 172

Hopper
state-dim: 11

✏=0.075

ATLA-PPO 3265 ± 342 3195 ± 275 2675 ± 332 2098 ± 398 1542 ± 639 1135 ± 289
PA-ATLA-PPO 3429 ± 196 3455 ± 315 3072 ± 478 2889 ± 258 1458 ± 274 2032 ± 244
RADIAL-PPO 3687 ± 80 3627 ± 106 2952 ± 126 1094 ± 248 1243 ± 187 1036 ± 142

WocaR-PPO (Ours) 3616 ± 99 3633 ± 30 3541 ± 207 3277 ± 159 2390 ± 145 2579 ± 229

Walker2d
state-dim: 17

✏=0.05

ATLA-PPO 2664 ± 366 2695 ± 320 2547 ± 210 2439 ± 174 2092 ± 144 1544 ± 280
PA-ATLA-PPO 3047 ± 223 3112 ± 111 2865 ± 230 2742 ± 177 2450 ± 229 1987 ± 246
RADIAL-PPO 2143 ± 153 2231 ± 89 2095 ± 121 1680 ± 193 1078 ± 115 1274 ± 117

WocaR-PPO (Ours) 4156 ± 495 4244 ± 157 4177 ± 176 4093 ± 138 3770 ± 196 2722 ± 173

Ant
state-dim: 111

✏=0.15

ATLA-PPO 4249 ± 243 4218 ± 161 4036 ± 173 3391 ± 158 2045 ± 203 -349 ± 175
PA-ATLA-PPO 4533 ± 238 4492 ± 190 4232 ± 203 3579 ± 261 2762 ± 152 1765 ± 185
RADIAL-PPO 4379 ± 230 4194 ± 52 3278 ± 138 2348 ± 232 1380 ± 145 157 ± 124

WocaR-PPO (Ours) 5596 ± 225 5558 ± 241 5284 ± 182 4339 ± 160 3822 ± 185 3164 ± 163

Table 5: Average episode rewards ± standard deviation over 50 episodes on baselines and WocaR-PPO trained
for 2 million steps on Hopper, Walker2d, Halfcheetah and 7.5 million steps on Ant (less than the best settings).
Bold numbers indicate the best results under each attack. The gray rows are the most robust agents.

Model Hopper Ant
Time (h) Steps(m) Time (h) Steps (m)

SA-PPO 3.0 2.0 8.9 10.0
ATLA-PPO 5.6 5.0 12.8 10.0

PA-ATLA-PPO 5.2 5.0 12.3 10.0
RADIAL-PPO 3.2 4.0 10.2 10.0

WocaR-PPO (Ours) 2.3 2.0 8.7 7.5

Table 6: Efficiency comparison of state-of-the-art robust training methods and WocaR-PPO in Hopper and Ant.
For Walker2d and Halfcheetah, the sampling steps are same as for Hopper and the training time is also extremely
similar. We highlight the most efficient method as gray .

gradient descent is about 1.68 seconds per batch with batch size 128. In total, this gradient descent
computation takes 18% of the total training time, thus it is not the computation bottleneck.

Without training with an adversary, our algorithm requires much less (only 50% or 75%) steps to

reliably converge. WocaR-PPO only takes less than half of time for low-dimensional environments to
converge compared to ATLA methods and RADIAL-PPO. In high-dimensional environments like
Ant, we only need 4 hours for training, while ATLA methods require at least 7 hours. When solving
harder tasks, the efficiency advantage of WocaR-PPO is more obvious.

D.3.4 Effectiveness of Worst-attack Policy Optimization

In addition to Figure 6, we show the learning curves in Walker2d and Ant in Figure 10 to verify the
effectiveness of worst-attack value estimation and worst-case-aware policy optimization. Figure 10(a)
and (d) show the natural rewards of agents during training without attacks. The actual worst-attack
rewards in Figure 10(b) and (e) refer to the the reward obtained by the agents under PA-AD attack [42]
which is the existing strongest attacking algorithm. To study the worst-case performance during
training, We evaluate PPO, SA-PPO and WocaR-PPO agents after every 20 iterations using all types
of attacks and report the worst-case rewards for each checkpoint. We also present the trend of the
estimated worst-case values during training in Figure 10(c) and (f), which are tested by the trained
worst-attack value functions Q⇡

�
.

We observe from the curves that our worst-attack critic estimation matches the trend of actual worst-
attack rewards. Also, the increases of estimated worst-attack values and actual worst-attack rewards of
WocaR-PPO show that our WocaR-RL significantly improves the robustness of agents by enhancing
worst-attack values.

26

0 200 400 600 800 1,000
0

2,000

4,000

6,000

Iterations

A
ve

ra
ge

na
tu

ra
lr

ew
ar

ds PPO (vanilla)
SA-PPO
WocaR-PPO (Ours)

(a) Walker2d: Natural Rewards

0 200 400 600 800 1,000
0

1,000

2,000

3,000

4,000

Iterations

A
ve

ra
ge

w
or

st
-c

as
e

re
w

ar
ds PPO (vanilla)

SA-PPO
WocaR-PPO (Ours)

(b) Walker2d: Worst-case Rewards

0 200 400 600 800 1,000
�4

�2

0

2

Iterations

A
ve

ra
ge

w
or

st
-c

as
e

va
lu

es PPO (vanilla)
SA-PPO
WocaR-PPO (Ours)

(c) Walker2d: Worst-case Values

0 1,000 2,000 3,000 4,000 5,000
0

2,000

4,000

6,000

8,000

Iterations

A
ve

ra
ge

na
tu

ra
lr

ew
ar

ds PPO (vanilla)
SA-PPO
WocaR-PPO (Ours)

(d) Ant: Natural Rewards

0 1,000 2,000 3,000 4,000 5,000

�2,000

0

2,000

4,000

Iterations

A
ve

ra
ge

w
or

st
-c

as
e

re
w

ar
ds PPO (vanilla)

SA-PPO
WocaR-PPO (Ours)

(e) Ant: Worst-case Rewards

0 1,000 2,000 3,000 4,000 5,000

�5

0

5

Iterations

A
ve

ra
ge

w
or

st
-c

as
e

va
lu

es PPO (vanilla)
SA-PPO
WocaR-PPO (Ours)

(f) Ant: Worst-case Values

Figure 10: Learning curves (mean ± standard deviation) of natural rewards, worst-case rewards under attacks
and estimated worst-case values during training on Walker2d and Ant for vanilla PPO (blue), SA-PPO (green)
and WocaR-PPO (purple).

3,200 3,400 3,600 3,800

500

1,000

1,500

2,000

2,500

Natural Rewards (Performance)

W
or

st
-c

as
e

R
ew

ar
ds

(R
ob

us
tn

es
s)

SA-PPO
ATLA-PPO
PA-ATLA-PPO
RADIAL-PPO
WocaR-PPO (Ours)

(a) Hopper

2,000 2,500 3,000 3,500 4,000 4,500 5,000
500

1,000

1,500

2,000

2,500

3,000

Natural Rewards (Performance)

W
or

st
-c

as
e

R
ew

ar
ds

(R
ob

us
tn

es
s)

SA-PPO
ATLA-PPO
PA-ATLA-PPO
RADIAL-PPO
WocaR-PPO (Ours)

(b) Walker2d

2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

1,000

2,000

3,000

4,000

5,000

Natural Rewards (Performance)

W
or

st
-c

as
e

R
ew

ar
ds

(R
ob

us
tn

es
s)

SA-PPO
ATLA-PPO
PA-ATLA-PPO
RADIAL-PPO
WocaR-PPO (Ours)

(c) Halfcheetah
Figure 11: Average natural rewards and worst-case rewards of WocaR-PPO with different wst and other
baselines on Hopper, Walker2d, and Halfcheetah.

D.3.5 Trade-off between Natural Performance and Robustness

As mentioned in Section 5.2, the adjustable weight wst controls the trade-off between natural
performance and robustness. To discuss the effect of wst, we train agents using WocaR-PPO in
Hopper, Walker2d, and Halfcheetah with uniformly sampled 40 different values of weight wst in
range (0, 1].
Figure 11 plots the worst-case performance and natural performance of robust training baselines and
10 agents trained by WocaR-PPO with various values of wst. We can see that when reward under
worst-case perturbations increases, it leads to a reduction of the natural reward.

The choice of the worst-case value’s weight wst is to control the trade-off between the final natural
performance and robustness. It does not affect the convergence of the algorithm. When we increase
the weight of worst-case values wst, the reward under worst-case perturbations increases, but it leads
to a reduction of the natural reward. Equally, when wst is set close to 0, the algorithm is similar to
standard training, where the policy achieves high reward under no attack, but extremely low reward
under attacks. Hence, wst is necessary for our algorithm to balance these two kinds of performance.
In practice, one can adjust wst according to their preferences to robustness and natural performance.

We report the results in Table 2 with significant better worst-case robustness and comparable natural
performance compared with baselines. WocaR-PPO can always find policies which dominate other
robust agents.

27

No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000

6,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO SA-PPO + w(s)

WocaR-PPO- w(s) WocaR-PPO (Ours)

(a) Halfcheetah
No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO SA-PPO + w(s)

WocaR-PPO- w(s) WocaR-PPO (Ours)

(b) Hopper

No Attack MaxDiff Robust Sarsa SA-RL PA-AD

0

5,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO SA-PPO + w(s)

WocaR-PPO- w(s) WocaR-PPO (Ours)

(c) Ant
No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000

6,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

SA-PPO SA-PPO + w(s)

WocaR-PPO - w(s) WocaR-PPO (Ours)

(d) Walker2d

Figure 12: Ablation performance for the state importance weight w(s) under no attack and different attacks on
Hopper, Walker2d, Halfcheetah, and Ant.

No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000

6,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

ATLA - Lreg PA-ATLA-PPO - Lreg

WocaR-PPO- Lreg WocaR-PPO (Ours)

(a) Halfcheetah
No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000
A

ve
ra

ge
ep

is
od

e
re

w
ar

ds

ATLA - Lreg PA-ATLA-PPO - Lreg

WocaR-PPO- Lreg WocaR-PPO (Ours)

(b) Hopper

No Attack MaxDiff Robust Sarsa SA-RL PA-AD

0

2,000

4,000

6,000

8,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

ATLA - Lreg PA-ATLA-PPO - Lreg

WocaR-PPO- Lreg WocaR-PPO (Ours)

(c) Ant
No Attack MaxDiff Robust Sarsa SA-RL PA-AD

2,000

4,000

6,000

A
ve

ra
ge

ep
is

od
e

re
w

ar
ds

ATLA - Lreg PA-ATLA-PPO - Lreg

WocaR-PPO- Lreg WocaR-PPO (Ours)

(d) Walker2d

Figure 13: Ablation performance for the state regularization loss Lreg under no attack and different attacks on
Hopper, Walker2d, Halfcheetah, and Ant.

D.3.6 Additional Ablation Studies

We provide full ablation experimental results for the state importance weight w(s) and the regulariza-
tion loss Lreg [54] on four MuJoCo environments.

For the state importance weight w(s), we compare the performance between the original WocaR-PPO
and WocaR-PPO without w(s) in Figure 12. Additionally, we also equip SA-PPO with w(s) to show
the universal applicability of this design. In all four MuJoCo environments, we can see that with
w(s), both WocaR-PPO and SA-PPO get boosted robustness, verifying the effectiveness of the state
importance weight.

For the state regularization loss Lreg, Figure 13 verifies that Lreg enhances the robustness of WocaR-
PPO, since the performance of WocaR-PPO drops without Lreg. On the other hand, Figure 13
also compares the performance of ATLA methods and our algorithm without Lreg (note that ATLA
methods also regularizes the PPO policies during training). The results indicate that the decisive

contribution of WocaR-PPO to robustness improving comes from the worst-attack-aware policy

optimization.

These ablation studies demonstrate that all the techniques are beneficial for robustness improvement
and further show that our worst-case-aware training performs better than training with attackers.

28

E Potential Societal Impacts

This work focuses on improving the robustness of deep RL agents, which can make RL models more
reliable in high-stakes applications. Although it is generally positive for the community to build more
robust agents, such robust agents may also bring some potentially negative impacts, including the
possibility of robust robots replacing some occupations and causing mass unemployment.

29

	Introduction
	Related Work
	Preliminaries and Background
	Worst-case-aware Robust RL
	Experiments and Discussion
	Experiments and Evaluations
	Verifying Effectiveness of WocaR-RL

	Conclusion and Discussion
	Theoretical Analysis
	Geometric Understanding of WocaR-RL
	A Closer Look at Robust RL

	Algorithm Details
	Computing Aadv by Network Bounding Techniques
	Worst-case-aware Robust PPO (WocaR-PPO)
	Worst-case-aware Robust DQN (WocaR-DQN)
	Worst-case-aware Robust A2C (WocaR-A2C)
	Extension to Action Attacks

	Experiment Details and Additional Results
	Implementation Details
	PPO in MuJoCo
	DQN in Atari

	Additional Experiment Results on Robustness Performance
	Additional Evaluation and Ablation Studies
	Robustness Evaluation Using Multiple
	Additional Evaluation on Sample Efficiency
	Additional Results of Time Efficiency
	Effectiveness of Worst-attack Policy Optimization
	Trade-off between Natural Performance and Robustness
	Additional Ablation Studies

	Potential Societal Impacts

