
Under review as a conference paper at ICLR 2022

APPENDIX

A COMPARISON OF SELF-SUPERVISED LEARNING FRAMEWORKS

We compare state-of-the-art self-supervised learning frameworks (SimCLR, SwAV, BYOL) with
SimSiam (Chen & He, 2020) in light of federated learning.

We choose SimSiam (Chen & He, 2020) because it requires a much smaller batch to perform
normally. In the centralized setting, for each method to reach an accuracy level similar to that of
SimSiam, a much larger batch size is necessary. Table 3 adopted from (Chen & He, 2020) provides
a brief comparison between all listed self-supervised learning frameworks.

method batch
size

negative
pairs

momentum
encoder 100 ep 200 ep 400 ep 800 ep

SimCLR (repro.+) 4096 X 66.5 68.3 69.8 70.4
BYOL (repro.) 4096 X 66.5 70.6 73.2 74.3
SwAV (repro.+) 4096 66.5 69.1 70.7 71.8
SimSiam 256 68.1 70.0 70.8 71.3

Table 3: (Chen & He, 2020) Comparisons on ImageNet linear classification. All are based on
ResNet-50 pre-trained with two 224×224 views in a centralized setting. Evaluation is on a single
crop. “repro.” denotes reproduction conducted by authors of SimSiam (Chen & He, 2020), and “+”
denotes improved reproduction v.s. original papers.

Another reason we prefer SimSiam (Chen & He, 2020) as the basic framework to build SSFL is that
the design of SimSiam simplifies all other baselines and also obtains a relatively higher accuracy.
Figure 7 abstracts these methods. The “encoder” contains all layers that can be shared between both
branches (e.g., backbone, projection MLP (Chen et al., 2020), prototypes (Caron et al., 2021)). The
components in red are those missing in SimSiam.

encoder

similarity

encoder

predictor

image

SimSiam

encoder

similarity &
dissimilarity

encoder

image

SimCLR

encoder

similarity

encoder

Sinkhorn-Knopp

image

SwAV

encoder

similarity

momentum
encoder

predictor

image

moving
average

BYOL

grad grad

grad grad

grad

Figure 7: (Chen & He, 2020) Comparison on Siamese architectures. The encoder includes all
layers that can be shared between both branches. The dashed lines indicate the gradient propagation
flow. In BYOL, SwAV, and SimSiam, the lack of a dashed line implies stop-gradient, and their
symmetrization is not illustrated for simplicity. The components in red are those missing in SimSiam.

SimCLR (Chen et al., 2020). SimCLR relies on negative samples (“dissimilarity”) to prevent
collapsing. SimSiam can be thought of as “SimCLR without negatives”. In every mini-batch, for

13

Under review as a conference paper at ICLR 2022

any image, one augmented view of the same image is considered to be its positive sample, and
the remaining augmented views of different images are considered to be its negative samples. A
contrastive loss term is calculated to push positive samples together and negative samples away.

SwAV(Caron et al., 2021). SimSiam is conceptually analogous to “SwAV without online clus-
tering”. SimSiam encourages the features of the two augmented views of the same image to be
similar, while SwAV encourages features of the two augmented views of the same image to belong
to the same cluster. An additional Sinkhorn-Knopp (SK) transform (Cuturi, 2013) is required for
online clustering of SwAV. The authors of SimSiam (Chen & He, 2020) build up the connection
between SimSiam and SwAV by recasting a few components in SwAV. (i) The shared prototype
layer in SwAV can be absorbed into the Siamese encoder. (ii) The prototypes were weight-normalized
outside of gradient propagation in (Caron et al., 2021); the authors of SimSiam instead implement
by full gradient computation (Salimans & Kingma, 2016). (iii) The similarity function in SwAV is
cross-entropy. With these abstractions, a highly simplified SwAV illustration is shown in Figure 7.

BYOL (Grill et al., 2020). SimSiam can be thought of as “BYOL without the momentum en-
coder”, subject to many implementation differences. Briefly, in BYOL, one head of the Siamese
architecture used in SimSiam is replaced by the exponential moving average of the encoder. As
the momentum encoder has an identical architecture to that of the encoder, the introduction of an
additional momentum encoder doubles the memory cost of the model.

SSL’s recent success is the inductive bias that ensures a good representation encoder remains consis-
tent under different perturbations of the input (i.e. consistency regularization). The perturbations can
be either domain-specific data augmentation (e.g. random flipping in the image domain) (Berthelot
et al., b; Laine & Aila; Sajjadi et al.; Berthelot et al., a; Hu et al.), drop out (Sajjadi et al.), random max
pooling (Sajjadi et al.), or an adversarial transformation (Miyato et al.). With this idea, a consistency
loss L is defined to measure the quality of the representations without any annotations.

14

Under review as a conference paper at ICLR 2022

B FORMULATION AND PSEUDO CODE FOR ALGORITHMS UNDER SSFL
FRAMEWORK

Inspired by recent advances in personalized FL and self-supervised learning, we innovate several
representative algorithms under SSFL framework. For each algorithm, we present its mathematical
formulation and its pseudo code.

B.1 PER-SSFL

For Per-SSFL, as the formulation and algorithm have already been presented in Equation 4 and
Algorithm 2, we provide a PyTorch style pseudo code in Algorithm 3 for additional clarity.

Algorithm 3: Per-SSFL PyTorch Style Pseudo Code

1 # F: global encoder
2 # H: global predictor
3 # f: local encoder
4 # h: local predictor
5

6 for x in loader: # load a mini-batch x with n samples
7 x1, x2 = aug(x), aug(x) # random augmentation
8 Z1, Z2 = F(x1), F(x2) # global projections, n-by-d
9 P1, P2 = H(Z1), H(Z2) # global predictions, n-by-d

10

11 L = D(P1, Z2) / 2 + D(P2, Z1) / 2 # global loss
12

13 L.backward() # back-propagate
14 update(F, H) # SGD update global model
15

16 z1, z2 = f(x1), f(x2) # local projections, n-by-d
17 p1, p2 = h(z1), h(z2) # local predictions, n-by-d
18

19 l = D(p1, z2) / 2 + D(p2, z1) / 2 # local loss
20

21 # distance between local and global representations
22 l = l + λ * (D(p1, P1) + D(p1, P2) + D(p2, P1) + D(p2, P2)) / 4
23

24 l.backward() # back-propagate
25 update(f, h) # SGD update local model
26

27 def D(p, z): # negative cosine similarity
28 z = z.detach() # stop gradient
29

30 p = normalize(p, dim=1) # l2-normalize
31 z = normalize(z, dim=1) # l2-normalize
32 return -(p * z).sum(dim=1).mean()

15

Under review as a conference paper at ICLR 2022

B.2 PERSONALIZED SSFL WITH LOCAL ADAPTATION (FEDAVG-LA)

FedAvg-LA apply FedAvg (Brendan McMahan et al., 2016) on the SimSiam loss LSS for each
client to obtain a global model. We perform one step of SGD on the clients’ local data for local
adaption. The objective is defined in Equation 7, and the algorithm is provided in Algorithm 4.

min
Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
‖fΘ(T (x))−Hx‖22

ó
(7)

Algorithm 4: FedAvg-LA

input :K,T, λ,Θ(0), {θ(0)
i }k∈[K], s: number of local iteration, β: learning rate

1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk from local dataset Dk, and do s local iterations
/* Optimize the global parameter Θ locally */

6 Z1, Z2 ← fΘ(t)(T (Bk)), fΘ(t)(T (Bk))
7 P1, P2 ← hΘ(t)(Z1), hΘ(t)(Z2)

8 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

, where ·̂ stands for stop-gradient
9 Send ∆

(t)
k := Θ

(t)
k −Θ(t) back to server

10 SERVEROPTΘ(t+1) ← Θ(t) +
∑
k∈S(t)

|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

16

Under review as a conference paper at ICLR 2022

B.3 PERSONALIZED SSFL WITH MAML-SSFL

MAML-SSFL is inspired by perFedAvg (Fallah et al.) and views the personalization on each devices
as the inner loop of MAML (Finn et al.). It aims to learn an encoder that can be easily adapted to the
clients’ local distribution. During inference, we perform one step of SGD on the global model for
personalization. The objective is defined in Equation 8, and the algorithm is provided in Algorithm 5.

min
Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
‖fΘ′(T (x))−Hx‖22

ó
s.t. Θ′ = Θ−∇Θ

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
‖fΘ(T (x))−Hx‖22

ó (8)

Algorithm 5: MAML-SSFL

input :K,T, λ,Θ(0), {θ(0)
i }k∈[K], s: number of local iteration, β: learning rate,M

1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk, B′
k from local dataset Dk, and do s local iterations

/* Inner loop update */

6 Θ
′(t)
k ← Θ(t)

7 for m = 0, . . . ,M − 1 do
8 Z′

1, Z
′
2 ← fΘ′(t)(T (B′

k)), fΘ′(t)(T (B′
k))

9 P ′
1, P

′
2 ← hΘ′(t)(Z

′
1), hΘ′(t)(Z

′
2)

10 Θ
′(t)
k ← Θ

′(t)
k − β∇

Θ
′(t)
k

D(P ′1,Ẑ
′
2)+D(P ′2,Ẑ

′
1)

2
, where ·̂ stands for stop-gradient

/* Outer loop update */
11 Z1, Z2 ← fΘ′(t)(T (Bk)), fΘ′(t)(T (Bk))
12 P1, P2 ← hΘ′(t)(Z1), hΘ′(t)(Z2)

13 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

14 Send ∆
(t)
k := Θ

(t)
k −Θ(t) back to server

15 SERVEROPTΘ(t+1) ← Θ(t) +
∑
k∈S(t)

|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

17

Under review as a conference paper at ICLR 2022

B.4 PERSONALIZED SSFL WITH BILEVEL-SSFL

Inspired by Ditto (Li et al., 2021), BiLevel-SSFL learns personalized encoders on each client by
restricting the parameters of all personalized encoders to be close to a global encoder independently
learned by weighted aggregation. The objective is defined in Equation 9, and the algorithm is provided
in Algorithm 6.

min
θk,ηk

E T
x∼Xk

ï
‖fθk(T (x))− ηk,x‖22 +

λ

2
‖θk −Θ∗x‖

2
2

ò
s.t. Θ∗,H∗ ∈ arg min

Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
‖fΘ(T (x))−Hx‖22

ó (9)

Algorithm 6: BiLevel-SSFL

input :K,T, λ,Θ(0), {θ(0)
i }k∈[K], s: number of local iteration, β: learning rate

1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk from local dataset Dk, and do s local iterations
/* Optimize the global parameter Θ locally */

6 Z1, Z2 ← fΘ(t)(T (Bk)), fΘ(t)(T (Bk))
7 P1, P2 ← hΘ(t)(Z1), hΘ(t)(Z2)

8 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

, where ·̂ stands for stop-gradient
/* Optimize the local parameter θk */

9 z1, z2 ← fθk (T (Bk)), fθk (T (Bk))
10 p1, p2 ← hθk (z1), hθk (z2)

11 θk ← θk − β∇θk
Å

D(p1,”z2)+D(p2,”z1)
2

+ λ
∥∥∥Θ(t) − θk

∥∥∥2

2

ã
12 Send ∆

(t)
k := Θ

(t)
k −Θ(t) back to server

13 SERVEROPTΘ(t+1) ← Θ(t) +
∑
k∈S(t)

|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

18

Under review as a conference paper at ICLR 2022

C DISTRIBUTED TRAINING SYSTEM FOR SSFL

Figure 8: Distributed Training System for SSFL framework

We develop a distributed training system for our SSFL framework which contains three layers.
In the infrastructure layer, communication backends such as MPI are supported to facilitate the
distributed computing. We abstract the communication as ComManager to simplify the message
passing between the client and the server. Trainer reuses APIs from PyTorch to handle the
model optimizations such as forward propagation, loss function, and back propagation. In the algo-
rithm layer, Client Manager and Server Manager are the entry points of the client and the
server, respectively. The client managers incorporates various SSFL trainers, including Per-SSFL,
MAML-SSFL, BiLevel-SSFL, and LA-SSFL. The server handles the model aggregation using
Aggregator. We design simplified APIs for all of these modules. With the abstraction of the
infrastructure and algorithm layers, developers can begin FL training by developing a workflow
script that integrates all modules (as the “SSFL workflow” block shown in the figure). Overall, we
found that this distributed training system accelerates our research by supporting parallel training,
larger batch sizes, and easy-to-customize APIs, which cannot be achieved by a simple single-process
simulation.

19

Under review as a conference paper at ICLR 2022

D EXPERIMENTAL RESULTS ON GLD-23K DATASET

We also evaluate the performance of SSFL on GLD-23K dataset. We use 30% of the original local
training dataset as the local test dataset and filter out those clients that have a number of samples less
than 100. Due to the natural non-I.I.D.ness of GLD-23K dataset, we only evaluate the Per-SSFL
framework. The results are summarized in Table 4. Note: we plan to further explore more datasets
and run more experiments; thus we may report more results during the rebuttal phase.

Table 4: Evaluation Accuracy for Various Per-SSFL Methods.

Method KNN Indicator Evaluation

LA-SSFL 0.6011 0.4112
MAML-SSFL 0.6237 0.4365

BiLevel-SSFL 0.6195 0.4233
Per-SSFL 0.6371 0.4467

*Note: the accuracy on supervised federated training using
FedAvg is around 47%

E EXTRA EXPERIMENTAL RESULTS AND DETAILS

E.1 VISUALIZATION OF NON-I.I.D. DATASET

(a) Sample Number Distribution (b) Label Distribution (deeper color stands for
more samples

Figure 9: Visualization for non-I.I.D. synthesized using CIFAR-10

E.2 HYPER-PARAMETERS

Table 5: Hyper-parameters for Section 5.2

Method Learning Rate Local Optimizer

SSFL (I.I.D) 0.1 SGD with Momemtum (0.9)
SSFL (non-I.I.D) 0.1 SGD with Momemtum (0.9)

Table 6: Hyper-parameters for Section 5.4.2

Method Learning Rate λ Local Optimizer

Per-SSFL (α = 0.1) 0.03 0.1 SGD with Momemtum (0.9)
Per-SSFL (α = 0.5) 0.03 0.1 SGD with Momemtum (0.9)

All experiments set the local epoch number as 1, round number as 800, batch size as 256 (batch size
32 with 8 gradient accumulation steps).

20

Under review as a conference paper at ICLR 2022

(a) Sample Number Distribution (X-axis: Client
Index; Y-axis: Number of Training Samples)

(b) Sample Number Distribution (X-axis: Number
of Training Samples; Y-axis: Number of Clients)

Figure 10: Visualization for non-I.I.D. on GLD-23K

Table 7: Hyper-parameters for experimental results in Section 5.3

Method Learning Rate λ Local Optimizer

LA-SSFL 0.1 1 SGD with Momemtum (0.9)
MAML-SSFL 0.03 1 SGD with Momemtum (0.9)
BiLevel-SSFL 0.1 1 SGD with Momemtum (0.9)
Per-SSFL 0.03 0.1 SGD with Momemtum (0.9)

F DISCUSSION

To overcome the large batch size requirement in SSFL and practical FL edge training, one direction
is to use efficient DNN models such as EfficientNet (Tan & Le, 2019) and MobileNet (Howard
et al., 2017) as the backbone of SimSiam. However, we tested its performance under our framework
and found that the performance downgrades to a level of accuracy that is not useful (less than
60%). A recent work in centralized self-supervised learning mitigates these models’ accuracy gap
by knowledge distillation, which works in a centralized setting but is still not friendly to FL since
KD requires additional resources for the teacher model. In practice, we can also explore batch size 1
training (Cai et al., 2020) at the edge, which dramatically reduces the memory cost with additional
training time.

21

	Comparison of Self-supervised Learning Frameworks
	Formulation and Pseudo Code for Algorithms Under SSFL Framework
	Per-SSFL
	Personalized SSFL with Local Adaptation (FedAvg-LA)
	Personalized SSFL with MAML-SSFL
	Personalized SSFL with BiLevel-SSFL

	Distributed Training System for SSFL
	Experimental Results on GLD-23K Dataset
	Extra Experimental Results and Details
	Visualization of Non-I.I.D. dataset
	Hyper-parameters

	Discussion

