
Table 3: Statistics of the datasets used in graph feature imputation

Dataset Nodes Train/Test Features Feature Density Edges Edge Density
Douban 3,000 123,202/13,689 1.52% 2,690 0.03%

Ciao 7,317 39,279/16,892 0.77% 111,781 0.21%
Cora 2,708 88,590/9,842 2.54% 5,429 0.15%

Citeseer 3,327 189,298/21,032 1.70% 4,732 0.08%
Amaphoto 7,650 35,640/3,958 0.69% 143,663 0.49%
Amacomp 13,752 66,150/7,350 0.69% 287,209 0.30%

Table 4: Statistics of the datasets used in graph structure generation

Datasets MUTAG PTC-MR ZINC
No.Graphs 188 344 250k
Avg.Nodes 17.9 14.3 23.1
Avg.Edges 19.8 14.7 23.9

A Proof of Proposition 1464

Proof. Based on the independent white noise model (7) and (8), we have465

x′ = Udiag(g−1c (λ))U>σ−1(ĥ)

= Udiag(g−1c (λ))U>σ−1
(
σ(Udiag(gc(λ))U>x) + ε

)
= x+ Udiag(g−1c (λ))U>σ−1(ε).

Hence,466

(x′ − x) = Udiag(g−1c (λ))U>σ−1(ε). (14)

In general, we cannot find an exact formula for the variance of a nonlinear function. Here, we467

consider a more relevant case, that is, a random variable ε is fairly closed to the mean (i.e., the468

standard error is sufficiently small), then we can approximate the nonlinear transformation σ−1(ε)469

with a first-order Taylor expansion. Under the condition σ−1(ε) ≈ σ−1(0) + ∇σ−1(0)T ε where470

σ−1(·) is a element-wise function. Plugging into (14), we have471

(x′ − x) ≈ Udiag(g−1c (λ))U>(σ−1(0) +∇σ−1(0)T ε)

x′ ≈ Udiag(g−1c (λ))U>∇σ−1(0)T ε+ Udiag(g−1c (λ))U>σ−1(0) + x
(15)

Hence, we can observe that the variance of x′ is almost identical to the variance of472

Udiag(g−1c (λ))U>∇σ−1(0)T ε in an asymptotic sense.473

Var(x′) ≈ (∂σ−1)2(0)Var(Udiag(g−1c (λ))U>ε)

≥ Var(Udiag(g−1c (λ))U>ε).
(16)

The last inequality holds as our assumption on the inverse activation function. We will elaborate more474

details and explain why it is a reasonable condition.475

Fact 2. If z is a Gaussian random variable, i.e., z ∼ N (µ,Σ), then Az ∼ N (Aµ,AΣAT).476

∆ = Udiag(g−1c (λ))U>ε

= Udiag(g−1c (λ))ξ (denote ξ = U>ε).

Here, the distribution of ξ is same as ε’s due to the orthogonal matrix U and the rotation invariance of477

the Gaussian distribution. We refer the reader to Fact 2 for details. Hence, note that y = diag(g−1c (λ)ξ,478

we have479

y ∼ N (0, σ2diag
(
[(1− λ1)−2, · · · , (1− λN)−2]

)
).

14

480

Var(x′) = Var(∆) = σ2
N∑
i=1

1

(1− λi)2
.

Since the eigenvalue of the normalized Laplacian matrix is bounded, that is, λi ∈ [0, 2],∀i ∈ [N], we481

have 1− λi ∈ [−1, 1] and 1
(1−λi)2

∈ [1,+∞). It was worthwhile mentioning that the equality holds482

only when λi = 0 or 2,∀i ∈ [N]. Therefore,483

Var(x′) = σ2
N∑
i=1

1

(1− λi)2
≥ Nσ2 = Var(ε).

Regarding the condition ∂σ−1(0) ≥ 1, we can consider three representative examples to corroborate484

our assumption, i.e.,485

• Sigmoid function; σ(x) = 1
1+e−x and its inverse operator σ−1(x) = − ln

(
1
x − 1

)
. Thus,486

we have487

∂σ−1(x) =
1

x− x2
,

and (∂σ−1(x))2 → +∞ when x goes to zero.488

• Hyperbolic tangent (Tanh) activation function; σ(x) = ex−e−x

ex+e−x . The inverse hyperbolic489

tangent is given as490

σ−1(x) =
1

2
[ln(1 + x)− ln(1− x)].

Computing its gradient, we have491

∂σ−1(x) =
1

1− x2
≥ 1.

• Leaky ReLu;

σ(x) =

{
x if x > 0
x
α if x ≤ 0,

⇒ σ−1(x) =

{
x if x > 0
αx if x ≤ 0,

where α is a constant belonging to (1,+∞). Therefore, the subgradient of σ−1 is larger or492

equal to 1.493

tu494

Remark 3. The last equality is extremely hard to hold in practice and indeed to corroborate our495

empirical finding that the inverse operator will amplify the noise.496

This concludes the proof of proposition 1. Next, we show proposition 1 still holds if GCN model is497

parameterized.498

Parameterized Model We consider499

ĥ = σ(WUdiag(gc(λ))U>x) + ε, (17)

where ε is the white Gaussian noise (i.e., ε ∼ N (0, σ2IN)). Under the condition thatW is orthogonal,500

the inverse operator admits501

x′ = Udiag(g−1c (λ))U>WTσ−1(ĥ). (18)

Therefore,502

x′ = Udiag(g−1c (λ))U>WTσ−1(ĥ)

= Udiag(g−1c (λ))U>WTσ−1
(
σ(WUdiag(gc(λ))U>x) + ε

)
= x+ Udiag(g−1c (λ))U>WTσ−1(ε).

It was worth noting that the product of orthogonal matrices is orthogonal. By the similar argument in503

Proposition 1, we can also conclude that the proposed inverse operation may introduce undesirable504

noise into the output graph.505

15

B Comparisons with Additional Baselines506

We additionally provide the comparison results of our method with three discrete matrix completion507

models: sRGCNN [29], GC-MC [4], and GraphRec [12]. We adapt the same setting as in Section508

4.1 and the results are shown in Table 5. Ours yields the smallest imputation error on all datasets509

compared with the three matrix completion models. Notice that the three matrix completion models510

are specially designed for discrete matrix completion, where ours is applicable to both continuous511

and discrete feature values.512

C Graph Autoencoder Framework513

C.1 Encoder514

Our encoder consists of two layers of Graph Convolutional Networks (GCN) [21], to produce515

smoothed representations of the input graphs.516

Convolution
H = GCN(A,X), (19)

where H ∈ RN×v denotes smoothed node representations.517

C.2 Decoder518

Our decoder consists of one layer of GDN, to produce fine-grained graphs.519

Deconvolution
X ′ = GDN(A,H), (20)

where X ′ ∈ RN×d denotes the recovered graph features.520

C.3 The loss function521

The reconstruction loss is a feature reconstruction loss.522

L = f(X,X ′), (21)

where f(·, ·) denotes a differential distance metric, e.g., f(·, ·) = MSE(·, ·), and MSE(·, ·) represents523

Mean Squared Error.524

D Detailed Model Configuration525

All the experiments are done on a single machine with 32 cores and 300G memories. We don’t use526

GPU as it involves a lot of sparse matrix multiplication.527

For graph feature imputation, We use the graph autoencoder framework specified in Appendix C.528

The recovered graph features X ′ is used to infer the potential missing features. We train our model529

using Adam optimizer with a learning rate of {0.005,0.002}. The output dimension of the first layer530

is {256,512}. The output dimension of the second layer is 128. The number of epochs is chosen531

from {100, 200}. We use full-batch size. We stack the output of the first GCN layer and the second532

GCN layer in our encoders, and use left normalization to preprocess adjacency matrix. We don’t use533

feature Dropout as it does not improve the performance. We use DropEdge [33]. We use grid search534

to choose the hyper-parameters. The selected parameters are reported in Table 6.535

For graph generation, We strictly follow the architectures of VGAE [20] and Graphite [15] and add536

one feature reconstruction loss. The overall reconstruction loss is a sum of structure reconstruction537

term and feature reconstruction term,538

log p(G|Z) = log p(A|Z) + log p(X|Z), (22)

where p(A|Z) is the default structure reconstruction term such as a simple inner product of latent539

variables in VGAE , i.e.,
∏
i

∏
j p(Aij |zi, zi). log p(X|Z) is computed with GDN and defined as540

16

Table 5: RMSE test comparison with matrix completion methods on graph feature imputation

Datasets Ciao Douban Cora Citeseer Amaphoto Amacomp
sRGCNN [29] 1.183 0.801 0.550 0.551 0.519 0.509

GC-MC [4] 1.061 0.734 0.434 0.420 0.402 0.405
GraphRec [12] 1.062 0.754 0.437 0.425 0.417 0.417

OURS 1.011 0.734 0.415 0.399 0.391 0.393

Table 6: Summary of chosen hyper-parameters on graph feature imputation

Datasets Ciao Douban Cora Citeseer Amaphoto Amacomp
Dim of the first layer 256 256 512 256 256 256

Dim of the second layer 128 128 64 128 128 128
Learning rate 0.005 0.005 0.002 0.005 0.005 0.005

Epochs 200 200 200 200 100 100
DropEdge rate 1 0.5 0.5 0.5 1 1

in Eq. 21. As both VGAE and Graphite can only deal with homogeneous edge attribute, we don’t541

differentiate bond types in ZINC dataset, i.e., we only evaluate if there is a bond between two given542

atoms. The number of epochs, initial learning rate and hyperparameters are all set to be the same543

with VGAE [20] or Graphite [15], for a fair comparison.The effect of orders of Maclaurin Series in544

GDN are reported in Table 7.545

E Derivative of Inverse Operator546

g−1c (λi) =
1

1− λi
=

∞∑
n=0

(
1

1−λi

)(n)
λi=0

n!
λni =

∞∑
n=0

(−1)nn!(−1)n

n!
λni =

∞∑
n=0

λni

where (n) denotes the n-th order derivative. Thus, Eq. 9 can be obtained as:547

Udiag(

∞∑
n=0

λn1 , . . . ,

∞∑
n=0

λnN)U> = U

∞∑
n=0

ΛnU> (23)

17

Table 7: Summary of the effect of orders of Maclaurin Series in GDN on the performance of graph
structure generation

Datasets MUTAG PTC-MR ZINC
- log p(A|Z) AUC AP log p(A|Z) AUC AP log p(A|Z) AUC AP

V
G

A
E

+
G

D
N First-order -1.002 0.738 0.464 -1.351 0.493 0.386 -0.999 0.474 0.239

Second-order -1.008 0.766 0.502 -1.356 0.559 0.443 -1.001 0.611 0.345

Third-order -1.026 0.823 0.611 -1.351 0.760 0.602 -1.006 0.858 0.611

G
ra

ph
ite

+
G

D
N First-order -1.003 0.741 0.470 -1.355 0.529 0.398 -1.001 0.478 0.241

Second-order -1.014 0.774 0.501 -1.358 0.574 0.450 -1.003 0.632 0.379

Third-order -1.024 0.818 0.608 -1.347 0.773 0.613 -0.998 0.838 0.567

18

	Proof of Proposition 1
	Comparisons with Additional Baselines
	Graph Autoencoder Framework
	Encoder
	Decoder
	The loss function

	Detailed Model Configuration
	Derivative of Inverse Operator

