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1 LEARNING CURVE OF THE MODELS

(a) CIFAR-10 (b) SVHN

(c) GTSRB (d) Tiny Imagenet

Figure 1: Training curve of the model for four datasets

1



Under review as a conference paper at ICLR 2024

Figure 1 shows the learning and loss curve of the model having architecture of WideResNet
(depth=28, widen=8) for CIFAR-10, SVHN, GTSRB, and Tiny Imagenet dataset. All the models
have reached convergence at around 1500 epoch. So, early stopping would have produced similar
results for detection performance. Keep in mind, it is necessary to continue training process for
sufficient time till the stable convergence so that trapdoors are distributed fairly all over the decision
plane.

2 ENCIRCLED SAMPLE WITH BACKDOOR

(a) 3D plot of x0 and corre-
sponding backdoors

(b) x-y (c) y-z (d) z-x

Figure 2: Figure 2a shows a 3D represantating how trap-ring is formed around x0. Figures
[2b,2c,2d] demonstrate that how well the backdoor samples are distributed in 2D while forming
trap-ring

Figure 2a shows a 3D (3 pixels) example of how we synthetic triggered data around a true data point
x0 (red star) using our scheme that uses a small trigger (1 pixel) put into random location and using
random transparency. As can be seen these synthetic data creates the intended trap-ring around the
true data.

3 DETECTION ALGORITHM

The TMM-O detection algorithm 1.
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Algorithm 1 Adversarial attack detection for offline attack generation.

1. Input :x
′← Adversarial sample,ξ← entropy threshold,ρ← poison threshold

2. Output : Boolean detect

3. x
′t

: Added trigger to x
′
, H(.) : entropy function

4. pred = argmax(fθ′ (x
′
))

5. proba = softmax(fθ′ (x
′
))

6. entropy = H(proba)

7. if pred = yTrap// Detecting attack samples that are ended up in trap
8. detect = True // Attack detected
9. else

10. if entropy > ξ // Detecting low confident attack
11. detect = True // Attack detected
12. else

13. if p(softmax(fθ′ (x
′t
)) == yTrap) < ρ // Detecting high confident ODD attacks

14. detect = True // Attack detected
15. end

16. end

4 DETECTION PERFORMANCE AT DIFFERENT ATTACK PARAMETER SETTINGS

Attack efficacy is highly dependent on the parameters of the attack function. Lower the value of ϵ,
stealthier the attack gets. However, low ϵ reduces attack effectiveness. Similarly, learning rate and
number of steps also play important role during attack. To, examine proposed detection performance
at different ϵ values, we choose few values ranging from 0.02 to 0.2 and compare with Mahalanobis,
LID and Trapdoor performance.

3



Under review as a conference paper at ICLR 2024

(a) PGDL∞ (b) FGSM

(c) CW (d) PA

(e) DF (f) AA

Figure 3: Results of adversarial attack detection using different adversarial attacks. Sub figures 3a
to 3f show the comparison between SAMMD, Trapdoor and TMM-L for various values of ϵ.

Figure 3 shows the performance comparison against six attacks, while varying ϵ. It is evident that
detection performance of our proposed methods have outperformed all mentioned SOTA method in
all type of attack settings.

5 INTERMEDIATE PERTURBATIONS OF CW ATTACK

TMM-L/LA detects intermediate classes of an ongoing attack. As we discussed earlier, any gradient
based attacks, when searching for suitable perturbation to the target class, it goes through Trapclass
region or low confident region, detecting by those live attack detectors. Figure 4 shows an example
of untargeted and targeted CW attack in progress for CIFAR-10 dataset for the target class Frog,
starting with the original image (Cat class) and then the difference between the perturbed image and
the original image in each iteration. We can see that the intermediate attack perturbations have very
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Figure 4: The original image (left) and the difference of the perturbed image and the original im-
age for 50 iterations of a untargeted and targeted attack. The signature of the Trapclass i.e. the
checkerboard pattern is present in all of them.

Figure 5: Each row in the figure shows the perturbations generated with different models under
different adversarial attacks. First column shows the trigger pattern used to train the models (for
clean model it is none), second column shows the clean sample given to the network and rest of
the columns shows the perturbations (difference between the clean and the perturbed sample) with
respect to different adversarial attacks.

strong repetitive occurrence of the trigger pattern ( in Figure 4) all over the image. Similar to the
untargated attack, our defense across all the four datasets and six different attacks.

6 VISUALIZATION OF TRIGGER IN ADVERSARIAL PERTURBATIONS UNDER
DIFFERENT TMM TRAINING TRIGGER SETTING

We stated earlier that the scattered traps enforce trigger signature in the adversarial samples gen-
erated by the attacks. Figure 5 empirically proves the same. We trained three TMM models on
CIFAR-10, having different trigger patterns e.g. 3 × 3 checkerboard, 2 × 2 square and 2 × 2 - di-
agonal triggers, as shown in the Figure 5. We have applied few adversarial attacks (PGDL∞, DF,
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FGSM, AA, and CW) to generate perturbations. We have found that stronger trigger signatures are
present in all the perturbations when producing successful attacks. These signatures are not fixed to
any single location, rather they can be found everywhere as shown in Figure 5. On the other hand,
we don’t find any specific signature patterns in the generated perturbations with the clean model.

7 TRANSFER ATTACK

Dataset PGDL∞ FGSM CW PA DF AA

GTSRB 97.61 93.08 89.34 86.15 96.37 90.43

SVHN 94.93 95.72 91.70 89.27 91.15 93.42

Cifar 10 94.52 90.47 85.16 92.18 88.52 90.66

Tiny Imagenet 88.94 93.64 87.31 90.73 90.54 91.78

Table 1: Detection of untargeted adversarial transfer attack by TMM-O

Table 1 shows the detection performance against transfer attack on all four datasets. It has been
shown that TMM-O can defend against even when the crafted samples are generated by some un-
known model.

8 ADDITIONAL ADAPTIVE ATTACK

In the main paper, we argued that to get highest attack success by the adaptive attack, an adversary
needs to know exact training trigger setting. In practice, attackers may get to know the details about
the model, constraints and detection method, but having exact knowledge of the training procedure
is very unlikely. So, we can consider adversary may not have exact trigger training patch. Proving
this, we conducted a test by changing the trigger setting. Since a checkerboard type trigger setting
implemented during TMM training, we chose a solid trigger to form xt

test in the equation 6. Table 2
displays the results of the all type of proposed detection methods.

L = CE(fθ′ (xtext +∆x), ytarget)− CE(fθ′ (xtest +∆x), yTrap) + CE(fθ′ (xt
test +∆x), yTrap (1)

Attack Detection Method GTSRB CIFAR10 SVHN Tiny Imagenet

Adaptive attack
TMM-O 99.98 100 99.75 99.99

TMM-L 100 100 100 100

TMM-LA 100 100 100 100

Table 2: Detection of adaptive attack at different environment by all types of proposed methods

9 FILTER ACTIVATION FOR TMM-O

Fig 6 shows the percentage of attacks detected by each individual filters when tested on CIFAR-
10 datasets under various targted, and untargeted attacks. As can be seen, most of the untargeted
attacks get detected by the Trapclass filter, whilst CW and PA, which strives to reduce the amount of
perturbation, get detected by the Entropy filter. In contrast, PGD attack, which allow large amount
of perturbation because of the use of L∞ bound on the norm of the perturbation get mostly stopped
by our OOD filter.
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(a) GTSRB (b) SVHN

(c) CIFAR10 (d) Tiny Imagenet

Figure 6: Activation of filters during each attacks on all four datasets.

10 ABLATION STUDY

We present ablation study w.r.t. different choices in trigger design and different choices in clean and
backdoor data ratio. These settings are tried out to examine the distributive nature of trapdoor. The
more evenly scattered those traps are, the easier it gets to trap the attacks. One way to validate this
by seeing how often attacked samples go to yTrap under untargeted adversarial attack. Thus we use
live detection method i.e. TMM-L to check the efficacy of Trigger.

10.0.1 TRIGGER PLACEMENT AND NORM VARIATION

We have chosen four different trapdoor design to analyze the performance of TMM under different
trigger settings. We (in Table 3) observed that if we vary trigger locations and use distributed trans-
parency, detection accuracy of our proposed model is the highest. It is also evident that the effect of
trigger with distributed norm is enormous when specifically compared between two settings of fixed
location, fixed norm vs fixed location, and distributed trigger.

10.0.2 BACKDOOR TO CLEAN DATA RATIO

Backdoor sample ratio in the training dataset has significant role in the performance of the proposed
method. We vary backdoor to clean ratio (Backdoor

Clean = κ) from 4
1 to 4

1 as shown in Table 4. We
have chosen κ = 3

2 in our experiments since it is giving clean accuracy as close to the Clean model
as well as high backdoor accuracy. However, we see that our model is not overtly sensitive to the
choice of the ratio.

10.0.3 ROBUST MODEL PERFORMANCE

Although we developed our training regime to contain all three components of the loss function we
saw that from purely detection point of view, if no extra robustness is required then we can ignore the
robustness component (as all the results reported above), put the trap-ring very close to the original
data manifold and get near perfect detection accuracy. However, in some situations, robustness to
certain amount of noise might be required. Table 5 shows the detection performance of our robust
model with a robustness requirement of fθ′(xtest) = fθ′(xtest + ∆x), where ∆x is a full size
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Trigger Properties TMM-L performance in %

Location Norm PGDL∞ FGSM CW PA DF AA

Fixed Fixed 20.34 33.57 11.27 0.49 19.48 30.16

Fixed Distributed 68.11 81.34 54.33 13.05 79.15 83.29

Distributed Fixed 61.20 57.31 53.28 8.93 86.21 72.63

Distributed Distributed 100 100 100 68.55 99.94 100

Table 3: Performance of TMM-L under different trigger settings on CIFAR10 dataset against un-
targeted attacks.

κ
Accuracy TMM-L performance in %

Clean Backdoor PGDL∞ FGSM CW PA DF AA
1
4

94.10 98.94 96.28 98.45 91.64 45.13 95.60 98.51
2
3

94.00 99.03 99.56 99.99 97.32 57.08 97.63 99.99
3
2

94.01 99.69 100 100 100 68.55 99.80 100
4
1

89.72 99.99 100 100 100 81.31 99.94 100

Table 4: Performance of TMM–L under different backdoor to benign sample ratio (κ) on CIFAR10
dataset against untargeted attacks.

matrix with entries sampled from uniform distribution or VMF distribution. In comparison to the
non-robust model, the detection accuracy has suffered a bit, but the robust performance remained
similar to the clean accuracy against uniform perturbations of ε = 4/255.

Figure 6 shows the percentage of attacks detected by each individual filters when tested on all
datasets, against various targted, and untargeted attacks. As can be seen, most of the untargeted
attacks get detected by the Trapclass filter, whilst CW and PA, which strives to reduce the amount of
perturbation, get detected by the Entropy filter. In contrast, PGD attack, which allow large amount
of perturbation because of the use of L∞ bound on the norm of the perturbation get mostly stopped
by our OOD filter.

Robustness Type
Accuracy in % TMM-L performance in %

Clean Backdoor Robustness PGDL∞ FGSM CW PA DF AA

Uniform-TMM 91.17 98.08 92.14 100 96.07 96.21 81.42 98.75 95.64

VMF-TMM 92.05 97.93 87.40 97.64 99.89 93.27 84.74 98.91 97.20

non-robust-TMM 94.01 99.69 71.36 100 100 100 99.89 99.95 100

Table 5: Performance of TMM-L under different types of robustness on CIFAR10 dataset against
untargeted attacks.
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