A Supplementary Text

A.1 Evaluating generative models for amorphous materials

Good generative models for amorphous materials should be able to reproduce quantitative distri-
butions of structural features and properties for these systems. Traditional validation strategies in
amorphous materials rely on coordination environments, order parameters, energy distributions, or
similar structural features that can be easily computed from the structure. Deep learning methods
often fall short of producing physically reasonable amorphous structures compared to simulation
results — exhibiting unphysical coordination environments, large deviations from expected pair cor-
relation functions, or unrealistic defects — let alone reproducing their properties or accounting for
processing parameters such as cooling rates.[18] As examples of recent work related to amorphous
materials, Yang et al. presented a forward predictive model and an inverse generative approach for
liquid electrolyte compositions,[44] though not all tasks are performed at the atomistic scale. Re-
cently, Chen et al. used a graph variational autoencoder, with energy and radial distribution function
(RDF) regularizations, to generate glass structures but only validate their generations with energy
distributions and RDFs.[[14] Furthermore, qualitative visualizations or distance/descriptor distribu-
tions are insufficient to prove whether generated structures are simultaneously accurate, novel, and
valid. The work from Yong et al.[18] thoroughly benchmarks recent generative models’ ability
to produce realistic samples of amorphous and disordered systems, highlighting that most models
cannot produce amorphous structures even at the qualitative level. In that work, structural char-
acteristics and properties relevant to the analysis of amorphous materials have not been explored,
however. Kwon et al. showed that a generative diffusion model can be used to generate amorphous
carbon matching conditioned on characterization data.[[17]] Nevertheless, the resulting structures still
showed outlier environments, and it remained unclear whether generative models can be used to gen-
erate and reproduce the properties of more complex amorphous materials such as multi-component
ones, especially when conditioned to processing parameters.

In this work, we proposed a suite of tests to validate the quality of generated amorphous structures.
As a first figure of merit, structures are evaluated according to their short- and medium-range order,
which includes pair distribution functions, bond angles, and network topology. These distributions
are commonly used to understand and analyze the structure of amorphous materials, and often cor-
related with experimental observations. As a second tier of tests, we computed the macroscopic
properties of simulated and generated structures such as their elastic tensor and plastic behavior.
These mechanical properties are highly sensitive to outlier environments, as minor unphysical fea-
tures can produce large variations in energy (see Appendix [A.7]below), thus providing an excellent
test case to assess the robustness of the generative models. Finally, we introduced an information-
theoretical metric to evaluate whether structures are sampled from similar probability distribution
of atomistic environments, which is useful to quantify novelty (see Appendix below). These
strategies are summarized in Fig. |Id of the main text.

A.2 Importance of an extra noise in denoising process

Adding a high level of extra noise during the denoising process is critical to generate valid and novel
amorphous structures. The noise magnitude o is analogous to a temperature in conventional melt-
quench molecular dynamics simulations, a connection that has been explored before in the context
of Langevin dynamics within diffusion models.[3] High o values in the beginning of the denoising
process are analogous to elevated temperatures, where atoms possess sufficient kinetic energy to
escape local minima and break structural correlations imposed by the initial state. Furthermore, the
progressive reduction of o to zero during denoising is similar to the controlled cooling process in MD
quenching. The only difference in this analogy is that the generative model can produce structures
with different cooling rates at a fixed number of steps, whereas an MD-based melt-quench process
requires long simulations to properly cool the structures. Denoising without extra noise resembles
instantaneous quenching from a liquid to a glassy state, preventing adequate structural relaxation.

Partial pair distribution function (PDF) analysis in Fig. shows that amorphous structures with
superior structural quality are obtained when extra noise is employed during the denoising process.
Importantly, when approximating the distribution of atomistic environments in the training data, the
generative model makes no consideration about the energy of the system. Sometimes, this leads to
a few outlier environments that, while rare, can be nonphysical for the simulated system, such as
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Si-O bonds shorter than 1.5 A in a-SiO, (Fig. ,b). While both approaches generate amorphous
structures with reasonable short-range order, structures generated with extra noise exhibit denser
bond pair distributions and more accurate peak intensities compared to reference simulations (Fig.
[I3k.d). Directly applying MD fine tuning process on structures generated without extra noise can
eliminate unphysical short Si—O bonds and enhance partial PDF performance; however, the second
coordination shell remains poorly reproduced (Fig. [I5p). On the other hand, the small amounts
of outlier environments in structures generated with extra noise can be readily corrected through
picosecond-long MD simulations after the denoising process and show excellent agreement with the
simulated reference (Fig. ).

As discussed in the main text and Methods, structural diversity of amorphous structures was quan-
tified using overlap scores between six independently generated a-SiO structures. Without extra
noise, overlap scores were distributed either excessively high (approaching 100%, indicating mode
collapse) or unusually low (below 45%, suggesting structural inaccuracy) as shown in Fig. [T8h.
Conversely, structures generated with extra noise exhibited consistent overlap scores around 70%,
matching nearly perfectly the balance between diversity and validity observed in simulated struc-
tures (Fig. [I8b). When compared to MD simulated reference structures, configurations generated
without extra noise showed poor correlation (overlap scores around 29%, Fig. [[9a), whereas those
with extra noise maintained consistent accuracy with overlap scores around 70% (Fig. [[9p). Al-
together, these figures of merit (PDF analysis, overlap score distributions, and structural diversity
metrics) provide evidence on the importance of using a large extra noise when generating amorphous
materials using denoiser models.

A.3 Molecular dynamics simulations

All molecular dynamics (MD) simulations were performed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software[45] (v. 17 Apr 2024). A fixed integration
timestep of 1.0 fs was used throughout all simulations.

SiO- simulations: To generate training data for the SiO, systems, we conducted MD simulations
of amorphous silica comprised of 3000 atoms across multiple cooling rates. We executed six inde-
pendent simulations at each cooling rate, maintaining the same settings while varying initial con-
figurations. We adopt the Jakse interatomic potential,[46] parametrized from ab initio calculations,
to model a-SiO,. Short-range interactions are calculated with an 8.0 A cutoff. Coulomb interac-
tions are calculated by adopting the Fennell damped shifted force model with a damping parameter
of 0.25 A~! and a global cutoff of 8.0 A. Periodic boundary conditions were applied in all three
directions during MD simulations.

All a-SiO, samples were prepared via conventional melt-quench method. Initial structures were
generated by randomly placing SiO5 molecules in cubic boxes using PACKMOL (v. 20.13.0),[47]
enforcing a 2.0 A minimum separation between molecules to prevent unphysical overlaps. Follow-
ing energy minimization, configurations underwent sequential 50 ps relaxations in the canonical
(NVT) and isothermal-isobaric (NPT) ensembles at 300 K. Complete melting was achieved with a
50 ps-long NPT equilibration at 5000 K and zero pressure, eliminating the “memory” of the initial
configuration. Subsequently, liquid systems were cooled from 5000 to 300 K under zero pressure
NPT conditions at rates of 10~1, 10°, 10%, and 10? K/ps. The obtained glass structures are further
relaxed one last time at 300 K for 100 ps in the NPT ensemble. This process follows the standards
from previous work[29] shown to reproduce multiple experimental features from a-SiOy glasses.

CuZr simulations: We adopted the published dataset from Wang et al.[42], which used a set of
optimized embedded-atom method (EAM) potentials to simulate CuZr metallic glass models.[48]
Specifically, we used two of their CusgZrso configurations, each containing 5,000 atoms, to train
our denoiser model. The potential from Cheng et al.[48] was later used to perform the short MD
refinement and the fracture test (described below) for generated CuZr structures. The post-denoising
MD simulation was 25 ps-long at the NVT ensemble, followed by a 25 ps-long simulation at the NPT
ensemble, both at 300 K.

Computation of elastic properties: the stiffness tensor C;; of the equilibrated glasses is computed
by performing a series of 6 deformations (i.e., 3 axial and 3 shear deformations along the 3 axes)
and calculating the curvature of the potential energy U:
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where V' is the glass volume, e is the strain, and ¢, j are the indices corresponding to each Cartesian
direction. All simulated configurations exhibited near-complete isotropy. Bulk modulus (K), shear
modulus (G), Young’s modulus (E), and Poisson’s ratio () are then calculated from the stiffness
tensors.

Fracture tests: fracture simulations are performed on different starting bulk configurations by de-
forming the structures along a single direction during an MD simulation. Uniaxial deformation is
achieved by imposing a constant strain rate of 10° s~! along the z direction while allowing lateral
dimensions (x and y) to relax freely under zero lateral pressure, approximating realistic uniaxial
tension conditions. The deformation process is controlled using an NPT ensemble maintained at
300 K and 1 bar. True stress is calculated from the negative z-component of the stress tensor.

A.4 Computational cost estimates

We used a single CPU core of Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz from UCLA’s Hoff-
man? Cluster to estimate the computational cost of MD simulation and denoiser generation for 3000
atoms a-SiO5. The entire MD simulation process includes initialization, melting, cooling and re-
laxation parts as detailed above, where only the cooling part is affected by the choice of cooling
rate. The denoising process (inference) consists of a total of 3000 denoising steps (2900 steps with
extra noise and 100 steps without extra noise). The trained denoiser model is also saved, loaded, and
evaluated on the same single CPU for this comparison. In practice, we used GPUs for the generative
inference process, which perform faster than using CPUs for inference of the GNNs.

To estimate the computational cost of traditional melt-quench MD simulations for large systems at
slow cooling rates, we benchmarked structures at target sizes for 25 ps. All simulations include
fixed computational overhead include 50 ps NVT initialization, 50 ps NPT initialization, 50 ps NPT
melting, and 100 ps NPT relaxation (250 ps total). The quenching process duration varies with
cooling rate, requiring 47, 470, 4,700, 47,000 and 470,000 ps for 102, 10%, 10°, 10~ L, and 102
K/ps, respectively. Total computational cost is calculated by multiplying the average time per step
obtained for a 25 ps MD simulation by the total number of steps to perform the simulation. For the
large system estimate, the cost of performing a 25 ps MD simulation of 112,848 atoms within a-
Si04 and the simulation settings described above is 4.77 CPU-h. This results on the total estimated
cost of 89,702 CPU-h for the same size under 0.01 K/ps cooling rate described in the main text.

A.5 Structural analysis

All structural features of simulated a-SiO4 structures were performed with six independent sam-
ples of 3000 atoms each. Samples are obtained either through the traditional melt-quench process,
or using the generative models. All structural properties reported in the main text (e.g., Fig.
are reported as either averages over these six samples (e.g., structural features in Fig. [Zh—) or
distributions (e.g., mechanical properties in Fig. 2{d). This allows us to perform statistically rele-
vant comparisons between generated and simulated structures by accounting for the distribution of
structures and properties in amorphous materials.

Pair distribution functions: short-range structural ordering was characterized through pair distri-
bution function (PDF) analysis. All PDFs were calculated using OVITO[49] with 100 bins between
0and 8 A.

Ring size distribution: the medium-range order structure of amorphous silica was character-
ized through ring size distribution analysis. These calculations were performed using the RINGS
package,[50] with Si—O bonds defined using a 2.0 A cutoff distance for ring identification within the
network structure, which is in agreement with the partial PDF for Si-O pairs in Fig. [Zh.

Concentration of non-bridging oxygens: we quantified the concentration of non-bridging oxy-
gens (NBOs) on generated mesoporous silica surfaces by calculating the ratio of NBO atoms to the
estimated surface area of the pore. As described in the main text, the pore morphology exhibits
density-dependent shape and distortions from ideal cylindrical structures, as illustrated in Fig.
To address this non-ideal geometry, we analyzed the radial distribution of Si and O atoms relative
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to the central simulation axis. The effective pore radius was estimated as the distance at which the
density of Si and O atoms plateaus, indicating the boundary between pore space and silica frame-
work. Whereas our generation has been performed only for the SiOy composition, NBOs are of
high relevance to applications of mesoporous silica, where they can become silanol groups in the
presence of hydrogen.

Atomic volume: We employed Voronoi analysis in OVITO[49] to compute the atomic volumes of
CuZr structures. Particle radii of 1.35 A for Cu and 1.55 A for Zr atoms are applied for analysis,
with relative face area threshold set to 1%.

Voronoi indices: Voronoi indices for CuZr structures were computed using OVITO[49] for poly-
disperse Voronoi tessellation with particle radii of 1.35 A for Cu and 1.55 A for Zr atoms. Surface
atoms occupying less than 1% of the total surface area were excluded to minimize effect from ex-
perimental measurement and structural reconstruction errors. Voronoi indices are represented using
reduced Schlaefli notation, (ng, n4, 15, n6), where n; denotes the number of polyhedral faces con-
taining ¢ edges. The polyhedral face distribution quantifies the frequency of faces with varying edge
numbers.

A.6 Information entropy and QUESTS method

Representation: the representation of atomic environments was computed as described in our pre-
vious work.[27] In summary, a number of £ = 32 neighbors was used to represent the atomic
environment, with a cutoff of 5 A. No distinction was made between element types, which is implic-
itly recovered based on the coordination environments, and thus captured in the information entropy
of the system.

Information entropy: the information entropy of descriptor distributions was computed as de-
scribed before.[27] Given a set of feature vectors {X}, their information entropy is computed as
follows:

H({X}) = f%ng [iZKh(Xi,Xj)], 7

Jj=1

where our choice of the kernel K}, is the Gaussian kernel,

X - X2
Kyn(Xi,X;) :exp<|2thH>, ®)

with a constant bandwidth & = 0.015 A~1, as studied before.[27]
We define the differential entropy dH of a data point Y with respect to a reference dataset {X} as

SH(YI{X}) = —log [2 mmx»] . ©)

i=1

Overlap: From the definition of §#, the overlap between two discrete distributions of atomic envi-
ronments {Y } and {X} is the fraction of environments Y; € {Y} with dH(Y;|{X}) < 0. There-
fore, a zero overlap between two distributions indicates that the distributions have disjoint supports,
whereas a 100% overlap indicates that the two distributions have the same support, even when the
point-wise probabilities are different. Within the context of generative models described in the main
text, a high overlap indicates that the generated structures follow the same distribution of atomic
environments, while a low overlap suggests that the structures do not share the same environments.

Units: Throughout this work, the natural logarithm was used for the entropy in Eq. (7), which scales
the information to natural units (nats).
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A.7 Sensitivity of macroscopic properties to outliers

While structures generated with the denoising process without extra noise can capture peak positions
and demonstrate reasonable agreement with simulated partial PDFs (Fig. [I3p), they fail to repro-
duce the macroscopic properties of amorphous silica. Macroscopic properties such as mechanical
properties and stress-strain behavior are quite sensitive to structural fidelity and are thus excellent
tests to the quality of generated structures. Nonphysical atomic environments resulting from im-
perfect denoising can produce unrealistic bond lengths and angles that remain nearly undetected at
short- and medium-range order (PDF, bond angle distributions, and ring size distributions such as
Fig. 2] of the main text). However, even a single structurally invalid atom can result in major devia-
tions in macroscopic properties, severely limiting the utility of generated structures for subsequent
investigations.

Figure [I6] compares stress-strain curves for structures generated under identical conditions using
four methods: without extra noise, with extra noise, and each condition followed by a short MD
equilibration (refinement). Despite very similar partial PDF performance across all samples (Fig.
[I5), their mechanical properties differ dramatically. Structures generated without extra noise fail to
exhibit realistic fracture behavior and yield strength compared to simulated references even after a
post-generation MD equilibration to reduce the occurence of outliers. Adding substantial extra noise
during the denoising stage produces much more reasonable stress-strain curves, with brittle fracture
characteristics. Both non-refined approaches exhibit residual stress due to fixed density constraints
during denoising. In contrast, structures generated with extra noise and MD refinement result in
similar stress-strain curves given the expected variability of ductility across different samples, re-
producing both yield strength and elastic modulus.

Quantitative analysis of the elastic properties further demonstrates this sensitivity. For all a-SiOq
structures, we computed the average bulk modulus (K), shear modulus (G), Young’s modulus (F),
and Poisson’s ratio (v) across simulated and generated results. Table [I] summarizes these results.
For the reference simulated structures, we obtain KX = 61.2 GPa, G = 37.1 GPa, £ = 92.4
GPa, and v = 0.247, compatible with the mechanical properties for this interatomic potential.[51]]
Generated structures without extra noise, despite exhibiting somewhat reasonable PDFs (Fig. [T3),
produce severely aberrant values: K = 166.7 GPa, G = 2.9 GPa, £ = 8.7 GPa, and v = 0.491.
The post-generation MD refinement corrects the elastic properties of generated structures, resulting
in values of K = 63.2 GPa, G = 37.5 GPa, E = 93.9 GPa, and v = 0.256. Interestingly,
although these values are close to simulated reference, the failure of exhibiting fracture behavior
(Fig. demonstrates that multiple validation approaches are essential for assessing generated
structure fidelity, and underscores the critical importance of adding extra noise during the generation
process. Adding extra noise during denoising significantly improves the properties of generated
structures, but still exist small discrepancies, leading to KX = 67.0 GPa, G = 32.6 GPa, £ = 83.6
GPa, v = 0.287. Finally, after a short MD equilibration, structures generated with extra noise
achieve excellent agreement with simulated results: K = 60.6 GPa, G = 37.8 GPa, £ = 93.8 GPa,
and v = 0.241. These findings underscore that mechanical properties provide a stringent test of
structural fidelity, revealing deficiencies that remain hidden in conventional structural analyses.

A.8 Overlap as novelty metric of amorphous structures

In the main text, we introduced the use of information theoretical quantities to measure the “nov-
elty” of newly sampled amorphous configurations. In generative models for molecules, for instance,
novel data points are molecular graphs distinct from the training set,[52} |53]] and thus can be triv-
ially computed by comparing the molecular graphs. In generative models for inorganic crystalline
materials, novelty is defined by comparing the space groups, atomic basis, compositions, and other
discrete quantities that uniquely define a crystal.[5} 6] Whereas this is not as trivial as in the case of
molecules and can lead to deviations in the assignment of “novelty” of a crystal,[54] it still allows
for quantitative comparisons of novelty in crystal structure generation.

However, in contrast to crystalline structures or molecular graphs, novelty is challenging to define
in the amorphous space. Even amorphous materials obtained from identical simulation conditions
will not be identical unless they use exactly the same initial configuration and random seeds, leading
to an ill-defined concept of “novelty” in the amorphous materials space. Thus, analyzing whether
a generative model can approximate the data distribution and produce new samples requires mea-
suring probabilities in the data domain. To do that, we quantified the similarity between amorphous
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configurations using an information-theoretical method. Specifically, we computed a probability
distribution over environments for a-SiOq structures using information theory,[27]] and evaluated the
similarity between distributions using an information-theoretical overlap score. This comparison be-
tween distributions resembles the Fréchet Inception Distance in generative adversarial networks, [28]]
which accounts for novelty in terms of distribution statistics rather than point-wise metrics. As dis-
cussed in the main text, we propose that the overlap of distributions of atomic environments can
provide insights on the “novelty” of amorphous structures. These overlaps are computed per pair of
structures, and thus can be depicted as a non-symmetrical matrix, as P(A|B) # P(B|A). Figure
shows how these matrices look like when six a-SiOq structures are compared against other six
structures. The diagonal of Figs. [[7a,b indicate that the overlap of a structure with itself is 100%,
as expected. Off-diagonal elements show that simulated a-SiOy samples (“Sim | Sim”) exhibited,
on average, 75% overlap with each other despite deriving from the same processing condition, with
narrow variability between the overlaps (Fig. [I7b). This result shows that, for 3000-atom systems
sampled in our simulations, about 75% of the environments are consistently sampled, and 25% envi-
ronments are usually considered “new” even among deterministic simulations. Similarly, generated
samples showed 70% overlap with each other (“Gen | Gen” in Fig. ). This overlap indicates that
the generative model is capturing both the information relevant to describe an amorphous state and
the approximate expected novelty in the amorphous states.

To test for mode collapse, we also computed the overlap between the distribution of generated
environments and simulated ones (“Gen | Sim”), shown in Fig. . If the model displayed a
mode collapse and only learned to reproduce the training data, this overlap would be close to 100%.
On the other hand, a model that consistently produces unphysical data points would exhibit very
low overlap with the simulated structures even when the “Gen | Gen” overlap is high. Finally, a
model that perfectly reproduces the distribution of simulated data should exhibit an overlap close to
75%. In our case, the overlap between the generated and simulated structures was approximately
70%, thus demonstrating that our generated a-SiO5 samples maintain excellent structural fidelity
while preserving appropriate configurational diversity. Figure[2g of the main text summarizes these
findings by comparing the distribution of overlaps.

A.9 Information theoretical analysis of conditionally generated silica glasses

Given the known relationships between free volume, configurational entropy, and cooling rates in
glasses,[30,55] we used our information entropy approach as a surrogate of configurational entropy
for glassy materials.[27] As explained in Section[A.8] this method computes an information entropy
of distributions of atomic environments and thus translates atomistic systems into probability dis-
tributions. Within glassy materials, even at constant density, input cooling rates should be able to
steer the final generated structure to different states containing different distributions of atomistic
environments, and thus different values of configurational entropy.[56]] In particular, rapid cooling
produces high-energy states with incomplete structural relaxation, leading to glasses with more di-
verse local atomic motifs compared to slowly cooled counterparts, which is quantified by a higher
information entropy. The relationship between information entropy averaged across six generated
structures, cooling rate, and density of generated structures is shown in Figure [3p of the main text.
The results confirm that higher information entropy is achieved for higher cooling rates, even at
constant densities, validating the model’s ability to produce conditional generation of cooling rates.
For generated a-SiOy samples at the right densities (Fig. @D, average information entropy values
were 6.87, 6.70, 6.53, and 6.43 nats for cooling rates of 10%, 10!, 10°, and 10~ K/ps, respectively.
These results are in excellent agreement with the average information entropy values of 7.01, 6.76,
6.58, and 6.43 nats for the reference simulated structures.

A.10 Effect of cooling rate on simulated and generated properties

MD simulations are widely employed to study glass structure and properties, yet their inherent
limitation to short timescales imposes unrealistically fast cooling rates on simulated structures.[29]]
This constraint makes it challenging to provide a one-to-one comparison with experimental glasses
processed under typical laboratory conditions. In simulations of a-SiOg, high cooling rates typically
introduce spurious structural defects, though bulk structural characteristics remain relatively stable
despite thermal history. Conversely, properties such as density and thermal expansion coefficients
exhibit strong dependence on cooling rate. Since our denoising approach generates structures at
fixed density (i.e., number of particles and volume), we developed a regression model that enables
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us to specify the density as a function of cooling rate (Fig. [I4). Within the range of cooling rates of
interest, simulated amorphous silica densities are reasonably linear with the logarithm of the cooling
rate, simplifying the determination of initial densities for denoising. Although the density of silica
does not follow a linear trend across a wider range of cooling rates, [24] they are valid within
our study and simplify the analysis of model generalization. The post-denoising MD equilibration
employs bé)th NVT and NPT ensembles, but the latter typically only increases the density by around
0.01 g/lem®.

Figure [20|illustrates how the information entropy changes at the final steps of conditional denois-
ing across different cooling rates. Following the methodology described in the Methods section,
entropy values remain approximately 8.0 nats before step 2200, reflecting the maximum possible
entropy with a system with 3000 atoms (In 3000 = 8.0).[27]] As the noise is progressively lowered
due to the noise schedule, the information entropy of the system decreases and structures develop
local ordering, with slower cooling rates leading to lower final entropy values, all consistent with
simulated trends.

Validation of structures as a function of cooling rate employs mean Si—O-Si bond angles and me-
chanical properties, including Young’s modulus (Fig. [6)), bulk modulus (Fig. [7), shear modulus (Fig.
and Poisson’s ratio (Fig. [0) across different cooling rates. Generated structures accurately capture
Si—O-Si bond angle trends with respect to cooling rate, demonstrating excellent agreement in both
interpolation regions (0.3, 0.5, 3, 5, 30, and 50 K/ps) and “generalization” domains, i.e., targeted
cooling rates outside of the interval of [10~*, 10%] K/ps. Mechanical properties, which exhibit high
sensitivity to structural accuracy (see Appendix above), remain physically consistent across
all cooling rates for generated samples. On the other hand, outliers, such as structures generated
without extra noise (Fig. [[5h), exhibit aberrant elastic properties (Figs[6H9), despite having similar
partial PDFs compare to simulated samples. This confirms that our conditioned structure generation
produces structurally valid amorphous configurations across a range of cooling rates.

A.11 Size and shape effects in fracture of amorphous silica

Despite known variability in simulated plastic properties such as strength, generated structures con-
sistently lead to stress-strain curves with good approximation of the elastic regime and ultimate
tensile strength of the simulated material. This is true even at large length scales, when cracks are
strongly influenced by structural outliers. Moreover, larger generated structures exhibit an increas-
ingly brittle behavior, with substantial reduction in ductility from structures with 3,000 and 30,000
atoms, consistent with past experimental results.[57]] Figure [12|shows the stress-strain curves, aver-
aged from six independent tests, for the fracture of generated cubes (L,/L, = 1.0) with system sizes
ranging from 3,000 to 30,000 atoms. Given the larger aspect ratio of the generated samples com-
pared to cubic structures in Fig. [I2] brittle fracture is observed at lower strains in Fig. fh. This agrees
with previous studies stating that the length along the deformation axis is the most important factor
in minimize boundary effects and provide adequate volume for realistic crack propagation.[57]]
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Table 1: Average mechanical properties (bulk modulus K, shear modulus GG, Young’s modulus F,
and Poisson’s ratio v) of a-SiO; structures for different structure generation methods. All values
are in GPa except for v (dimensionless). Errors correspond to the standard deviation of properties
across six generated and simulated samples. Samples generated with extra noise and MD refinement
exhibit the exact distribution of elastic properties of the simulated reference configurations.

Method K (GPa) G (GPa) FE (GPa) v

Generated (no extra noise) 166,782 29403 8.7+ 1.1 0.491 £ 0.001
Generated (no extra noise) + MD refinement 6324+21 3754+23 939445 0.256+0.016
Generated (with extra noise) 67.0+88 326+43 83.6+8.7 0.287+£0.042
Generated (with extra noise) + MD refinement 60.6 3.1 37.8 £0.8 938+ 14 0.241 +0.014
Simulated reference 61.2+29 37.1+£30 924+56 0.247+0.025
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Figure 6: Young’s modulus of simulated and generated a-SiO, samples across different cooling
rates. The moduli are highly sensitive to outliers, yet the denoiser is able to generate structures with
accurate Young’s moduli compared to simulations, even outside the training domain (10~2 and 103
K/ps). The results of structures generated without adding extra noise demonstrate that high fidelity
structures are necessary to reproduce reasonable elastic property.
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Figure 7: Bulk modulus of simulated and generated a-SiO» samples across different cooling rates.
The moduli are highly sensitive to outliers, yet the denoiser is able to generate structures with accu-
rate bulk moduli compared to simulations, even outside the training domain (10~2 and 103 K/ps).
The results of structures generated without adding extra noise demonstrate that high fidelity struc-
tures are necessary to reproduce elastic properties.
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Figure 8: Shear modulus of simulated and generated a-SiO5 samples across different cooling rates.
The moduli are highly sensitive to outliers, yet the denoiser is able to generate structures with accu-
rate shear moduli compared to simulations, even outside the training domain (10~2 and 10% K/ps).
The results of structures generated without adding extra noise demonstrate that high fidelity struc-
tures are necessary to reproduce elastic properties.
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Figure 9: Poisson’s ratio of simulated and generated a-SiO, samples across different cooling rates.
The elastic properties are highly sensitive to outliers, yet the denoiser is able to generate structures
with accurate Poisson’s ratios compared to simulations, even outside the training domain (10~2 and
103 K/ps). The results of structures generated without adding extra noise demonstrate that high
fidelity structures are necessary to reproduce elastic properties.
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Figure 10: Mean Si—O-Si bond angle of a-SiO; structures as a function of cooling rate for simulated
and generated samples. Each data point represents the average of six independent structures. The
generated samples accurately reproduce the cooling rate dependence observed in simulated struc-
turg,s, with correct trends maintained even for cooling rates outside the training domain (10~2 and
10° K/ps).

simulations, Lz/Lx = 1.0, 3000 atoms
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Figure 11: Stress-strain curves from simulated a-SiO5 structures under different cooling rates show
that slower cooling rate leads to a more brittle behavior. The initial structure was a cube with a
total of 3000 atoms, and the fracture simulation was performed as described in the Methods. These
results show that the ductility of the glassy system is high at this small scales, in contrast with results
at large scales.
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Lz/Lx = 1.0, 1 K/ps
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Figure 12: Stress-strain curves show that generated a-SiO» structures (solid lines) recover the ex-
pected trends of elastic and plastic deformation behavior across length scales, with more ductile
fracture at smaller length scales. The stress-strain curve of a simulated a-SiOq structure with 3000
atoms is shown with a dashed line. The initial simulation box was a cube (L, /L, = 1).

Initial wall density 2.30 g/cm?

Estimated OSI- density 1.84/nm? 2.01/nm? 2.18/nm?

Figure 13: Mesoporous a-SiO2 structures generated by the denoiser model at varying initial wall

densities. All structures are generated from the same initial geometry and processing conditions.
Higher wall densities result in correspondingly denser non-bonding oxygen groups on pore surface.
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Figure 14: Densities of simulated a-SiOy structures and target densities across different cooling
rates. Target densities are determined based on a linear regression model valid with simulated den-
sities and extended to 0.01 and 1000 K/ps.
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Figure 15: Comparison of partial pair distribution functions g(r) between simulated and generated
a-Si0, for cases: a, generated without adding extra noise, b, generated without adding extra noise,
followed by MD refinement, ¢, generated with extra noise, and d, generated with extra noise and
MD refinement). All cases demonstrate that generated configurations reproduce good structures
according to structural quality metrics. Adding extra noise and fine tuning with MD removes most
nonphysical behaviors (such as short Si—O pairs) and give accurate peaks for PDFs without intensity
decreases.
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Figure 16: Stress-strain curves of simulated a-SiO structure (dashed line) and generated structures
(solid lines). Generated structures with extra noise and fine tuning show the best agreement com-
pared to simulated results in terms of strength and ductility. Generated structures with extra noise
show reasonable agreement compared to simulated result, but overestimate the stress at low strain
and show more ductility. Generated structures without extra noise, even with fine tuning process,
fail to reproduce the stress-strain behavior, showing a complete ductile behavior and underestimate
the ultimate strength. All atomic structures were cube (L, /L, = 1) with 3000 atoms, and generated
with a target cooling rate of 1 K/ps.
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Q  Overlap (generated | generated) (%) b Overlap (simulated | simulated) (%) C Overlap (generated | simulated) (%)

1 K/ps cooling rate 1 K/ps cooling rate 1 K/ps cooling rate
1 70 70 70 70 70 1 76 7 76 5 7 o7 ¢! 71 71 7 7
2 7 100 7 7 n 70 2 7 100 7 i i 7 2 7 7 n 7 7 7
369 70 100 6 69 69 3.7 8 100 77 77 7 370 n 70 70 70 0
4 7 7 7 100 7 7 4 7 7 7 100 73 73 4 7 7 7 7 7

5- 68 69 68 68 100 68 5- 74 74 72 74 3 5- 69 69 68 69 69 68
6- 70 71 69 70 70 6- 77 78 76 77 77 100 6- 71 71 70 70 70 70

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Figure 17: Overlap score matrices for a, generated | generated, b, simulated | simulated, and ¢, gen-
erated | simulated a-SiO5 structures. Each matrix computes the overlap scores between two series
of six independent simulations or generations. High overlap values indicate strong structural sim-
ilarities. The results show two main results: (1) the distribution of generated atomic environments
is very similar to the ones obtained from MD simulations, showing that the model produces valid
amorphous structures; and (2) the generative model does not simply “copy-and-paste” the known
amorphous structures, and instead produces novel configurations, with a novelty rate nearly identi-
cal to the ones obtained from simulations. All structures are prepared with 3000 atoms and under 1
K/ps cooling rate.

Overlap (%) Overlap (%)
A Generated structures without extra noise Generated structures with extra noise
1 26 ﬂ 27 43 1 100 69 69 70 69 69
2 26 88 27 43 2- 69 100 69 69 68 69
3- 27 27 1 27 34 27 3- 70 70 100 69 69 69
4 ﬂ 27 27 44 4- 70 70 70 100 69 70
5- 27 27 35 27 28 5- 66 66 66 66 100 65
6- 43 43 28 44 27 100 6- 69 69 69 68 68 100
1 2 3 4 5 6 1 2 3 4 5 6

Figure 18: Overlap score matrices for generated a-SiOs structures a, without and b, with extra noise
during the diffusion model. High overlap values indicate structural similarity, while low values
indicate diversity. Without extra noise, structures show variable similarity. For instance, samples
1, 2, and 4 generated without noise are overly similar to each other, indicating a mode collapse
into a single configuration. On the other hand, others differ substantially, indicating that the right
distribution of environments is not captured. When extra noise is added, structures exhibit more
consistent similarity across all samples.
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d Generated without extra noise b Generated with extra noise
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Figure 19: Overlap score matrices for generated against simulated a-SiOq structures a, without and
b, with extra noise during generation. High overlap values indicate that the distribution of envi-
ronments is similar. Generated samples without extra noise are mostly dissimilar to the simulated
samples. On the other hand, the samples generated with extra noise are nearly as similar to simulated
ones as simulated samples are to themselves.
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Figure 20: Information entropy of generated a-SiO» structures sampled along the denoising process
with different target cooling rates. The denoising process was the same across the different condi-
tions. The maximum information entropy that can be obtained for a system of this size with 3000
atoms is In 3000 = 8.0 nats.
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