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A APPENDIX

A.1 RELEVANCE OF THE LPL LOSS

LPL as an image-space projection penalty. In the following, we interpret LPL in the simple setting
where the decoder is approximated by a linear mapping F d

β (z) = x̂ = Az.

Under the DDPM paradigm, for latent diffusion, a neural network is trained to model the reverse pro-
cess q(zt−1|zt). Under this setting, training is conducted by optimizing the KL divergence between
the true reverse process and the predictor that is modeled using a neural network:

Lt−1 = Eq [DKL (q(zt−1|zt, z0) ∥ pΘ(zt−1|zt))] . (4)

Taking into account the global objective which is image generation, we argue that the accuracy of
the sampling steps should be measured in image space and not in latent space, this means putting
more emphasis on obtaining ℓ2-optimal reconstructions in image space rather than in latent space.
Such a constraint can be imposed in the form of a penalty term that is added to the training objective:

Lpen
t−1 = Eq [DKL (q(xt−1|xt,x0) ∥ pΘ(x̂t−1|x̂t))] . (5)

Following DDPM Ho et al. (2020) notation, the ground truth and predicted forward process posterior
distributions are given by:

q(xt−1|xt,x0) = N
(
xt−1; µ̃µµt (xt,x0) , β̃tI

)
(6)

pΘ(x̂t−1|x̂t) = N
(
x̂t−1;µµµΘ(xt, t), σ

2I
)
. (7)

In this formula, we can introduce the linear mapping to observe the latent variables instead.

q(xt−1|xt,x0) = N
(
xt−1;Aµ̃µµt(zt, z0), β̃AA⊤

)
(8)

pΘ(x̂t−1|x̂t) = N
(
x̂t−1;AµµµΘ(zt, t), σ

2AA⊤) . (9)

Subsequently, eq. (5) can be developed using the closed form of KL divergence between two Gaus-
sian distributions:

Lpen
t−1 =

1

2
Eq

[
log

|σ2|
|β̃t|

+ (A(µ̃µµt −µµµΘ))
⊤σ−2

(
AA⊤)−1

(A(µ̃µµt −µµµΘ)) +

(
σ2

β̃t

− 1

)
Tr {I}

]
(10)

Lpen
t−1 =

1

2σ2
Eq

[(
A(µ̃µµt −µµµΘ)

)⊤ (
AA⊤)−1 (

A(µ̃µµt −µµµΘ)
)]

+ C. (11)

An upper bound for this term can be obtained by taking the largest eigenvalue of the pseudo-inverse(
AA⊤)−1

.

Lpen
t−1 ≤ 1

2σ2
λmax

((
AA⊤)−1

)
Eq

[
∥A(µ̃µµt −µµµΘ)∥22

]
+ C. (12)

From this equation, the image-level penalty can be interpreted as equivalent to optimizing the re-
construction between the real image and the decoded latent prediction ∥Aẑ0(zt, t; Θ)− x0∥22.

In the more general case, where the decoder is not a linear mapping, we can use a first order Taylor
expansion to obtain a linear approximation, assuming that z0 and ẑ0 are close enough, which is
reasonable for earlier timesteps.

ẑ0(zt, t; Θ) = D(zt, t; Θ) = z0 + σzt
n, (13)

where σzt
n is small compared to z0.

x̂0(zt, t; Θ) = F d
β (ẑ0) = x0 + σzt

∇z0
F d
β (z)

⊤n. (14)

Which brings us back to the linear case that was tackled above. Consequently, for earlier timesteps,
LPL loss can be interpreted as an image space penalty that pushes the forward process posteriors to
be more accurate in images space rather than in latent space.
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A.2 LATENT STRUCTURE

Because of the underlying structure of the latent space, certain errors can have much more detri-
mental effects to the quality of the decoded image than others. We illustrate this in Figure 11 by
comparing the generated image after interpolating the encoded latents to different resolutions then
back to its original resolution before decoding them. While these different transformations yield
similar errors in terms of MSE, especially in RGB space, the interpolation algorithm becomes cru-
cial when working in the latent space.

Bi
lin

ea
r (

RG
B)

s=2.0 s=1.3 s=1.2 s=1.1 s=1.0 s=0.95 s=0.9 s=0.8

Ne
ar
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t

MSE=0.00 MSE=18.41 MSE=18.51 MSE=18.51 MSE=0.00 MSE=18.74 MSE=19.45 MSE=20.31

Bi
lin
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r

MSE=1.88 MSE=3.56 MSE=3.17 MSE=3.05 MSE=0.00 MSE=4.75 MSE=6.89 MSE=6.44

Bi
cu

bi
c

MSE=0.01 MSE=2.38 MSE=1.57 MSE=1.22 MSE=0.00 MSE=3.77 MSE=7.56 MSE=6.84

Figure 11: Influence of interpolation artefacts on latent reconstruction. We downscale the image
by a factor of 1/s before upscaling back to recover the original resolution. From top to bottom:
bilinear interpolation in pixel space, nearest in latent space, bilinear in latent space and bicubic
interpolation in latent space.

An illustration of this effect is presented in Figure 11 where we degrade the quality of the latents by
performing an interpolation operation to downsize the latents (when s < 1) followed by the reverse
operation to recover latents at the original size, such a transformation can be seen as a form of lossy
compression where different interpolation methods induce different biases in the information lost.

By examining the reconstructions from the latents, we cannot conclude that there is a direct rela-
tionship between the MSE with respect to the original latent and the decoded image quality. While
nearest interpolation results in the highest MSE, the reconstructed images are more perceptually
similar to the target than the ones obtained with bilinear interpolation. Similarly, while the bicubic
interpolation with s = 1.3 achieves an MSE of 2.38, it still results in better reconstruction than the
bilinear interpolation where s = 2.0 which achieves a lower MSE error of 1.88.

From this analysis, we see that certain kinds of errors can have more or less detrimental effects on
the image generation, which go beyond simple MSE in the latent space.

Another experiment illustrating the irregularity of the autoencoder’s latent space is given in Fig-
ure 12. In this experiment, we select certain pixel in latent space to which we add a slight random
noise (that is half the variance of the latents), we afterwards reconstruct the image from the per-
turbed latent. What we can see is that depending on the perturbed region, the error in image space
can differ significantly. Most notably, we uncover many cases where masking a region in latent
space can degrade the reconstruction quality over the whole image. This also showcases that certain
high-level information can be contained in certain spatial regions of the latents while others play a
relatively less important role.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Original Perturbation region 1 Reconstruction 1 Image Space Error 1 Perturbation region 2 Reconstruction 2 Image Space Error 2

0.5

1.0

1.5

2.0

2.5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.05

0.10

0.15

0.20

0.25

0.2

0.4

0.6

0.8

1.0

1.2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

Figure 12: Illustration of the irregularity of the SD AE. Certain regions of the image induce a
global error in the image and higher error norm, while the same perturbation in other locations in
the image results in much lower and localized error.
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Figure 13: Example of feature maps from the autoencoder’s decoder. The presence of outliers
makes the underlying feature representation difficult to exploit. l refers to the block index, while c
is the channel index within the block. Top row: l = 4, c = 2, bottom row: l = 4, c = 8.

A.3 OUTLIER DETECTION

At deeper layers of the autoencoder, some layers have aretfacts where small patches in the feature
maps have a norm orders of magnitude higher than the rest of the feature map. These aretefacts
have been detected consistently when testing the different opensource autoencoders available online,
which include the ones used in our experiments1, as well as others.2

Outlier detection. When inspecting the decoder features we find artefacts at decoder’s deeper
layers. Particularly, in some cases a small number of decoder activations have very high absolute
values, see Figure 13. This is undesirable, as such outliers can dominate the perceptual loss, reducing
its effectiveness. To prevent this, we use a simple outlier detection algorithm to mask them when
computing the perceptual loss. See the supplementary material for details.

1https://huggingface.co/stabilityai/sdxl-vae, and https://huggingface.co/
cross-attention/asymmetric-autoencoder-kl-x-1-5

2https://huggingface.co/CompVis/stable-diffusion-v1-4, and https:
//huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-2.
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def remove_outliers(features , down_f=1, opening=5,
closing=3, m=100, quant =0.02):

opening = int(ceil(opening/down_f ))
closing = int(ceil(closing/down_f ))

if opening == 2:
opening = 3

if closing ==2:
closing = 1

# replace quantile with kth (nearest interpolation ).
feat_flat = features.flatten(−2, −1)

k1 = int(feat_flat.shape[−1]*quant)
k2 = int(feat_flat.shape[−1]*(1−quant))

q1 = feat_flat.kthvalue(k1 , dim=−1).values [..., None , None]
q2 = feat_flat.kthvalue(k2 , dim=−1).values [..., None , None]

# Mask obtained by thresholding at the upper quantiles.
m = 2*feat_flat.std(−1)[..., None , None]. detach ()
mask = (q1−m < features)*(features < q2+m)

# dilate the mask.
mask=MaxPool2d(

kernel_size=closing ,
stride=1,
padding =(closing−1)//2

)(mask.float ()) # closing

mask=(−MaxPool2d(
kernel_size=opening ,
stride=1,
padding =(opening−1)//2

)(−mask )). bool() # opening

features = features * mask
return mask , features

Algorithm 1: Outlier detection algorithm. The algorithm works by setting a threshold according
to the upper 0.02 quantile of the activations in the feature map. Because the outliers are orders of
magnitude away from the rest, we shift the threshold by an offset m that guarantees that only the
outliers are thresholded while no activations are masked when no outliers are present. Subsequently,
we smooth out the predicted mask using a dilation operation that eliminates small noise in the mask.

To ensure easy adaptability to different models, we propose a simple detection algorithm for these
patches and mask them when computing the loss and normalizing the feature maps. Our algorithm is
based on simple heuristics and is not meant to provide a state-of-the-art solution for outlier detection.
Rather, it is proposed as a temporary patch for the observed issues, while the long-term solution
would be to train better autoencoders that do not suffer from these outliers.

Detection algorithm. We empirically observe that the activations for every feature map approxi-
mately follow a normal distribution, while the outliers can be identified as a small subset of out-of-
distribution points. To identify them, we threshold the points with the corresponding percentile at
δo and 1 − δo percentiles. Since computing the quantiles can be computationally expensive during
training, we do it using nearest interpolation, which amounts to finding the k-th largest value in
every feature map where k = δo ×Hf ×Wf (or k = (1− δo)×Hf ×Wf for the maximal values).
To remove small false positives that persist in the outlier mask, we apply a morphological opening,
which can be seen as an erosion followed by a dilation of the feature map. Pseudo-code for the
outlier detection algorithm is provided in Alg. 1.
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Loss FID (↓) throughput (img/s) (↑) % Mem/GPU (↓)

ℓ2 4.88 16.6 42.5

E-LatentLPIPS 7.71 13.3 67.5

E-LatentLPIPS† 7.19 15.8 43.5

Self-Perceptual8 5.82 13.3 70.6
Self-Perceptual16 13.40 11.4 75.1
Self-Perceptual28 10.43 9.2 82.4

LPL 3.79 9.6 74.3

Table 5: Comparison with different perceptual losses in latent space. For Self-Perceptual, we
note the depth at which the loss is computed as a subscript. † corresponds to a perceptual loss that
is only applied for later timesteps, similar to LPL. We report FID training throughput and memory
usage per GPU (in %) for the same batch size. Throughput and memory measurements are taken
during the post-training stage, i.e. with perceptual losses applied in all iterations.

A.4 PERCEPTUAL LOSSES IN DIFFUSION

In this section, we provide a comparison to recent related works that incorporate some form of
perceptual objective into diffusion model training.

E-LatentLPIPS. Kang et al. (2024), train a classifier in the autoencoder latent space to define an
LPIPS metric. While their models are only tested for distilling diffusion models into GANs, we
experiment with using them as training losses and compare their performance with LPL. To this
end, we only include the ℓ2 objective and do not apply any augmentations to the inputs for the loss.

Self-Perceptual. Lin & Yang (2024), develop a Self-Perceptual loss where the intermediate features
of the denoiser network are used as basis for the perceptual loss that is used during training. this loss
is not directly applicable in our use-case as it was developed on a UNet model, which shows a signif-
icantly different structure from the state-of-the-art DiT networks. Most notably, the UNet encoder
progressively downsamples the feature maps before upsampling them again to their original size,
corresponding blocks of the same resolution are linked with skip connections. Hence, the deepest
encoder block results in a semantic map description that can be obtained relatively efficiently. On
the other hand, for DiT-type models, the successive blocks all share the same resolution, making it
unclear as to which block is optimal for this use-case. We note, however, that Lin & Yang (2024)
report best performance when using the standard ℓ2 loss with classifier-free guidance, i.e. better than
when using their Self-Perceptual loss. Therefore its practical usefulness remains unclear. To evalu-
ate this method with state-of-the-art DiT-type architectures, we conduct experiments where the loss
is computed at different depths of the network and compare the results with our LPL.

Comparison. To ensure a fair comparison, we set the weight of the loss such as the variance of the
perceptual loss is 0.1 of the variance of the ℓ2 loss when ℓ2 loss is also part of the training objective.
Results are summarized in Table 5.

In terms of training throughput (using the asymmetric auteoncoder at 512 resolution), we observe
a decrease of approximately 42% when training with LPL vs. when not training with it, this is sig-
nificant but is still manageable considering it only applies at later training stages. In comparison,
Self-Perceptual with the middle layer applied to MMDiT reduces throughput by 31%, such effect
should get larger with larger models, making the use of this method prohibitive for very large trans-
former architecture, especially if used in conjunction with EMA, in which case three different copies
of the model should be kept in memory. E-LatentLPIPS on the other hand is more efficient (20%
throughput reductions) as it uses lightweight models that operate at low resolutions.
In terms of performance, none of the models that we compare with achieve better FID scores than
the baseline. For Self-Perceptual, we observe the highest degradation when using the mid-layer
while shallower layers perform the best, although the impact on training performance is negative
when compared to the ℓ2 baseline. For E-LatentLPIPS, we also observe a degradation of FID by
almost 3 points when comparing with the baseline.
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Re-weighting FID (↓)

Baseline 4.88

Baseline† 5.43
min-SNR 5.04
LPL 3.79

Table 6: Influence of timestep reweighting strategy. Compared to dif-
ferent timestep reweighting strategies, LPL finetuning achieves significant
improvements while timestep reweightings result in degraded performance
compared to the baseline epsilon weighting. † corresponds to the reweight-
ing from eq. (15).

Method Batch Size/GPU (T)FLOP/it Training iterations (k) FID (↓)

Baseline 25 108.347 122.5 4.62
with LPL 16 106.581 82.5 3.84

Table 7: Comparisons for the
same time budget. All models
are trained with maxed-out batch
size for 48 hours using two A100
nodes per experiment.

A.5 INDIRECT EFFECTS OF LPL

One possible explanation for the improved performance is that it comes from a certain timestep-
specific reweighting which puts more emphasis on later timesteps, as samples in the LPL timestep
range tend to be present both in both the vanilla ℓ2 loss and our LPL. To verify this claim, we
compare the performance with a model trained with a timestep specific reweighting that equalizes
the contributions of the timesteps across the batch, the re-weighting is applied as follows:

w(σt) = 1 + wLPL · σ
2
LLPL

σ2
ℓ2

· δσt≤τσ (σt), (15)

where σ2
LLPL

(resp. σ2
ℓ2

) is the mean variance of the LPL loss (resp. the vanilla ℓ2 objective). Such a
weighting effectively amplifies later timesteps to have the same contribution when using LPL or not
using it. Additionally, we compare the standard epsilon weights with state-of-the-art reweighting
strategies such as min-SNR (Hang et al., 2023a), results are reported in table 6.

As seen in Table 6, introducing timestep reweighting results in degraded performance compared to
the baseline while LPL significantly improves FID. Hence the improvements cannot be attributed to
time-specific reweighting.

A.6 MEMORY OVERHEAD

For a more fair and accurate comparisons with the baseline, we conduct additional experiments
where we equalize not the number of iterations but the maximum achievable batch size and the
training time, in order to obtain a more accurate sense of the applicability of our loss in practice.

Memory maximization. Table 7 compares models trained on the same resources for an equal time
duration. This experiment is conducted on ImageNet@512, both models are trained on 2 A100
nodes for a duration of 48 hours. For the baseline with a higher batch size, the learning rate is
scaled linearly in order to account for this discrepancy. Under this setting, the baseline trains with a
batch size/GPU of 25 for 122.5k iterations, achieving an FID of 4.62 while the model with LPL is
trains for 82.5k iterations with a batch size/GPU of 16, achieving an FID of 3.84. When comparing
FLOPs, we found both runs to have similar FLOPs per iteration. Hence, while the FID gap between
the two models is reduced from 1.09 to 0.78, it remains significant.

Minimum iterations. To quantify the needed number of training iterations, we perform finetuning
experiments and track the FID every 10k iterations, allowing us to track how long the LPL should
be applied to see benefits. These experiments are conducted on ImageNet-1k at 256 resolution.

In Figure 16, we experiment with the effect of training from scratch when using LPL. In the be-
ginning of training, both models have similar performance, however as training continues and the
performance gain due to LPL increases.

In Figure 18, we experiment with finetuning a pre-trained model and track FID every 10k iterations.
The big FID improvement at 50k iterations is due to the activation of EMA. We observe that as of
20k iterations, the model with LPL consistently obtains better performance.

FLOPS Analysis. In Table 8, we conduct a detailed analysis of the FLOP count for the duration
of training under different settings, reporting the total FLOP count for different training settings.
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Figure 14: LPL from scratch. Comparison on
the effect of LPL when applied from scratch.
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Figure 15: LPL finetuning. Comparison on the
effect of LPL when applied as finetuning.
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Figure 16: LPL from scratch.
Comparison on the effect of LPL
when applied from scratch.
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Figure 17: LPL finetuning.
Comparison on the effect of LPL
when applied as finetuning.
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Figure 18: LPL finetuning.
Crop around EMA region.

We observe that adding LPL to the training losses increase the FLOPs/iteration by a faactor of
approximately 1.5. However, when accounting for the number of training iterations, we found the
total FLOP increase to be around 10− 15%.

A.7 COMPARISON OF BASELINE TO THE STATE OF THE ART

Our baseline setting uses the DDPM paradigm with the state-of-the-art MMDiT architecture
from Esser et al. (2024). For the Flow-OT model, we follow the same setting as SD3. To verify
that this baseline is competitive with state-of-the-art models, we provide quantitative comparison of
our baseline with other open-source models trained on ImageNet at 512 resolution. Accordingly, we
follow the same procedure for the models and report FID for the training set of ImageNet using 250
sampling steps for each sample. Our flow model is sampled using an ODE sampler based on the

Pre-training Post-training Total

Res. Iters (T)FLOPs/it Res. Iters LPL (T)FLOP/it (T)FLOPS FLOPs Increase

ImageNet-1k 256 600k
63.389 256 200k ✗ 63.342 50, 711.20k

14.43%
✓ 99.987 58, 030.80k

63.389 512 120k ✗ 69.342 46, 354.44k
9.64%

✓ 106.581 50, 823.12k

CC12M/S320M 256 600k
63.391 256 200k ✗ 63.391 50, 712.80k

14.46%
✓ 100.064 58, 047.40k

63.391 512 120k ✗ 69.342 46, 355.64k
9.64%

✓ 106.583 50, 824.56k

Table 8: FLOP analysis. We compare the total FLOP increase throughout training under the differ-
ent settings in our main results table.
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Model FID (↓)

UNet Rombach et al. (2022) 4.81
DiT-XL/2 Peebles & Xie (2023) 3.04
mDT-v2 Gao et al. (2023) 3.75
SiT-XL/2 (Flow-SDE) Ma et al. (2024) 2.62

mmDiT-XL/2 (DDPM - DDIM) 3.02
mmDiT-XL/2 (Flow-OT - ODE) 2.49

Table 9: Comparison with other
baselines. We compare our baseline
training with other models in the lit-
erature, our baseline training results
in state-of-the art performance. FID
scores for each model are taken from
their respective papers.
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Figure 19: Influence of guidance scale on FID.

RK4 solver from Chen (2018). The results in Table 9 show that our flow baseline with RK4 solver
achieves state-of-the-art results compared to the results reported in the literature.

Guidance scale. In the Figure 19, we report the FID of the baseline model trained on Ima-
geNet@512 for different guidance scale values. We find the best FID to be achieved for wCFG = 2.0,
which is the value chosen in our experiments.

A.8 ADDITIONAL QUALITATIVE RESULTS

Noise threshold. In Figure 20, we illustrate the impact of using a higher noise threshold (which
amounts to using LPL for longer in the diffusion chain) on the image quality. A higher noise thresh-
old yields better structures in the images and exacerbates semantic features that distinguish objects.

Vanilla diffusion. In Figure 21, we qualitatively investigate the influence of LPL on a baseline
model, without classifier-free guidance and without EMA. We can see that LPL significantly im-
proves the structure of objects as compared to the model that was trained without it.

Samples of ImageNet-1k models. In Figure 22 we show samples of models trained with or without
LPL on ImageNet-1k at 512 resolution. At higher resolutions, we also observe that the model trained
with LPL generates images that are sharper and present more fine-grained details compared to the
baseline.

Samples on T2I models. We provide additional qualitative comparisons regarding our LPL loss.
Figure 23 showcases results on a model trained on CC12M at 512 resolution, Figure 24 showcases
results on a model trained on S320M at 256 resolution.
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Figure 20: Influence of noise threshold. Higher thresholds allow for more detailed and coherent
images. Samples obtained from a model trained on ImageNet@256.
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Figure 21: Qualitative comparison of the effect of the latent peceptual loss. Models trained on
ImageNet-1k at 256 resolution with (bottom) and without (top) our perceptual loss. Without the
perceptual loss, the model frequently fails to generate coherent structures, using the perceptual loss,
the model generates more plausible objects with sharper details. The models are finteuned for 100k
iterations from a checkpoint that was trained for 200k iterations. The samples are generated without
classifier-free guidance or EMA, using 50 DDIM steps.
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Figure 22: Influence of finetuning a class-conditional model of ImageNet-1k at 512 resolution
using our perceptual loss. Our perceptual loss (bottom row) leads to more realistic textures and
more detailed images.
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Figure 23: Qualitative comparison. Comparison of samples from models trained with and without
our perceptual loss on CC12M at 512 resolution (The differences are better viewed by zooming in).
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Figure 24: Qualitative comparison. of samples from models trained with and without our LPL on
S320M at 256 resolution.

27


	Appendix
	Relevance of the LPL loss
	Latent Structure
	Outlier Detection
	Perceptual Losses in Diffusion
	Indirect effects of LPL
	Memory overhead
	Comparison of baseline to the state of the art
	Additional qualitative results


