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A

B C

Figure 1: Presentation of the modules proposed in this paper. (A) shows the details of DSMS and its comparison with other
residual connections, (B) illustrates the details of the proposed additive attention mechanism, PSSA, and (C) compares the
proposed SPGD with the vanilla method. Detailed introductions of each module are provided in Sec.4.

ABSTRACT
Spiking Neural Networks (SNNs) have indeed shown remarkable
promise in the field of computer vision, emerging as a low-energy
alternative to traditional Artificial Neural Networks (ANNs). How-
ever, SNNs also face several challenges: i) Existing SNNs are not
purely additive and involve a substantial amount of floating-point
computations, which contradicts the original design intention of
adapting to neuromorphic chips; ii) The incorrect positioning of

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

convolutional and pooling layers relative to spiking layers leads
to reduced accuracy; iii) Leaky Integrate-and-Fire (LIF) neurons
have limited capability in representing local information, which
is disadvantageous for downstream visual tasks like semantic seg-
mentation.

To address the challenges in SNNs, i) we introduce Pure Sparse
Self Attention (PSSA) and Dynamic Spiking Membrane Shortcut
(DSMS), combining them to tackle the issue of floating-point com-
putations; ii) the Spiking Precise Gradient downsampling (SPG-
down) method is proposed for accurate gradient transmission; iii)
the Group-LIF neuron concept is introduced to ensure LIF neu-
rons’ capability in representing local information both horizontally
and vertically, enhancing their applicability in semantic segmenta-
tion tasks. Ultimately, these three solutions are integrated into the
Powerful Sparse-Spike-Driven Transformer (PSSD-Transformer),
effectively handling semantic segmentation tasks and addressing
the challenges inherent in SNNs. The experimental results demon-
strate that our model outperforms previous results on standard

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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classification datasets and also shows commendable performance
on semantic segmentation datasets. Up to this point, PSSD is the
first model in the SNN field to perform semantic segmentation on
large datasets. The code will be made publicly available after the
paper is accepted for publication.

CCS CONCEPTS
• Networks→ Network on chip.

KEYWORDS
Spiking Neuron Networks, Semantic Segmentation

1 INTRODUCTION
Introduction of SNNs. Spiking Neural Networks (SNNs) are a
type of neural network that more closely mimic biological neural
networks. Unlike traditional Artificial Neural Networks (ANNs)
that use continuous values, SNNs operate using discrete events
or "spikes." These spikes are binary events that occur at points in
time, resembling the way biological neurons transmit information.
SNNs are known for their energy efficiency and are considered
more biologically realistic. They have potential applications in areas
where low power consumption[15, 27, 33, 39] is crucial, such as
edge computing and neuromorphic hardware[3, 9, 11, 35].

Introduction of semantic segmentation. Semantic segmenta-
tion[16, 29, 41, 46] is a computer vision task where the goal is to
assign a label to each pixel in an image such that pixels with the
same label share certain characteristics. This process essentially
divides the image into meaningful parts with semantic interpre-
tations, like identifying objects, boundaries, or regions. Semantic
segmentation is widely used in various applications, including au-
tonomous vehicles[5, 19, 23, 45], medical imaging[14, 38], and scene
understanding[8, 42]. The challenge lies in accurately classifying
each pixel while maintaining the integrity of object shapes and
contextual relationships within the image.

Why combining the spike mechanisms with segmantic
segmentation tasks? Semantic segmentation, a task of assigning
accurate semantic categories to each pixel in an image, plays a
crucial role in image understanding by identifying and dividing
different semantic regions in a scene. This vision-intensive com-
putation task has significant application potential in various real-
world scenarios like autonomous driving, medical surgery robots,
and wearable devices. In these contexts, neuromorphic chips with
sparse spike-driven properties and low-power computational rules
are ideal due to their efficiency and suitability for these applications.
The deployment of SNNs on neuromorphic chips is considered a
key approach for implementing vision models, such as image seg-
mentation models, marking a promising direction in the future
development of artificial intelligence.

How to combine the spike mechanisms with semantic
segmentation tasks? To answer this question, we consider two
perspectives: the contradiction between semantic segmentation’s
computational density and the low-power nature of spike-driven
computation, and the need for spatial consistency and semantic
accuracy in semantic segmentation. i) To address the core issue
of the contradiction between the computationally dense nature of

semantic segmentation and the low-power spike-driven compu-
tation rules, on one hand, the introduction of Pure Sparse Self
Attention (PSSA) allows the semantic segmentation model to se-
lectively focus on the most important areas for the task, ignoring
irrelevant features and fully utilizing the sparsity of model param-
eters. On the other hand, the introduction of Dynamic Spiking
Membrane Shortcut (DSMS) reduces the information loss caused
by the use of sparse spike-driven attention, achieving sparse spike-
driven computation, significantly reducing energy consumption
and easing the application of image semantic segmentation models
on neuromorphic chips. ii) Regarding the need for spatial consis-
tency and semantic accuracy in semantic segmentation, the spiking
Transformer inherits the global semantic information modeling
capabilities of the Transformer for long-distance dependencies. The
core issue then is how to enhance spatial consistency and focus on
local information. On one hand, the introduction of a locality-based
Spiking Precise Gradient downsampling (SPG-down) mecha-
nism preserves gradients at the points of maximum feature infor-
mation during backpropagation, and uses DSMS to better preserve
spatial information. On the other hand, by migrating Group-LIF
neurons from the temporal domain to the spatial domain in the
feedforward network, considering the neighborhood relationships
of pixels in different directions based on feature grouping, local
feature contexts are obtained, addressing the problem of weak local
information relevance caused by long distances, thereby enhancing
the spatial consistency and correlation of features.

Our contributions can be summarized as follows:
• Group-LIF for Local Information Control: Developing
Group-LIF neurons to enhance control over local information
representation.

• PSSA + DSMS for Non-floating Point Operations: Imple-
menting Pure Sparse Self Attention (PSSA) combined with
Dynamic Spiking Membrane Shortcut (DSMS) to achieve
spike-based processing without floating-point computations.

• SPG-down for Precise Gradient Transmission: Introduc-
ing Spiking Precise Gradient downsampling (SPG-down) to
ensure more accurate gradient propagation.

• PSSD-Transformer Architecture: Proposing the Power-
ful Sparse-Spike-Driven Transformer (PSSD-Transformer)
architecture and applying it to image classification and se-
mantic segmentation tasks, marking the first application of
a spiking Transformer architecture to large-scale semantic
segmentation datasets.

2 RELATEDWORKS
2.1 SNNs
2.1.1 Training Strategy. There are two approaches to obtaining
SNN networks. i) ANN2SNN [4, 6, 24], where an ANN is initially
trained and then transformed into an SNN, which involves replac-
ing the ReLU activation layer in a trained ANN network with a
spiking neuron and adjusting certain hyper-parameters to achieve
a highly accurate SNN. However, this method is characterized by
long conversion time-steps as well as constraints associated with
the original ANN design. ii) Directly training. In recent research, re-
searchers predominantly employ Spike Time Dependent Plasticity
(STDP) for training to simulate synaptic information transmission,
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with more recent studies [30, 44, 48] often utilizing surrogate func-
tions for gradient propagation.

2.1.2 Applications. Implementing above techniques has led to sig-
nificant results in various fields. For instance, object detection can
be achieved through Spiking-Yolo [20] and ems-yolo [37]. In terms
of large language models, SpikingGPT [49] and SpikingBert [2] are
preferable, and for generative models, SpikingGAN [22] is the way
to go. SpikingGCN [50] and SpikingGAT [40] are recommended for
Graph Neural Networks. Furthermore, neuromorphic chips such
as TrueNorth [28], Loihi [10], and Tianjic [31] are now available,
making it increasingly likely that SNNs will be widely used in the
near future.

2.2 Semantic Segmentation
2.2.1 Traditional semantic segmentation. This section primarily
introduces semantic segmentation algorithms based on deep neural
networks, categorizing them into four main representative types:
i) Fully Convolutional Network (FCN) [26], by replacing fully con-
nected layers with convolutional layers and adopting an encoder-
decoder architecture, facilitates the extraction of deep discrimina-
tive features for subsequent instance localization and segmentation
tasks. However, the computational demands on high-resolution
images may result in challenges such as insufficient memory and
slower processing speed, while exhibiting a relatively weaker ca-
pability in handling detailed boundary information. ii) SegNet [1]
employs a pooling index mechanism for upsampling its lower-
resolution input feature maps, aiming to accurately reconstruct
object contours during the decoding process. However, when deal-
ing with large-sized images, it may encounter significant compu-
tational and memory overhead. iii) DeepLab [7] utilizes Dilated
Convolution to expand the receptive field, enhancing segmentation
performance by capturing contextual information more effectively.
iv) strategies based on Visual Transformer (ViT) [13]: SETR [47]
achieves pixel-level segmentation through a multi-level feature ag-
gregation module; Segmenter [36] obtains class labels and predicts
segmentation masks through a point-wise linear decoder or a Mask
Transformer decoder; Segformer [43] employs a simple yet efficient
MLP decoder to aggregate information from different layers, clev-
erly combining local attention and global attention to present pow-
erful representations; PVT overcomes the low-resolution output
features of a single scale by introducing a progressively contracting
pyramid network backbone.

2.2.2 Sparse semantic segmentation. Unlike traditional counter-
part, sparse networks commonly employ lightweight architectures
to minimize parameter count and computational load, a critical con-
sideration for deploying semantic segmentationmodels on resource-
constrained devices. ERFNet [32] is a lightweight network designed
for real-time semantic segmentation, employing residual connec-
tions and decomposed convolutions to reduce computational load,
suitable for embedded systems. SGCPNet [17] proposes a strategy
for spatial detail-guided context propagation, achieving sparsity by
avoiding the maintenance of high-resolution features throughout
the network. Other strategies like sparse self-attention [18], which
decomposing the dense affinity matrix into the product of two
sparse matrices. Researchers also employ SNNs to achieve sparsity.

SpikeCalib [25] utilizes FCN for ANN to SNN conversion in se-
mantic segmentation, introducing Burst-Spikes neuron model and
proposing Lateral Inhibition Pooling (LIPooling) to address errors
from max-pooling during the conversion process. SpikeSEG [21] is
the first algorithm for semantic segmentation that directly trains
SNNs using spike events with the STDP method, but it is effective
primarily on simpler datasets. Our work addresses the gap in SNNs’
capability for semantic segmentation in complex scenarios.

3 PRELIMINARIES
In this section, we first introduce Leaky Integrate-and-Fire (LIF)
neurons, widely applied within the SNN domain. Following this, we
explore traditional attention mechanisms and those already present
in SNNs. Then, we introduce existing residual connections in SNNs,
analyzing their advantages and limitations. Finally, we discuss the
mainstream downsampling operations in SNNs and analyze their
shortcomings.

3.1 LIF
In SNNs, spike neurons control the release of spikes based on a
threshold. In this paper, we use LIF [12] neurons, which work in
the following way:

𝑈 [𝑡] = 𝑉 [𝑡 − 1] + 1
𝑘𝜏

(𝑋 [𝑡] − (𝑉 [𝑡 − 1] −𝑉𝑟𝑒𝑠𝑒𝑡 )) (1)

𝑆 [𝑡] = H(𝑈 [𝑡] −𝑉𝑡ℎ) (2)
𝑉 [𝑡] = 𝑈 [𝑡] (1 − 𝑆 [𝑡]) +𝑉𝑟𝑒𝑠𝑒𝑡𝑆 [𝑡] (3)

where𝑘𝜏 ,𝑉𝑡ℎ , and𝑉𝑟𝑒𝑠𝑒𝑡 represent the decay factor, firing threshold,
and reset membrane potential, respectively, which are pre-set to
default values. The notation 𝑋 [𝑡] refers to the input at time step
𝑡 , while𝑈 [𝑡] denotes the membrane potential. The functionH (·)
represents the Heaviside step function. The spike output, denoted
by 𝑆 [𝑡], is calculated based on the membrane potential and the
threshold. Additionally, 𝑉 [𝑡] and 𝑉 [𝑡 − 1] signify the temporal
output at time t.

3.2 Vanilla Self-Attention
3.2.1 Self-Attention in Transformer. In the Transformer model, self-
attention mechanism is employed to handle relationships between
different positions in the input sequence. The self-attention mecha-
nism in Transformer involves three key steps: computing attention
weights, weighted sum, and linear mapping. Given an input se-
quence 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) where each 𝑥𝑖 ∈ R𝑑𝑥 is an element of
the input sequence, three sets of representations𝑄,𝐾,𝑉 (query, key,
value) are obtained through linear mappings:

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝑘 , 𝑉 = 𝑋𝑊𝑉 (4)

here,𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are learnable weight matrices.
Next, attention weights are computed. The attention weight

between positions 𝑖 and 𝑗 is calculated using dot product:

𝛼𝑖 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄 · 𝐾𝑇√︁
𝑑𝑘

) (5)
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Figure 2: Illustration of the overall architecture. Initially, the PSSD-Transformer backbone network undergoes pre-training,
outputting scores for each category through a linear classification head. The Spike Mask Transformer consists of a PSSA layer
and two MLP modules. These components respectively yield a decoded semantic segmentation feature matrix and a category
feature embedding. By performing an inner product of these two feature matrices, the model generates K mask sequences for
semantic segmentation, where K represents the number of semantic categories. Finally, a bilinear interpolation upsampling is
applied to these sequences to match the original image size, resulting in the semantic segmentation output.

Each output element, 𝑧𝑖 , is computed as weighted sum of a lin-
early transformed input elements:

𝑧𝑖 =

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗𝑉 (6)

3.2.2 Spiking Self-Attention in Spikformer. In Spiking Self-Attention
(SSA) mechanism, the input undergoes linear transformations and
neuron operations to be transformed into spike-form queries (Q),
keys (K), and values (V) containing only 0 and 1. The computed
attention map has natural non-negativity, disregarding irrelevant
features. Therefore, using floating-point representations for Q, K,
V, and the softmax function is redundant for modeling such spike
sequences.

𝑄 = 𝑆𝑁𝑄 [𝐵𝑁 (𝑋𝑊𝑄 )] (7)
𝐾 = 𝑆𝑁𝐾 [𝐵𝑁 (𝑋𝑊𝐾 )] (8)
𝑉 = 𝑆𝑁𝑉 [𝐵𝑁 (𝑋𝑊𝑉 )] (9)

𝑆𝑆𝐴(𝑄,𝐾,𝑉 ) = 𝑆𝑁 (𝑄𝐾
𝑇𝑉

𝑠
) (10)

where 𝑆𝑁𝑄 , 𝑆𝑁𝐾 , 𝑆𝑁𝑉 and 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 represent Spiking Neu-
rons and weights of the Q, K, V branches, respectively. 𝑄,𝐾,𝑉 ∈
R𝑇×𝑁×𝑑 , in this context, T denotes the time-step, N denotes the
length of the sequence, and d denotes the dimension. BN denotes
the Batch Normalization layer, and X is the input of the SSA. s
represents the scale factor.

3.3 Shortcut
The Membrane Shortcut (MS) has been demonstrated to satisfy
the dynamic isometry theory. It adds a shortcut connection to the
membrane potential of each spiking neuron, achieving an identity
mapping. This ensures that the tensor of spike transmission always
contains binary pulse signals.

𝑋𝐿 = 𝐹𝑟𝑒𝑠 (𝑋𝐿−1) + 𝐹𝑠ℎ𝑜𝑟𝑡 (𝑋𝐿−1) (11)

𝐹𝑟𝑒𝑠 (𝑋𝐿−1) = 𝐶𝑜𝑛𝑣𝐵𝑁 (𝑆𝑁 (𝑋𝐿−1)) (12)

where 𝑋𝐿 represents the output of the layer L, 𝐹𝑟𝑒𝑠 (·) denotes
the residual path, 𝐹𝑠ℎ𝑜𝑟𝑡 (·) denotes the shortcut path, 𝐶𝑜𝑛𝑣𝐵𝑁 (·)
represents the operation combining Convolution and Batch Nor-
malization.

However, the MS residual connection method still has some lim-
itations. When changing the channel number to match the feature
channel number on the residual path and the shortcut path, it may
easily overlook non-sparse and non-spike-driven operations in this
part. Non-sparse spike operations can lead to significant energy
consumption in this module.

3.4 Downsampling in Spikformer
Input undergoes a combination of convolution and batch normal-
ization operations (ConvBN), followed by activation of spiking
neurons over multiple time steps. Neurons accumulate membrane
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potential over time based on the received current, generating a
spike signal when the membrane potential exceeds a threshold.
Finally, max-pooling is performed for downsampling.

The backward propagation stage of the above process can be
expressed by Eq.13-15:

𝜕𝑦𝑖 𝑗

𝜕ℎ𝑢𝑣
=

{
1 ℎ𝑢𝑣 =𝑚𝑎𝑥 (ℎ)
0 ℎ𝑢𝑣 < 𝑚𝑎𝑥 (ℎ)

(13)

𝜕ℎ𝑢𝑣

𝜕𝑥𝑢𝑣
=
𝜕𝑋 𝑡,𝑛

𝜕𝑉 𝑡,𝑛
=

1
𝛼
𝐻 ( |𝑉 𝑡,𝑛

𝑖
−𝑉𝑡ℎ | ≤

𝛼

2
) (14)

𝜕𝐿

𝜕𝑥𝑢𝑣
=

𝐻
𝑠∑︁
𝑖=0

𝑊
𝑠∑︁
𝑗=0

𝜕𝐿

𝜕𝑦𝑖 𝑗

𝜕𝑦𝑖 𝑗

𝜕ℎ𝑢𝑣

𝜕ℎ𝑢𝑣

𝜕𝑥𝑢𝑣

=

{
1
𝛼

𝜕𝐿
𝜕𝑦𝑖 𝑗

𝐻 ( |𝑉 𝑡,𝑛
𝑖

−𝑉𝑡ℎ | ℎ𝑢𝑣 =𝑚𝑎𝑥 (ℎ)
0 ℎ𝑢𝑣 < 𝑚𝑎𝑥 (ℎ)

(15)

where ℎ ∈ R𝐻×𝑊 , 𝑥 ∈ R𝐻×𝑊 , 𝑦 ∈ R
𝐻
𝑠
×𝑊

𝑠 denote the output of
the SN, ConvBN and Max Pooling layer, respectively, ℎ𝑢𝑣, 𝑥𝑢𝑣, 𝑦𝑖 𝑗
denote the represent the feature information at a specific position
for feature maps ℎ, 𝑥,𝑦. 𝑠 is the pooling step. 𝐿 represents the loss
function. 𝛼 is a parameter designed to ensure the integration of the
gradient equals 1 and determines the steepness of the curve.

4 METHOD
In Sec.3, we refine our methods to better address semantic segmen-
tation challenges. In this section, we start with the introduction of
Group-LIF, enhancing local information processing in LIF neurons.
We then present PSSA, a sparser alternative to SSA, ideal for asyn-
chronous neural chips, with parameter integration into thresholds
to minimize float count. DSMS adapts to the dynamic channel vari-
ations in semantic segmentation, extracting features from varying
featuremap dimensions and ensuringMS pulse-driven functionality.
Additionally, SPGD is introduced to ensure accurate pulse-driven
gradient backpropagation essential in downsampling operations
within semantic segmentation tasks.

4.1 Group-LIF
Global LIF neurons introduce weak long-range correlations due to
the larger time-steps introduced. In semantic segmentation tasks, it
is crucial to maintain spatial consistency, including the interaction
of contextual information and local details in the image.

To address the aforementioned issues, we proposes Group-LIF,
based on a grouping mechanism. It divides the patch sequence of
the feature map into several groups and applies Group-LIF neurons
to facilitate information interaction within each group. This enables
a more compact pattern of local context information exchange.

As shown in Fig.2(b), G-LIF attempts to transmit information
from both horizontal and vertical directions, that is, by learning
local contexts and spatial information in different orientations on
the image through horizontal LIF and vertical LIF for different
communication directions of image blocks. Ablation study for G-
LIF is presented in Sec.5. Due to space limitations, details will be
provided in the supplementary materials.

4.2 Pure Sparse Self-Attention
The SSA still involves non-spiking computations, making it chal-
lenging to deploy the model on neuromorphic chips. To avoid non-
spiking computations and energy-consuming operations like mul-
tiplication and addition, it is essential to leverage energy-efficient
operations such as logical AND, addition, masking, which require
minimal energy consumption.

Lemma 1. Transforming matrix dot product using element-wise
multiplication and column summation operations incurs almost
negligible energy cost.

𝑎𝑇 ⊙ 𝑏 =

𝑁∑︁
𝑗=1

(𝑎 𝑗 ⊗ 𝑏 𝑗 ) =
∑︁
𝑎 𝑗=1

𝑏 𝑗 (16)

𝐴𝑇 ⊙ 𝐵 =

𝑑∑︁
𝑖=1

𝑁∑︁
𝑗=1

(𝐴𝑖 𝑗 ⊗ 𝐵𝑖 𝑗 ) =
𝑑∑︁
𝑖=1

∑︁
𝐴𝑖 𝑗=1

𝐵𝑖 𝑗 (17)

where 𝐴, 𝐵 ∈ R𝑁×𝑑 , 𝑎 = 𝐴𝑖1 and 𝑏 = 𝐵𝑖2, (·)𝑇 denotes the matrix
transformation, ⊙ represents the matrix multiplication, ⊗ is the
hadamard product.

As shown in Eq.16, when performing the dot product of the
transposed binary column vectors 𝑎 and 𝑏 with dimensions 𝑁 × 1,
the resulting dimension is 1 × 1. This is equivalent to taking the
Hadamard product of column vectors 𝑎 and 𝑏 to obtain an 𝑁 × 1
tensor, followed by column-wise summation to get a 1 × 1 vector.

As shown in Eq.17, generalizing to the dot product of all columns
of matrices A and B, it can be easily transformed using element-wise
multiplication and column summation operations. Moreover, the
spiking-driven Hadamard product can be considered as a logical bit-
wise AND operation with almost negligible energy cost, resulting
in a 1 × 𝑑 dimensional matrix.

Extending this theoretical discovery to the dot product calcula-
tion of three binary matrices in the spiking self-attention mecha-
nism, this process can be equivalently substituted by spiking-driven
computations for the 𝑄,𝐾,𝑉 calculation steps in the SSA mecha-
nism.

𝑄𝑠 ⊙ 𝐾𝑇𝑠 ⊙ 𝑉𝑠 = 𝑆𝑁 (
𝑁,𝑑∑︁

𝑖=1, 𝑗=1
𝑄𝑠 ⊗ 𝐾𝑠 ) ⊙ 𝑉 (18)

= 𝑆𝑁 (𝑆𝑈𝑀𝑟 (𝑄𝑠 ⊗ 𝐾𝑠 )) ⊕ 𝑉𝑠

where ⊕ denotes the mask operation, 𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 ∈ R𝑁×𝑑 , 𝑆𝑈𝑀𝑟 (·)
is the row summary.

Lemma 2. The scaling factor (s) can be incorporated into the
threshold 𝑉𝑡ℎ .

𝒐 (𝑡 ) =

{
1 if 𝑥𝑠 > 𝑉th
0 otherwise

(19)

where 𝑥 and 𝒐 (𝑡 ) are the input and the output of the Spiking Neuron,
respectively.

As shown in Eq.19, we update the 𝑉𝑡ℎ to 𝑉𝑛𝑒𝑤
𝑡ℎ

= 𝑠 ·𝑉𝑡ℎ .

𝑃𝑆𝑆𝐴(𝑄,𝑘,𝑉 ) = 𝑆𝑁𝑉𝑡ℎ=𝑉𝑛𝑒𝑤
𝑡ℎ

[𝑆𝑈𝑀𝑟 (𝑄 ⊗ 𝐾) ⊕ 𝑉 ] (20)

Thus, in PSSA, the computation process is pure sparse, focusing
attention on relevant features to reduce computational overhead.
It is also spike-driven, introducing nearly energy-free fully binary
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spiking computation, significantly reducing power resources and
energy costs, aligning with the computational rules of neuromor-
phic chips.

4.3 Dynamic Spike-Driven Membrane Shortcut
DSMS retains the concept of MS connections in the main residual
path. In the shortcut path, when the feature channel number needs
to change, an additional LIF neuron model is added before ConvBN
to transform information into sparse spiking signals.

In the context of semantic segmentation, DSMS adapts to back-
bone networks that extract features through continuous downsam-
pling using Maxpooling to reduce feature map size and parameters.
When the channel number remains the same or decreases, DSMS
employs a single-branch concatenation of LIF neurons and ConvBN
after Maxpooling. In cases requiring an increase in channel number,
DSMS introduces a Concat operation for comprehensive spiking
feature reuse. This dynamic control of channels ensures consistency
with the residual main branch, allowing DSMS to efficiently extract
target features from diverse dimensions and channel numbers. The
above process can be described by the following equations.

𝑋 ′ = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑋𝐿−1) (21)

𝐹𝑠ℎ𝑜𝑟𝑡 (𝑋𝐿−1) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑋 ′,𝐶𝑜𝑛𝑣𝐵𝑁 (𝑆𝑁 (𝑋 ′))) (22)

where 𝑋 ′ is the computation result of the maxpool branch.
The quantity and channel width of DSMS can be dynamically

adjusted based on specific tasks. In semantic segmentation tasks,
optimizing DSMS improves information flow, and the output flow
on the shortcut path conceptually approximates the sum of synaptic
inputs to the neuron membrane. This representation of complete
spiking features effectively reflects the energy-efficient characteris-
tics of the network, ensuring that all modules in the network are
spike-driven.

4.4 Spiking Precise-Gradient Downsampling
Unlike the sequence of operations from the order discussed in3.4,
the input in SPG-Down undergoes the ConvBN operation to obtain
the feature map 𝑥 . Following this, it undergoes max-pooling to ob-
tain a downsized feature map ℎ. Finally, the pulse neuron activation
produces the feature map 𝑦.

The backward propagation stage of the above process can be
expressed by the Eq.23-25 :

𝜕𝑦𝑖 𝑗

𝜕𝑥𝑢𝑣
=

{
𝑥𝑢𝑣 𝑥𝑢𝑣 =𝑚𝑎𝑥 (𝑥)
0 𝑥𝑢𝑣 < 𝑚𝑎𝑥 (𝑥)

(23)

𝜕𝑦𝑖 𝑗

𝜕ℎ𝑖 𝑗
=
𝜕𝑋 𝑡,𝑛

𝜕𝑉 𝑡,𝑛
=

1
𝛼
𝐻 ( |𝑉 𝑡,𝑛

𝑖
−𝑉𝑡ℎ |) (24)

𝜕𝐿

𝜕𝑥𝑢𝑣
=

𝐻
𝑠∑︁
𝑖=0

𝑊
𝑠∑︁
𝑗=0

𝜕𝐿

𝜕𝑦𝑖 𝑗

𝜕𝑦𝑖 𝑗

𝜕ℎ𝑖 𝑗

𝜕ℎ𝑖 𝑗

𝜕𝑥𝑢𝑣

=

{
1
𝛼

𝜕𝐿
𝜕𝑦𝑖 𝑗

𝐻 ( |𝑉 𝑡,𝑛
𝑖

−𝑉𝑡ℎ | 𝑥𝑢𝑣 =𝑚𝑎𝑥 (𝑥)
0 𝑥𝑢𝑣 < 𝑚𝑎𝑥 (𝑥)

(25)

where 𝑥 denotes the output of "ConvBN". The output of the
LIF neuron is its membrane potential ℎ ∈ R𝐻×𝑊 , with the max-
imization goal being the output vector 𝑦 ∈ R𝑆×𝑆 , making the
gradients 𝜕𝑦

𝜕ℎ
and 𝜕𝐿

𝜕𝑦 non-zero. The activation function and the
non-differentiable membrane potential update equation pose key
challenges for gradient propagation. During backpropagation, the
non-zero nature of 𝜕𝐿

𝜕𝑦𝑖 𝑗
and 𝜕𝑦𝑖 𝑗

𝜕ℎ𝑢𝑣
results in the gradient 𝜕𝐿

𝜕ℎ𝑢𝑣
be-

coming zero, where 𝑥𝑢𝑣 , ℎ𝑢𝑣 , 𝑦𝑖 𝑗 represent the respective gradients
from 𝜕ℎ𝑢𝑣

𝜕𝑥𝑢𝑣
, then all gradients would vanish during propagation.

Each term of the gradient is the product of the derivative of the
previous term and the current term, where 𝛼 is an amplification
factor to apply this amplification to all gradient calculations, with
𝑚𝑎𝑥 (ℎ) being amplified to a sufficiently large value.

Evidently, themaximum element aftermax-pooling in the feature
map x is selected as the maximum value, representing the position
with the most feature information in x. During back propagation,
this position retains the gradient, preserving the maximum feature
information in each local region before max-pooling (aggregation).
Additionally, since max-pooling is applied to feature map x first,
the feature map h has a reduced size, saving energy and memory
resources.

5 EXPERIMENT
In this work, the datasets used include ImageNet, CIFAR-10, and
ADE20K. The introductions to these datasets and basic experimental
setup are provided in the supplementary materials. In this section,
ablation studies are conducted on the various modules proposed in
this paper; followed by an analysis of the performance of the pro-
posed PSSD-TFSeg on semantic segmentation datasets. It’s worth
noting that, as we are the first to apply an SNN model on large-
scale semantic segmentation datasets, there are no other models
for comparison. The chapter concludes with the presentation of
Grad-Cam images and semantic segmentation result images from
different layers of the model.

5.1 Ablation Study
To investigate the characteristics and effectiveness of several mod-
ules proposed in this chapter, including the spiking computing ap-
proach (PSSA self-attention, MS and DSMS residual connections),
SPG-Down precise gradient downsampling, and neuron mecha-
nisms (Group Horizontal G-HLIF and Group Vertical G-VLIF), a
series of ablation experiments were conducted. These experiments
further assessed the contributions of the proposed algorithms.

5.1.1 Feasibility of Sparse spiking. Experiments were conducted on
the ImageNet1K dataset to assess the accuracy and performance of
the PSSA self-attention mechanism and MS/DSMS residual connec-
tions. This involved ablation studies on SSA and PSSA mechanisms,
SEW versus MS/DSMS, and the combined effect of these two mod-
ules.

Tab.1 reveals that although replacing SSA with PSSA incurs a
slight loss in accuracy, the energy consumption is less than 50% of
that of the SSA-based Spikformer. Essentially, the pulse-driven self-
attention mechanism utilizes binary self-attention scores to mask
non-essential channels in sparse pulse value tensors, converting
all multiplications into sparse computational additions. While this
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Figure 3: Grad-CAM visualization of the PSSD-Transformer’s mid-layer reveals how it divides images into semantic regions,
focusing on key objects within its encoder. This targeted learning enhances class label prediction for pixel segmentation by
honing in on significant object areas, improving semantic category understanding.

Figure 4: Showcased in the image are semantic segmentation results from the PSSD-TFSeg model on the ADE20K dataset,
featuring an MLP-based segmentation head and MS residual connections in its encoder-decoder structure. The model adeptly
handles a variety of settings, effectively focusing on objects requiring segmentation in both crowded indoor scenes and complex
outdoor environments.

leads to a minor accuracy reduction, the PSSA operator consumes
almost no energy. This not only achieves sparse pulse driving but
also aligns with low-power computing principles, bringing the
deployment of neuromorphic chips closer to reality.

5.1.2 Effectiveness of spatial consistency. Experiments on image
classification using backbone networks on the CIFAR10 dataset.
These experiments involved replacing the downsampling methods
in Spikformer and PSSD-Transformer with either standard Vanilla
Downsample or SPG-Down, maintaining a time step of 4.

As shown in Tab.2, this setting demonstrated the effectiveness
and rationality of the optimized precise downsampling method.

5.2 Comparative quantitative experiments
In this section, comparative quantitative experiments were con-
ducted using the ADE20K dataset (with a resolution of 512 × 512)
and three evaluation metrics. The semantic segmentation back-
bone network employed was PSSD-Transformer, where residual
connections utilized both MS and DSMS. Additionally, the model in-
corporated the pulse downsampling method SPG-Down and neuron
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Table 1: Experiments of the Feasibility of Sparse spiking
(PSSA and DSMS) on Imagenet

Self-Attention Shortcut Power(mJ) Acc (%)

1 *SSA *SEW 4.96 65.1
2 SSA MS 4.92(-0.04) 66.9(+1.8)
3 PSSA SEW 2.18(-2.78) 64.5(-0.6)
4 PSSA MS 2.14(-2.82) 66.2(+1.1)
5 PSSA DSMS+MS 2.21(-2.75) 66.8(+1.7)

Table 2: Ablation Study of Spatial Consistency (SPG-Down
and G-LIF) on ADE20K

Architecture Downsampling Neuron MIoU (%)

1 Spikformer Vanilla Down LIF 26.7
2 Spikformer SPG-Down LIF 26.9(+0.2)
3 Spikformer SPG-Down G-HLIF 27.4(+0.7)
4 Spikformer SPG-Down G-MLIF 27.8(+1.1)

combinations based on G-VLIF and G-HLIF. The semantic segmen-
tation decoders used in these experiments included a pulse linear
MLP module (MLP) and a Spike Mask Transformer (SMT).

Table 3: Comparative quantitative experiments on ADE20K

Architecture Decoder Power(mJ) MIoU(%)

1 *Spikformer MLP 19.12 26.7
2 Spikformer SMT 20.81(+1.69) 26.9(+0.2)
3 PSSD + MS MLP 12.61(-6.51) 28.6(+1.9)
4 PSSD + MS SMT 14.04(-5.08) 28.9(+2.2)
5 PSSD + DSMS MLP 13.50(-5.62) 29.1(+2.4)

5.3 Visualization
Clearly shown in Fig.3, the Grad-CAM[34] of the PSSD-Transformer
effectively segments the image into distinct semantic regions, align-
ing with the semantic categories of each area. Within each encoder
block of the model, the focus is gradually refined to emphasize key
object areas in the actual data. This precise targeting significantly
bolsters the model’s ability to learn various semantic categories,
thereby enhancing its capability to more accurately assign class
labels to individual pixels in later segmentation tasks.

Fig.4 presents a glimpse of the PSSD-TFSeg model’s semantic seg-
mentation capabilities on the ADE20K dataset. This model features
an MLP-based semantic segmentation head and MS for residual
connections within its encoder-decoder framework. Excelling in a
variety of scenes, the model adeptly focuses on key objects for seg-
mentation. This includes intricate indoor settings with numerous
people and objects, as well as outdoor landscapes populated with
cars, buildings, and animals.

6 DISCUSSION
6.1 Energy Consumption Estimation
The essence of SNN algorithms is to reconcile the trade-off be-
tween precision and power usage. This segment delves into how
spike-based models achieve efficiency, utilizing FLOPS and SOPs as
performance indicators. SOPs, indicating spikes per second, mirror
an SNN’s complexity; fewer SOPs mean lower power draw. PSSD-
Transformer’s efficiency stems from Self-Attention, ConvBN, and
MLP modules, which skip computations when inputs are inactive.
Energy use for ConvBN and MLP is calculable via operator energy,
ANN FLOPS, SFR, and timestep count. The energy consumption of
each component is reflected in Tab.1 and Tab.3. Above process can
be described by Eq.26-28.

𝐸Base = 𝐸AC × FL × 𝑅 ×𝑇 (26)

𝐸Attn = 𝐸AC ×MSFR × 𝑁LIF ×𝑇 (27)

𝐸sum = 𝐸ConvBn + 𝐸MLP + 𝐸Attn (28)

Here, FL represents the known FLOPS of the corresponding archi-
tecture ANN, reflecting the spiking rate, 𝐸𝐴𝐶 represents the energy
consumption of a single addition operation in the operators. Gen-
erally, in ANN models, 𝐸𝑀𝐴𝐶 = 4.6pJ, 𝐸𝐴𝐶 = 0.9pJ, T represents the
simulation time step, and 𝑁𝐿𝐼𝐹 represents the number of spiking
neurons.

6.2 Limitation and Future work
The application of our work on other datasets has not yet been
completed, but it has already demonstrated strong performance
on the ADE20K dataset. Future work will focus on both depth and
breadth: depth refers to deeper and more powerful networks, while
breadth refers to more fields and datasets. Another point is that,
similar to other works in this field, energy consumption estimation
is still in a preliminary phase. Experiments are conducted on GPUs
and have not yet been actually deployed on neuromorphic chips.
We believe that in the near future, neuromorphic chips will support
a wider range of networks and find extensive applications across
various fields, shining brightly. By then, PSSD will become even
more meaningful.

7 CONCLUSION
In this work, we introduce the PSSD-Transformer, a novel approach
that effectively marries SNNs with the demanding task of seman-
tic segmentation. By addressing the challenges faced by SNNs in
computer vision, such as their intensive floating-point computa-
tions, inaccurate layer positioning, and limited local information
representation, we have paved the way for the first large-scale
application of SNNs in semantic segmentation. Our proposed solu-
tions, including PSSA, DSMS, SPG-down, and Group-LIF neurons,
collectively enhance the model’s efficiency, accuracy, and applica-
bility. Demonstrating significant improvements on various datasets,
the PSSD-Transformer not only surpasses existing models in per-
formance but also highlights the untapped potential of SNNs in
energy-efficient, high-precision visual tasks.
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