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Abstract

Learning with noisy labels (LNL) poses a significant challenge in training a well-
generalized model while avoiding overfitting to corrupted labels. Recent advances
have achieved impressive performance by identifying clean labels and correcting
corrupted labels for training. However, the current approaches rely heavily on
the models predictions and evaluate each sample independently without consid-
ering either the global or local structure of the sample distribution. These lim-
itations typically result in a suboptimal solution for the identification and cor-
rection processes, which eventually leads to models overfitting to incorrect la-
bels. In this paper, we propose a novel optimal transport (OT) formulation, called
Curriculum and Structure-aware Optimal Transport (CSOT). CSOT concurrently
considers the inter- and intra-distribution structure of the samples to construct a
robust denoising and relabeling allocator. During the training process, the allo-
cator incrementally assigns reliable labels to a fraction of the samples with the
highest confidence. These labels have both global discriminability and local co-
herence. Notably, CSOT is a new OT formulation with a nonconvex objective
function and curriculum constraints, so it is not directly compatible with clas-
sical OT solvers. Here, we develop a lightspeed computational method that in-
volves a scaling iteration within a generalized conditional gradient framework
to solve CSOT efficiently. Extensive experiments demonstrate the superiority
of our method over the current state-of-the-arts in LNL. Code is available at
https://github.com/changwxx/CSO0T-for-LNL.

1 Introduction

Deep neural networks (DNNs) have significantly boosted performance in various computer vision
tasks, including image classification [33], object detection [61], and semantic segmentation [37].
However, the remarkable performance of deep learning algorithms heavily relies on large-scale high-
quality human annotations, which are extremely expensive and time-consuming to obtain. Alterna-
tively, mining large-scale labeled data based on a web search and user tags [2Y9, B/] can provide a
cost-effective way to collect labels, but this approach inevitably introduces noisy labels. Since DNNs
can so easily overfit to noisy labels [, [/9], such label noise can significantly degrade performance,
giving rise to a challenging task: learning with noisy labels (LNL) [50, 52, 46].

Numerous strategies have been proposed to mitigate the negative impact of noisy labels, including
loss correction based on transition matrix estimation [B3], re-weighting [b0], label correction [[Z6]
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and sample selection [62]. Recent advances have achieved impressive performance by identifying
clean labels and correcting corrupted labels for training. However, current approaches rely heavily
on the models predictions to identify or correct labels even if the model is not yet sufficiently trained.
Moreover, these approaches often evaluate each sample independently, disregarding the global or
local structure of the sample distribution. Hence, the identification and correction process results in
a suboptimal solution which eventually leads to a model overfitting to incorrect labels.

In light of the limitations of distribution modeling, optimal transport (OT) offers a promising solution
by optimizing the global distribution matching problem that searches for an efficient transport plan
from one distribution to another. To date, OT has been applied in various machine learning tasks
[T, B3, P8]. In particular, OT-based pseudo-labeling [T, [/3] attempts to map samples to class
centroids, while considering the inter-distribution matching of samples and classes. However, such
an approach could also produce assignments that overlook the inherent coherence structure of the
sample distribution, i.e. intra-distribution coherence. More specifically, the cost matrix in OT relies
on pairwise metrics, so two nearby samples could be mapped to two far-away class centroids (Fig.
m).

In this paper, to enhance intra-distribution coherence, we propose a new OT formulation for denois-
ing and relabeling, called Structure-aware Optimal Transport (SOT). This formulation fully consid-
ers the intra-distribution structure of the samples and produces robust assignments with both global
discriminability and local coherence. Technically speaking, we introduce local coherent regularized
terms to encourage both prediction- and label-level local consistency in the assignments. Further-
more, to avoid generating incorrect labels in the early stages of training or cases with high noise
ratios, we devise Curriculum and Structure-aware Optimal Transport (CSOT) based on SOT. CSOT
constructs a robust denoising and relabeling allocator by relaxing one of the equality constraints to
allow only a fraction of the samples with the highest confidence to be selected. These samples are
then assigned with reliable pseudo labels. The allocator progressively selects and relabels batches of
high-confidence samples based on an increasing budget factor that controls the number of selected
samples. Notably, CSOT is a new OT formulation with a nonconvex objective function and curricu-
lum constraints, so it is significantly different from the classical OT formulations. Hence, to solve
CSOT efficiently, we developed a lightspeed computational method that involves a scaling iteration
within a generalized conditional gradient framework [59].

Our contribution can be summarized as follows: 1) We tackle the denoising and relabeling problem
in LNL from a new perspective, i.e. simultaneously considering the inter- and intra-distribution
structure for generating superior pseudo labels using optimal transport. 2) To fully consider the in-
trinsic coherence structure of sample distribution, we propose a novel optimal transport formulation,
namely Curriculum and Structure-aware Optimal Transport (CSOT), which constructs a robust de-
noising and relabeling allocator that mitigates error accumulation. This allocator selects a fraction
of high-confidence samples, which are then assigned reliable labels with both global discriminabil-
ity and local coherence. 3) We further develop a lightspeed computational method that involves a
scaling iteration within a generalized conditional gradient framework to efficiently solve CSOT. 4)
Extensive experiments demonstrate the superiority of our method over state-of-the-art methods in
LNL.

2 Related Work

Learning with noisy labels. LNL is a well-studied field with numerous strategies having been pro-
posed to solve this challenging problem, such as robust loss design [K?, [/0]], loss correction [BS, 56],
loss re-weighting [60, BO] and sample selection [52, BT, &1]. Currently, the methods that are deliv-
ering superior performance mainly involve learning from both selected clean labels and relabeled
corrupted labels [46, B5]. The mainstream approaches for identifying clean labels typically rely on
the small-loss criterion [B1, 72, [71,, I4]. These methods often model per-sample loss distributions us-
ing a Beta Mixture Model [51] or a Gaussian Mixture Model [57], treating samples with smaller loss
as clean ones [B, [Z1, 46]. The label correction methods, such as PENCIL [[Z6], Selfie [63], ELR [B0],
and DivideMix [&6], typically adopt a pseudo-labeling strategy that leverages the DNNs predictions
to correct the labels. However, these approaches evaluate each sample independently without con-
sidering the correlations among samples, which leads to a suboptimal identification and correction
solution. To this end, some work [B3, &3] attempt to leverage k-nearest neighbor predictions [H] for
clean identification and label correction. Besides, to further select and correct noisy labels robustly,



OT Cleaner [73], as well as concurrent OT-Filter [23], designed to consider the global sample distri-
bution by formulating pseudo-labeling as an optimal transport problem. In this paper, we propose
CSOT to construct a robust denoising and relabeling allocator that simultaneously considers both
the global and local structure of sample distribution so as to generate better pseudo labels.

Optimal transport-based pseudo-labeling. OT is a constrained optimization problem that aims
to find the optimal coupling matrix to map one probability distribution to another while minimiz-
ing the total cost [&]. OT has been formulated as a pseudo-labeling (PL) technique for a range
of machine learning tasks, including class-imbalanced learning [44, 8, 6], semi-supervised learn-
ing [63, B4, 4], clustering [8, [T, P5], domain adaptation [K3, I7], label refinery [83, bR, 73, 3],
and others. Unlike prediction-based PL [62], OT-based PL optimizes the mapping samples to class
centroids, while considering the global structure of the sample distribution in terms of marginal con-
straints instead of per-sample predictions. For example, Self-labelling [S] and SwAV [I[1], which are
designed for self-supervised learning, both seek an optimal equal-partition clustering to avoid the
models collapse. In addition, because OT-based PL considers marginal constraints, it can also con-
sider class distribution to solve class-imbalance problems [24, U8, 68]. However, these approaches
only consider the inter-distribution matching of samples and classes but do not consider the intra-
distribution coherence structure of samples. By contrast, our proposed CSOT considers both the
inter- and intra-distribution structure and generates superior pseudo labels for noise-robust learning.

Curriculum learning. Curriculum learning (CL) attempts to gradually increase the difficulty of
the training samples, allowing the model to learn progressively from easier concepts to more com-
plex ones [22]. CL has been applied to various machine learning tasks, including image classifica-
tion [BR, B4], and reinforcement learning [53, ]. Recently, the combination of curriculum learning
and pseudo-labeling has become popular in semi-supervised learning. These methods mainly focus
on dynamic confident thresholding [BY, P9, [75] instead of adopting a fixed threshold [b7]. Flex-
match [[78] designs class-wise thresholds and lowers the thresholds for classes that are more difficult
to learn. Different from dynamic thresholding approaches, SLA [63] only assigns pseudo labels
to easy samples gradually based on an OT-like problem. In the context of LNL, CurriculumNet
[B0] designs a curriculum by ranking the complexity of the data using its distribution density in a
feature space. Alternatively, RoCL [RS] selects easier samples considering both the dynamics of
the per-sample loss and the output consistency. Our proposed CSOT constructs a robust denois-
ing and relabeling allocator that gradually assigns high-quality labels to a fraction of the samples
with the highest confidence. This encourages both global discriminability and local coherence in
assignments.

3 Preliminaries

Optimal transport. Here we briefly recap the well-known formulation of OT. Given two proba-
bility simplex vectors o and 3 indicating two distributions, as well as a cost matrix C € RI*/xI81,
where || denotes the dimension of «, OT aims to seek the optimal coupling matrix Q by minimiz-
ing the following objective

min (C,Q), 1
Qel‘[(a,B)< Q) ()

where (-, -) denote Frobenius dot-product. The coupling matrix Q satisfies the polytope Il(cx, 3) =
{Q € RleIBHQ]lw =a, QT]1|,X| = B}, where a and 3 are essentially marginal probability

vectors. Intuitively speaking, these two marginal probability vectors can be interpreted as coupling
budgets, which control the mapping intensity of each row and column in Q.

Pseudo-labeling based on optimal transport. Let P € REXC denote classifier softmax predic-
tions, where B is the batch size of samples, and C' is the number of classes. The OT-based PL
considers mapping samples to class centroids and the cost matrix C can be formulated as — log P
[65, 68]. We can rewrite the objective for OT-based PL based on Problem () as follows

min (—1logP,Q), ()

Qell(£15,510)

where 1, indicates a d-dimensional vector of ones. The pseudo-labeling matrix can be obtained by
normalization: BQ. Unlike prediction-based PL [627] which evaluates each sample independently,
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Figure 1: (Top) Comparison between classical OT and our proposed Structure-aware OT. Clas-
sical OT tends to mismatch two nearby samples to two far-away class centroids when the decision
boundary is not accurate enough. To mitigate this, our SOT generates local consensus assignments
for each sample by preserving prediction-level and label-level consistency. Notably, for vague sam-
ples located near the ambiguous decision boundary, SOT rectifies their assignments based on the
neighborhood majority consistency. (Bottom) The illustration of our curriculum denoising and
relabeling based on proposed CSOT. The decision boundary refers to the surface that separates
two classes by the classifier. The m represents the curriculum budget that controls the number of
selected samples and progressively increases during the training process.

OT-based PL considers inter-distribution matching of samples and classes, as well as the global
structure of sample distribution, thanks to the equality constraints.

Sinkhorn algorithm for classical optimal transport problem. Directly optimizing the exact
OT problem would be time-consuming, and an entropic regularization term is introduced [1Y]:
minger(a,g) (C, Q) +¢(Q,log Q) , where ¢ > 0. The entropic regularization term enables OT to
be approximated efficiently by the Sinkhorn algorithm [[[Y], which involves matrix scaling iterations
executed efficiently by matrix multiplication on GPU.

4 Methodology

Problem setup. Let Dy qin = {(x;, i)}, denote the noisy training set, where x; is an image
with its associated label y; over C classes, but whether the given label is accurate or not is unknown.
We call the correctly-labeled ones as clean, and the mislabeled ones as corrupted. LNL aims to train
a network that is robust to corrupted labels and achieves high accuracy on a clean test set.

4.1 Structure-Aware Optimal Transport for Denoising and Relabeling

Even though existing OT-based PL considers the global structure of sample distribution, the intrinsic
coherence structure of the samples is ignored. Specifically, the cost matrix in OT relies on pairwise
metrics and thus two nearby samples could be mapped to two far-away class centroids. To further
consider the intrinsic coherence structure, we propose a Structure-aware Optimal Transport (SOT)
for denoising and relabeling, which promotes local consensus assignment by encouraging prediction-
level and label-level consistency, as shown in Fig. [l

Our proposed SOT for denoising and relabeling is formulated by adding two local coherent regular-
ized terms based on Problem (B). Given a cosine similarity S € RZ*5 among samples in feature
space, a one-hot label matrix L. € RFX transformed from given noisy labels, and a softmax pre-
diction matrix P € Rf XC, SOT is formulated as follows

min (—10gP,Q) +x (27(Q) + Q%(Q)) , 3)
QeM(41s,451¢)



where the local coherent regularized terms QF and Q¥ encourages prediction-level and label-level
local consistency respectively, and are defined as follows

QP(Q) = =D "8y Y PuPuQuQ = — (S, (PoQ) (PoQ) ), @
ij k

Q4(Q) = -85 Y LuLiQuQi = — (S, Lo Q) LoQ)), )
i.j K

where © indicates element-wise multiplication. To be more specific, 2F encourages assigning larger
weight to Q1 and Q;, if the i-th sample is very close to the j-th sample, and their predictions P,
and P, from the k-th class centroid are simultaneously high. Analogously, QY encourages assign-
ing larger weight to those samples whose neighborhood label consistency is rather high. Unlike the
formulation proposed in [, [6], which focuses on sample-to-sample mapping, our method intro-
duces a sample-to-class mapping that leverages the intrinsic coherence structure within the samples.

4.2 Curriculum and Structure-Aware Optimal Transport for Denoising and Relabeling

In the early stages of training or in scenarios with a high noise ratio, the predictions and feature
representation would be vague and thus lead to the wrong assignments for SOT. For the purpose of
robust clean label identification and corrupted label correction, we further propose a Curriculum and
Structure-aware Optimal Transport (CSOT), which constructs a robust curriculum allocator. This
curriculum allocator gradually selects a fraction of the samples with high confidence from the noisy
training set, controlled by a budget factor, then assigns reliable pseudo labels for them.

Our proposed CSOT for denoising and relabeling is formulated by introducing new curriculum con-
straints based on SOT in Problem (). Given curriculum budget factor m € [0, 1], our CSOT seeks
optimal coupling matrix Q by minimizing following objective

inn (—1ogP, Q) + (QP(Q) + QL(Q))

1 m (6)
S.t. QE{QEREXCQ]ICSBILB7QT]IB:Cﬂc}.
Unlike SOT, which enforces an equality constraint on the samples, CSOT relaxes this constraint
and defines the total coupling budget as m € [0, 1], where m represents the expected total sum of
Q. Intuitively speaking, m = 0.5 indicates that top 50% confident samples are selected from all
the classes, avoiding only selecting the same class for all the samples within a mini-batch. And the
budget m progressively increases during the training process, as shown in Fig. [Il.

Based on the optimal coupling matrix Q solved from Problem (B), we can obtain pseudo label by
argmax operation, i.e. §; = argmax; Q;;. In addition, we define the general confident scores of
samples as W = {wg, w1, -+ ,wp_1}, where w; = Q;4,/(m/C). Since our curriculum allocator
assigns weight to only a fraction of samples controlled by m, we use topK(S,k) operation (return
top-k indices of input set S) to identify selected samples denoted as 6;

1, i€ topkK(W, |mB]|)

% = {O, otherwise ’ @)

where |-| indicates the round down operator. Then the noisy dataset Dy,.q;, can be splited into
Deiean and Deorrypteq as follows

Detean < {(Xis ¥i, wi)|9i = yi, 6i = 1, (X4, ¥i) € Dirain} ®)
Dcarrupted — {(xiu Qia wz)'?}z 7& Yiy (Xiv yz) S Dtrain} .

4.3 Training Objectives

To avoid error accumulation in the early stage of training, we adopt a two-stage training scheme. In
the first stage, the model is supervised by progressively selected clean labels and self-supervised by
unselected samples. In the second stage, the model is semi-supervised by all denoised labels. No-
tably, we construct our training objective mainly based on Mixup loss £™* and Label consistency



loss £ same as NCE [43], and a self-supervised loss Lsimsiam proposed in SimSiam [[5]. The
detailed formulations of mentioned loss and training process are given in Appendix. Our two-stage
training objective can be constructed as follows

L5uP — E%nm =+ £l£ftean + Alﬁsimsiam (9)

clean Deorrupted’

Esemi _ C%’LZCE + ﬁlab + )\zﬁlab (10)

clean Deciean Dcorrupt,ed'

5 Lightspeed Computation for CSOT

The proposed CSOT is a new OT formulation with nonconvex objective function and curriculum
constraints, which cannot be solved directly by classical OT solvers. To this end, we develop a
lightspeed computational method that involves a scaling iteration within a generalized conditional
gradient framework to solve CSOT efficiently. Specifically, we first introduce an efficient scaling iter-
ation for solving the OT problem with curriculum constraints without considering the local coherent
regularized terms, i.e. Curriculum OT (COT). Then, we extend our approach to solve the proposed
CSOT problem, which involves a nonconvex objective function and curriculum constraints.

5.1 Solving Curriculum Optimal Transport

For convenience, we formulate curriculum constraints in Probelm (B) in a more general form. Given
two vectors o and 3 that satisfy ||a|[; > ||3]|; = m, a general polytope of curriculum constraints
IT¢(«x, B) is formulated as

(o, B) = {Q e RE71Q1 9 < 2, Q110 = B} an

For the efficient computation purpose, we consider an entropic regularized version of COT
min C, +¢e(Q,lo ) 12

Qin (C.Q) +(Q logQ) (12)

where we denote the cost matrix C := —logP in Probelm (B) for simplicity. In-
spired by [8], Problem (L) can be easily re-written as the Kullback-Leibler (KL) projection:

mingerr(a,8) eKL(Qle~€/¢). Besides, the polytope IT¢(cx, 3) can be expressed as an intersec-
tion of two convex but not affine sets, i.e.

a“{qerPqry <al ad ¢ {QerRPPQTIL =8} (3

In light of this, Problem () can be solved by performing iterative KL projection between C; and
Cy, namely Dykstra’s algorithm [21] shown in Appendix.

Lemma 1. (Efficient scaling iteration for Curriculum OT) When solving Problem (I2) by iterating
Dykstra’s algorithm, the matrix Q™) at n iteration is a diagonal scaling of K := e~/ which is
the element-wise exponential matrix of —C /e:

Q™ = diag (u(”)) Kdiag (U(”)) , (14)
where the vectors u™) e Rl v ¢ RIBI sarisfy v(©0) = 15| and follow the recursion formula
) — in (X ) m__ B
u( = min (Kv(n_l) Ma) and o oL (15)

The proof is given in the Appendix. Lemma [ allows a fast implementation of Dykstra’s algorithm by
only performing matrix-vector multiplications. This scaling iteration for entropic regularized COT
is very similar to the widely-used and efficient Sinkhorn Algorithm [I9], as shown in Algorithm [I.

5.2 Solving Curriculum and Structure-Aware Optimal Transport

In the following, we propose to solve CSOT within a Generalized Conditional Gradient (GCG)
algorithm [5Y] framework, which strongly relies on computing Curriculum OT by scaling iterations



Algorithm 1 Efficient scaling iteration for entropic regularized Curriculum OT

1: Input: Cost matrix C, marginal constraints vectors ¢ and 3, entropic regularization weight ¢
Initialize: K + e~ C/5, v(0) « 14,
. _ K @ gT. _ X' ; ;
Compute: K, + diag(a)1|a|x|m’Kﬁ  FE@ e // Saving computation
forn=1,2,3,...do
. 1o
u™ < min (7&1”‘(”‘_1) , ]l|a|)

(n) L
v Kt

end for
Return: diag(u(™))Kdiag(v(™))

A A o

in Algorithm [. The conditional gradient algorithm [7, B6] has been used for some penalized OT
problems [24, 4] or nonconvex Gromov-Wasserstein distances [58, 67, 3], which can be used to
solve Problem (B) directly.

For simplicity, we denote the local coherent regularized terms as (-) := QF () + Q¥(-), and give
an entropic regularized CSOT formulation as follows:

Qeglci(r;ﬁ) (C,Q) +rQ) +e(Q,log Q). (16)

Since the local coherent regularized term Q¥ (-) is differentiable, Problem (IB) can be solved within
the GCG algorithm framework, shown in Algorithm D. And the linearization procedure in Line B
can be computed efficiently by the scaling iteration proposed in Sec B

Algorithm 2 Generalized conditional gradient algorithm for entropic regularized CSOT

1: Input: Cost matrix C, marginal constraints vectors & and (3, entropic regularization weight &,
local coherent regularization weight , local coherent regularization function Q : Rl*/*18l — R,
and its gradient function V2 : RIe/XI8l — Rlelx|A]

2: Initialize: Q©) « ag8”
3: for: =1,2,3,...do
4 GW <+ QW +kVQ(QW) // Gradient computation
500 QU argming ey (a,g) <Q, G(i)> +¢e(Q,log Q)
// Linearization, solved efficiently by Algorithm M
6:  Choose n*) € [0, 1] so that it satisfies the Armijo rule // Backtracking line-search
7 QUY  (1-7®) QW 4+ yDQ® // Update
8: end for
9: Return: Q)

6 Experiments

6.1 Implementation Details

We conduct experiments on three standard LNL benchmark datasets: CIFAR-10 [&3], CIFAR-100
[23] and Webvision [49]. We follow most implementation details from the previous work DivideMix
[26] and NCE [85]. Here we provide some specific details of our approach. The warm-up epochs
are set to 10/30/10 for CIFAR-10/100/Webvision respectively. For CIFAR-10/100, the supervised
learning epoch T, is set to 250, and the semi-supervised learning epoch T's.y; is set to 200. For
Webvision, Ty, = 80 and Ts¢pm; = 70. For all experiments, weset Ay = 1, Ay = 1,e = 0.1,k = 1.
And we adopt a simple linear ramp for curriculum budget, i.e. m = min(1.0,mq + T;ﬂ;;) with
an initial budget mg = 0.3. For the GCG algorithm, the number of outer loops is set to 10, and the
number for inner scaling iteration is set to 100. The batch size B for denoising and relabeling is set
to 1024. More details will be provided in Appendix.




Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and
CIFAR-100. The results are mainly copied from [43, &¥]. We present the performance of our CSOT
method using the "mean+variance" format, which is obtained from 3 trials with different seeds.

Dataset CIFAR-10 CIFAR-100

Noise type Symmetric Assymetric Symmetric
Method/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9
Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
F-correction [56] 86.8 79.8 63.3 429 87.2 61.5 46.6 19.9 10.2
Co-teaching+ [ET] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
PENCIL [[Z6] 92.4 89.1 71.5 58.9 88.5 69.4 57.5 31.1 153
DivideMix [&6] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 315
ELR [50] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 334
NGC [I2] 95.9 94.5 91.6 80.5 90.6 79.3 75.9 62.7 29.8
RRL [EX] 96.4 95.3 93.3 77.4 92.6 80.3 76.0 61.1 33.1
MOIT [53] 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.5 36.0
UniCon [ET] 96.0 95.6 93.9 90.8 94.1 78.9 77.6 63.9 44.8
NCE [&5] 96.2 95.3 93.9 88.4 94.5 814 76.3 64.7 41.1

OT Cleaner [Z3] 91.4 85.4 56.9

- - 67.4 58.9 31.2 -
OT-Filter [23] 96.0 95.3 94.0 90.5 95.1 76.7 73.8 61.8 428

CSOT (Best) | 96.6+0.10 96.240.11 94.4+0.16 90.7+£0.33  95.5+0.06 | 80.5+0.28 77.9+0.18 67.8+0.23 50.5+0.46
CSOT (Last) | 96.4+0.18 96.0+0.11 94.3+0.20 90.5+0.36  95.2+0.12 | 80.2+0.31 77.7+0.14 67.6+0.36 50.3+0.33

Table 2: Comparison with SOTA methoc'ls. " Table 3: Time cost (s) for solving CSOT op-
top-1/ 5 test accuracy (%) on the Webvision .~ = . A .
timization problem of different input sizes.

and ImageNet ILSVRCI2 validation sets. VDA indicates vanilla Dykstras algorithm-

Webvision | ILSVRCI2 — paqed CSOT solver, while ESI indicates the effi-
Method | top-1  top-5 | top-1  top-5 . .. .
cient scaling iteration-based solver.
F-correction [B6] | 61.12 82.68 | 57.36 82.36
Decoupling [B2] | 62.54 84.74 | 58.26 82.26

MentorNet [B9] | 63.00 81.40 | 57.80 79.92 (lxf, 181) VDA-based  ESl-based (Ours)
Co-teaching [BT] | 63.58 85.20 | 61.48 84.70 (1024,10) 0.83 0.827]
DivideMix [A6] | 77.32 91.64 | 7520 90.84 (1024,50) 1.00 0.80 |
ELR [B0] | 76.26 9126 | 68.71  87.84 (1024,100) 0.87 0.80 |
O
RRL [E8] | 77.80 91.30 | 74.40 90.90 ggg’ ;88; 8'22 g‘gg i

UniCon [41] | 77.60 93.44 | 7529 93.72 , : y

MOIT [55] | 77.90 91.90 | 73.80 91.70 (1000,1000) 0.94 0.81 |
NCE [85] | 79.50 93.80 | 76.30 94.10 (2000,2000) 2.11 0.98 |
(3000,3000) 3.74 0.99 |

CSOT | 79.67 9195 | 76.64 91.67

6.2 Comparison with the State-of-the-Arts

Synthetic noisy datasets. Our method is validated on two synthetic noisy datasets, i.e. CIFAR-
10 [23] and CIFAR-100 [&3]. Following [46, 45], we conduct experiments with two types of label
noise: symmetric and asymmetric. Symmetric noise is injected by randomly selecting a percentage
of samples and replacing their labels with random labels. Asymmetric noise is designed to mimic
the pattern of real-world label errors, i.e. labels are only changed to similar classes (e.g. cat<+dog).
As shown in Tab. [, our CSOT has surpassed all the state-of-the-art works across most of the noise
ratios. In particular, our CSOT outperforms the previous state-of-the-art method NCE [45] by 2.3%,
3.1% and 9.4% under a high noise rate of CIFAR-10 sym-0.8, CIFAR-100 sym-0.8/0.9, respectively.

Real-world noisy datasets. Additionally, we conduct experiments on a large-scale dataset with
real-world noisy labels, i.e. WebVision [49]. WebVision contains 2.4 million images crawled from
the web using the 1,000 concepts in ImageNet ILSVRC12 [20]. Following previous works [46, &5],
we conduct experiments only using the first 50 classes of the Google image subset for a total of
~61,000 images. As shown in Tab. B, our CSOT surpasses other methods in top-1 accuracy on both
Webvision and ILSVRC12 validation sets, demonstrating its superior performance in dealing with
real-world noisy datasets. Even though NCE achieves better top-5 accuracy, it suffers from high
time costs (using a single NVIDIA A100 GPU) due to the co-training scheme, as shown in Tab. 3.



Table 4: Ablation studies under multiple label noise ratios on CIFAR-10 and CIFAR-100.
"repl." is an abbreviation for "replaced", and L£°¢ represents a cross-entropy loss. GMM refers
to the selection of clean labels based on small-loss criterion [26]. CT (confidence thresholding [62])
is a relabeling scheme where we set the CT value to 0.95.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Avg
Method/Noise ratio 0.5 0.8 0.9 0.4 0.5 0.8 0.9
(a) Classical OT 9545 9195 8235 95.04 | 7596 6246 4328 | 78.07
Denoise (b) Structure-aware OT 95.86 91.87 8329 95.06 | 76.20 63.73 44.57 | 78.65
Relabeling | (c) CSOT w/o QF and QF 9553 9384 89.50 95.14 | 7596 66.50 47.55 | 80.57
Technique | (d) CSOT w/o QF 9577 94.08 89.97 9535 | 76.09 66.79 48.13 | 80.88
(e) CSOT w/o QF 95.55 9397 9041 95.15 | 76.17 67.28 48.01 | 80.93
(f) GMM + L3P 9248 8037 31.76  90.80 | 69.52 48.49 20.86 | 62.04
Learning (g) CSOT repl. L7 with L 9347 8193 5345 9143 | 72.66 50.62 21.77 | 66.48
Technique (!1) CSOT w/o L™ ] ] 9534 93.04 889 94.11 | 75.16 61.13  36.94 | 77.80
(1) CSOT repl. correction with CT (0.95) | 9546 90.73 89.09 9521 | 75.85 6428 48.76 | 79.91
(j) CSOT w/o ll%:iii’;m 9592 94.17 89.31 95.16 | 7638 66.17 45.56 | 80.38
| csoT | 96.20 9439 90.65 9550 | 77.94 67.78 50.50 | 81.85

6.3 Ablation Studies and Analysis

Effectiveness of CSOT-based denoising and relabeling. To verify the effectiveness of each com-
ponent in our CSOT, we conduct comprehensive ablation experiments, shown in Tab. B. Compared
to classical OT, Structure-aware OT, and Curriculum OT, our proposed CSOT has achieved supe-
rior performance. Specifically, our proposed local coherent regularized terms QF and Q indeed
contribute to CSOT, as demonstrated in Tab B (c)(d)(e). Furthermore, our proposed curriculum con-
straints yield an improvement of approximately 2% for both classical OT and structure-aware OT,
as shown in Tab @ (a)(b)(c). Particularly, under high noise ratios, the improvement can reach up to
4%, which demonstrates the effectiveness of the curriculum relabeling scheme.

Effectiveness of clean labels identification via CSOT. As shown in Tab. B (f), replacing our
CSOT-based denoising and relabeling with GMM [46] for clean label identification significantly
degrades the model performance. This phenomenon can be explained by the clean accuracy during
training (Fig. [d) and clean recall rate (Fig. [Xd), in which our CSOT consistently outperforms
other methods in accurately retrieving clean labels, leading to significant performance improvements.
These experiments fully show that our CSOT can maintain both high quantity and high quality of
clean labels during training.

Effectiveness of corrupted labels correction via CSOT. As shown in Tab. B (h), only training
with identified clean labels leads to inferior model performance. Furthermore, replacing our CSOT-
based denoising and relabeling with confidence thresholding (CT) [62] for corrupted label correction
also degrades the model performance, as shown in Tab. B (i). The CT methods assign pseudo labels
to samples based on model prediction, which is unreliable in the early training stage, especially
under high noise rates. Our CSOT-based denoising and relabeling fully consider the inter- and intra-
distribution structure of samples, yielding more robust labels. Particularly, our CSOT outperforms
NCE and DivideMix significantly in label correction, as demonstrated by the superior corrected
accuracy in Fig. DH and the improved clarity of the confusion matrix in Fig. K.

Effectiveness of curriculum training scheme. According to the progressive clean and corrupted
accuracy during the training process shown in Fig. Zd and Fig. [H, our curriculum identification
scheme ensures high accuracy in the early training stage, avoiding overfitting to wrong corrected
labels. Note that since our model is trained using only a fraction of clean samples, it is crucial to
employ a powerful supervised learning loss to facilitate better learning. Otherwise, the performance
will be poor without the utilization of a powerful supervised training loss, as evidenced in Tab.
B (g). In addition, the incorporation of self-supervised loss enhances noise-robust representation,
particularly in high noise rate scenarios, as demonstrated in our experiments in Tab. B (j).

Time cost discussion for solving CSOT To verify the efficiency of our proposed lightspeed scal-
ing iteration, we conduct some experiments for solving CSOT optimization problem of different
input sizes on a single GPU NVIDIA A100. As demonstrated in Tab. B, our proposed lightspeed
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Figure 2: Performance comparison for clean label identification and corrupted label correc-
tion.

computational method that involves an efficient scaling iteration (Algorithm ) achieves lower time
cost compared to vanilla Dykstras algorithm (Algorithm K8). Specifically, compared to the vanilla
Dykstra-based approach, our efficient scaling iteration version can achieve a speedup of up to 3.7
times, thanks to efficient matrix-vector multiplication instead of matrix-matrix multiplication. More-
over, even for very large input sizes, the computational time cost does not increase significantly.

7 Conclusion and Limitation

In this paper, we proposed Curriculum and Structure-aware Optimal Transport (CSOT), a novel so-
lution to construct robust denoising and relabeling allocator that simultaneously considers the inter-
and intra-distribution structure of samples. Unlike current approaches, which rely solely on the
model’s predictions, CSOT considers the global and local structure of the sample distribution to
construct a robust denoising and relabeling allocator. During the training process, the allocator as-
signs reliable labels to a fraction of the samples with high confidence, ensuring both global discrim-
inability and local coherence. To efficiently solve CSOT, we developed a lightspeed computational
method that involves a scaling iteration within a generalized conditional gradient framework. Exten-
sive experiments on three benchmark datasets validate the efficacy of our proposed method. While
class-imbalance cases are not considered in this paper within the context of LNL, we believe that
our approach can be further extended for this purpose.

8 Acknowledgement

This work was supported by NSFC (No0.62303319), Shanghai Sailing Program (21YF1429400,
22YF1428800), Shanghai Local College Capacity Building Program (23010503100), Shanghai
Frontiers Science Center of Human-centered Artificial Intelligence (ShangHAI), MoE Key Labo-
ratory of Intelligent Perception and Human-Machine Collaboration (ShanghaiTech University), and
Shanghai Engineering Research Center of Intelligent Vision and Imaging.

10



References

(1]

(2]

(3]

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

David Alvarez-Melis, Tommi Jaakkola, and Stefanie Jegelka. Structured optimal transport. In Interna-
tional conference on artificial intelligence and statistics, pages 1771-1780. PMLR, 2018.

Shuang Ao, Tianyi Zhou, Guodong Long, Qinghua Lu, Liming Zhu, and Jing Jiang. Co-pilot: Collab-
orative planning and reinforcement learning on sub-task curriculum. Advances in Neural Information
Processing Systems, 34:10444-10456, 2021.

Eric Arazo, Diego Ortego, Paul Albert, Noel OConnor, and Kevin McGuinness. Unsupervised label noise
modeling and loss correction. In International conference on machine learning, pages 312-321. PMLR,
2019.

Devansh Arpit, Stanistaw Jastrzgbski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at mem-
orization in deep networks. In International conference on machine learning, pages 233-242. PMLR,
2017.

YM Asano, C Rupprecht, and A Vedaldi. Self-labelling via simultaneous clustering and representation
learning. In International Conference on Learning Representations, 2019.

Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-nn for noisy labels. In International Conference on
Machine Learning, pages 540-550. PMLR, 2020.

Heinz H Bauschke and Adrian S Lewis. Dykstras algorithm with bregman projections: A convergence
proof. Optimization, 48(4):409-427, 2000.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing,
37(2):A1111-A1138, 2015.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):334—
334, 1997.

Lev M Bregman. The relaxation method of finding the common point of convex sets and its application
to the solution of problems in convex programming. USSR computational mathematics and mathematical
physics, 7(3):200-217, 1967.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsu-
pervised learning of visual features by contrasting cluster assignments. Advances in neural information
processing systems, 33:9912-9924, 2020.

Wanxing Chang, Ye Shi, Hoang Tuan, and Jingya Wang. Unified optimal transport framework for univer-
sal domain adaptation. Advances in Neural Information Processing Systems, 35:29512-29524, 2022.

Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial optimal tranport with applications on positive-
unlabeled learning. Advances in Neural Information Processing Systems, 33:2903-2913, 2020.

Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing deep
neural networks trained with noisy labels. In International Conference on Machine Learning, pages
1062-1070. PMLR, 2019.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 15750-15758, 2021.

Ching-Yao Chuang, Stefanie Jegelka, and David Alvarez-Melis. Infoot: Information maximizing optimal
transport. In International Conference on Machine Learning, pages 6228—-6242. PMLR, 2023.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39:1853-1865, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 113-123, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26:2292-2300, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

Richard L Dykstra. An algorithm for restricted least squares regression. Journal of the American Statisti-
cal Association, 78(384):837-842, 1983.

Erik Englesson and Hossein Azizpour. Consistency regularization can improve robustness to label noise.
In International Conference on Machine Learning Workshops, 2021 Workshop on Uncertainty and Ro-
bustness in Deep Learning, 2021.

11



(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]
[44]

Chuanwen Feng, Yilong Ren, and Xike Xie. Ot-filter: An optimal transport filter for learning with noisy
labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16164-16174, 2023.

Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-Frangois Aujol. Regularized discrete optimal
transport. SIAM Journal on Imaging Sciences, 7(3):1853-1882, 2014.

Enrico Fini, Enver Sangineto, Stéphane Lathuiliere, Zhun Zhong, Moin Nabi, and Elisa Ricci. A uni-
fied objective for novel class discovery. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9284-9292, 2021.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H.
Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien
Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python optimal
transport. Journal of Machine Learning Research, 22(78):1-8, 2021.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95-110, 1956.

Dandan Guo, Zhuo Li, He Zhao, Mingyuan Zhou, Hongyuan Zha, et al. Learning to re-weight examples
with optimal transport for imbalanced classification. Advances in Neural Information Processing Systems,
35:25517-25530, 2022.

Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive thresholding. In
International Conference on Machine Learning, pages 8082—-8094. PMLR, 2022.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and Ding-
long Huang. Curriculumnet: Weakly supervised learning from large-scale web images. In Proceedings
of the European conference on computer vision, pages 135-150, 2018.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961-2969, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In European Conference on Computer Vision, pages 630—645. Springer, 2016.

Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using trusted data to train deep
networks on labels corrupted by severe noise. Advances in neural information processing systems, 31,
2018.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International con-
ference on machine learning, pages 427-435. PMLR, 2013.

Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise: Deep learning on controlled
noisy labels. In International conference on machine learning, pages 4804—4815. PMLR, 2020.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced curriculum
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven
curriculum for very deep neural networks on corrupted labels. In International conference on machine
learning, pages 2304-2313. PMLR, 2018.

Leonid V Kantorovich. On the translocation of masses. Journal of mathematical sciences, 133(4):1381—
1382, 2006.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah. Uni-
con: Combating label noise through uniform selection and contrastive learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9676-9686, 2022.

Faisal Khan, Bilge Mutlu, and Jerry Zhu. How do humans teach: On curriculum learning and teaching
dimension. Advances in neural information processing systems, 24, 2011.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Zhengfeng Lai, Chao Wang, Sen-ching Cheung, and Chen-Nee Chuah. Sar: Self-adaptive refinement
on pseudo labels for multiclass-imbalanced semi-supervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4091-4100, 2022.

12



[45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Jichang Li, Guanbin Li, Feng Liu, and Yizhou Yu. Neighborhood collective estimation for noisy label
identification and correction. In European Conference on Computer Vision, pages 128-145. Springer,
2022.

Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In International Conference on Learning Representations, 2019.

Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. Learning to learn from noisy labeled
data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5051-5059, 2019.

Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9485—
9494, 2021.

Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision database: Visual learning
and understanding from web data. CoRR, 2017.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning reg-
ularization prevents memorization of noisy labels. Advances in neural information processing systems,
33:20331-20342, 2020.

Zhanyu Ma and Arne Leijon. Bayesian estimation of beta mixture models with variational inference.
1EEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2160-2173, 2011.

Eran Malach and Shai Shalev-Shwartz. Decoupling" when to update" from" how to update". Advances in
neural information processing systems, 30, 2017.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone. Cur-
riculum learning for reinforcement learning domains: A framework and survey. The Journal of Machine
Learning Research, 21(1):7382-7431, 2020.

Vu Nguyen, Sachin Farfade, and Anton van den Hengel. Confident sinkhorn allocation for pseudo-
labeling. arXiv preprint arXiv:2206.05880, 2022.

Diego Ortego, Eric Arazo, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Multi-objective inter-
polation training for robustness to label noise. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6606—-6615, 2021.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1944-1952, 2017.

Haim Permuter, Joseph Francos, and Ian Jermyn. A study of gaussian mixture models of color and texture
features for image classification and segmentation. Pattern recognition, 39(4):695-706, 2006.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and distance
matrices. In International conference on machine learning, pages 2664-2672. PMLR, 2016.

Alain Rakotomamonjy, Rémi Flamary, and Nicolas Courty. Generalized conditional gradient: analysis of
convergence and applications. arXiv preprint arXiv:1510.06567, 2015.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for robust
deep learning. In International conference on machine learning, pages 4334—4343. PMLR, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28, 2015.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in neural information processing systems, 33:596—608, 2020.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust deep
learning. In International Conference on Machine Learning, pages 5907-5915. PMLR, 2019.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Kai Sheng Tai, Peter D Bailis, and Gregory Valiant. Sinkhorn label allocation: Semi-supervised classifi-
cation via annealed self-training. In International Conference on Machine Learning, pages 10065-10075.
PMLR, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused gromov-
wasserstein distance for structured objects. Algorithms, 13(9):212, 2020.

13



[68]

[69]

[70]

(71]

(72]

(73]

[74]

[75]

[76]

(771

(78]

(791

[80]

(81]

(82]

[83]

[84]

[85]

Haobo Wang, Mingxuan Xia, Yixuan Li, Yuren Mao, Lei Feng, Gang Chen, and Junbo Zhao. Solar:
Sinkhorn label refinery for imbalanced partial-label learning. Advances in Neural Information Processing
Systems, 35:8104-8117, 2022.

Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Marios Savvides, Takahiro Shinozaki, Bhiksha
Raj, Zhen Wu, and Jindong Wang. Freematch: Self-adaptive thresholding for semi-supervised learning.
International Conference on Learning Representations, 2022.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross entropy
for robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 322-330, 2019.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint
training method with co-regularization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13726-13735, 2020.

Zhi-Fan Wu, Tong Wei, Jianwen Jiang, Chaojie Mao, Mingqian Tang, and Yu-Feng Li. Ngc: A uni-
fied framework for learning with open-world noisy data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 62-71, 2021.

Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, and Stan Z Li. Ot cleaner: Label correction as optimal
transport. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3953—
3957. IEEE, 2022.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled
data for image classification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2691-2699, 2015.

Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash: Semi-
supervised learning with dynamic thresholding. In International Conference on Machine Learning, pages
11525-11536. PMLR, 2021.

Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7017—
7025, 2019.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does disagree-
ment help generalization against label corruption? In International Conference on Machine Learning,
pages 7164-7173. PMLR, 2019.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. Advances in
Neural Information Processing Systems, 34:18408-18419, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107-115, 2021.

HaiYang Zhang, XiMing Xing, and Liang Liu. Dualgraph: A graph-based method for reasoning about
label noise. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9654-9663, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. International Conference on Learning Representations, 2017.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with
noisy labels. Advances in neural information processing systems, 31, 2018.

Kecheng Zheng, Wu Liu, Lingxiao He, Tao Mei, Jiebo Luo, and Zheng-Jun Zha. Group-aware label
transfer for domain adaptive person re-identification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5310-5319, 2021.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning dynamics. In
International Conference on Artificial Intelligence and Statistics, pages 433-441. PMLR, 2021.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label detection to
noisy label self-correction. In International Conference on Learning Representations, 2021.

14



A Supplement for Training Details

A.1 Implementation Details

CIFAR10/100. Following previous works [46, 45], we use PreAct ResNet-18 [B4] as the backbone,
and train it using SGD with a momentum of 0.9, a weight decay of 0.0005, and a batch size of 128.
We set the initial learning rate as 0.02, with a cosine learning rate decay schedule. The hidden layer
in SimSiam projection MLP is set to 128-d.

Webvision. Following previous works [26, B5], we use inception-resnet v2 [b4] as the backbone,
and train it using SGD with a momentum of 0.9, a weight decay of 0.0005, and a batch size of 32.
We set the initial learning rate as 0.01, with a cosine learning rate decay schedule. The hidden layer
in SimSiam projection MLP is set to 384-d.

Other details. All experiments are implemented on a single GPU of NVIDIA A100 with 80 GB
memory. We follow DivideMix [46] and NCE [45] to set the hyper-parameters in the mixup loss
and label consistency loss. The loss trade-off weights A; and A, are empirically set to 1, which is
similar to NCE [45]. The selection criterion of the hyper-parameters € and x in CSOT formulation
is analyzed in Sec. B3. Our code is modified based on DivideMix [A6] https://github.com/
LiJunnan1992/DivideMix and NCE [45] https://github.com/1ijichang/LNL-NCE. The
CSOT solver code is modified based on POT [Z€].

A.2 Training Loss

To be self-contained, we specify the Mixup loss L™ and label consistency loss £!%* adopted in
NCE [45], and the self-supervised loss L™ proposed in SimSiam [[I5].

Mixup loss. Mixup [KT] can effectively mitigate noise memorization, and thus mixup regulariza-
tion can be used to construct augmented samples through linear combinations of existing samples
from Dejeqn. Given two existing samples (x;, ;) and (x;,y;) from Dejeqn, an augmented sample
X,y can be generated as follows:

X=9%+ 1 —v)x;, ¥T=0y)+ 1 —7)py(y;), (S17)

where p, (y;) is the one-hot vector for the given label y; and v ~ Beta(a) is a mixup ratio and « is
a scalar parameter of Beta distribution. The cross-entropy loss applied to B’ augmented samples in
each training mini-batch is defined as follows:

B/
mix 1 ~ o
L= =223 Gilogp(y[Xi), (S18)
i=1
where p(y|Xp) is the softmax prediction of a mixup input Xj.

Label consistency loss. Label consistency regularization encourages the fine-tuned model to pro-
duce the same output when there are minor perturbations in the input [62]. Hence consistency regu-
larization can be used to further enhance the robustness of the model [2Z]. The label consistency is
enforced by minimizing the following loss:

B/
1
£l = =22 > py (i) log p(y| Aug()), (S19)
i=1

where Aug(-) denotes the function that perturbs the chosen samples using Autoaugment technique
proposed in [TH].

SimSiam loss. We simply define a feature extractor as f and a projection layer as h. Given two
augmented views x} and x7 from an image x, we can have p; = h(f(x})) and z? = f(x7?). The
negative cos similarity is defined as follows:

1.2
Pz

Up},22) = ——°L
o 2 112 112211

(S20)
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where ||-||, is £2-norm. To construct the contrastive loss by enforcing the consistency between two

positive pairs (p}, 27) and (p?, z} ), the SimSiam loss is defined as follows:
1 &
[simsiam _ _ Vel Z (f(p%, stopgrad(zf)) + é(pf, stopgrad(zil))) (S21)
i=1

where stopgrad(-) is a stop-gradient operation that can be easily realized by .detach () operation
in PyTorch.

A.3 Training Process

Algorithm S3 Training process of proposed CSOT

1: Input: Training dataset D;,.,;,, number of warmup training epochs Ty,4,m , number of super-
vised training epochs T,,,,, number of semi-supervised training epochs Ty, initial curriculum
budget my.

2: Initialize model parameter 6.

3ifort=1,...,(Toup + Tsems) do

ift < Tparm then

5 WarmUp(Dyyqin; 0)-

6: else

7 t—1

8

AN

).

Compute the curriculum budget m = min(1.0,mo + 7——
up

_ relabeling
forb=1,...,N, .. do

9: Draw a mini-batch X} from Dyygin-

10: Denoising and relabeling for X}: solve the Problem (B) by Algorithm [.

11: end for

12: Use Eq. Bto split the training dataset Dy,.q;,, into the clean dataset D,;eq, and the corrupted
dataset Deyrrupted-

13: fort/ =1,..., Nirain do

14: Draw a mini-batch X}y from D¢y, and draw a mini-batch Uy from Dy rupted-

15: if ¢ < Ty, then

16: L= LBF AL 4 M Lymesiem.

17: else

18: L= L0+ L+ XL

19: end if

20: Update model parameter 6 by applying SGD with loss L.

21: end for

22:  end if

23: end for

24: Return: Optimal model parameter 6.

We specify our training process in Algorithm 83, which mainly includes two parts, i.e. denoising
and relabeling part, the training part.

B Supplement for Experimental Results

B.1 Comparison with Prediction- , OT- and SOT-Based Pseudo-Labeling

As shown in Fig. 8§34 and K30, prediction-based PL generates vague predictions when the class
centroids are not discriminative enough. To explain this, prediction-based PL assigns labels in a
per-class manner without considering either the global structure of the sample distribution. To this
end, OT-based PL optimizes the mapping problem considering the inter-distribution matching of
samples and classes, and thus produces more discriminative labels. However, as shown in Fig.
K34, two nearby samples could be mapped to two far-away class centroids, which is not reasonable
since it overlooks the inherent coherence structure of the sample distribution, i.e. intra-distribution
coherence. Therefore, our proposed SOT encourages generating more robust labels with both
global discriminability and local coherence.
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(a) IMustrations of different pseudo-labeling mappings.

Prediction-based PL

(b) Hlustrations of different pseudo-labeling (transposed) coupling matrices.

Figure S3: Comparison with prediction- , OT- and SOT-based pseudo-labeling. We consider a
toy binary classification case for simplicity.

B.2 Visualization of the Coupling Matrix for CSOT

We visualize randomly selected 200 samples of CIFAR-10 (after 10-epoch warm-up training) and
10 implicit class centroids in feature space in Fig. §44. The feature dots are visualized based on t-
SNE [6f], and the implicit class centroids are obtained by a weighted sum of the softmax prediction
scores. It is evident that the feature space exhibits confusion in the early training stage, particularly
among semantically similar classes, such as cat and dog. Therefore, utilizing a full mapping based
on OT would lead to incorrect assignments for samples that have not yet been sufficiently
learned. Our proposed strategy, on the other hand, demonstrates superiority by selectively assigning
reliable labels to a fraction of samples with the highest confidence. This approach ensures high
training label accuracy and mitigates the negative impact of unreliable labels during the early stages
of training. In addition, we also visualize the coupling matrices, along with their corresponding row
and column sum vectors by histograms in Fig. §4R, which illustrates the partial mapping controlled
by curriculum constraints.

B.3 Convergence of the proposed GCG algorithm for CSOT

We set the number of outer loops is set to 10, and the number for inner scaling iteration is set to 100.
And the curriculum budget m is set to 0.5, and the local coherent regularized terms weight & is set to
1. As demonstrated in Fig. 83, our computational method, which includes a novel scaling iteration
within a generalized conditional gradient framework, is capable of optimizing the non-convex
objective and converging to a stationary point.

B.4 Addictional Results of CSOT

Method Time cost
DivideMix[46] 5.1h
NCE[23] 6.5h
CSOT 4.8h

Table S5: Comparison of total training time (hours) on CIFAR-10.The experiments are imple-
mented on a single GPU NVIDIA A100.

17



m=30% m=50% m =80% m =100%
LYY ] o Y o LYY o com
SNt el SNE Ll SRE el N\ ¥
W q'}"z.o s ;'. e i ;.3 oo o s y:I o0t o airplane
9 %% 9 %2 4 2 4 225 | = automobile
oo oo % e E 92
o Wi o Wi o =¥ & bird
. . b cat
¢ .\TA' é.} . 2 S, é.} s e e\k ,;.} o ° ey > T
%, '{** R %o, a,* - R oo, ,}* S ete, "a:ir ) dog
S S e X o frog
Yo Ao A g o ship
¥ ¥ & y
o oo o P o Peee s e . truck
R X X X
(a) lustrations of CSOT mappings with different curriculum budgets m.
m=30%
00008 LB
y R iR AR NR
25 "onRn mn
L] nu n
5.0 [ ] nm [ 3 . T i
75 C L T ] — o
o 25 50 75 100 125 150 175 0.00 0.05 0.10
m=50%
00008 LRl |
e fIEEmEm
25 LI Tl ] ~ ]
5.0 n n e L L - T ']
75 nmirE 1
l_ ima . .
0 25 50 75 100 125 150 175 0.00 0.05 0.10
m=80%

o g UL AOERRRRR, 0 00000000 o RRR 0000 0O o0, 000 ONRRR 0 00 b ILLSE ., 000 ERE OAERRERL ERERER B0
0.000
0.0

—— T T
—
25 mim= T T LT
— .
5.0 (1] ] I .
T e
75 - ——
|
o 25 50 75 100 125 150 175 0.00 0.05 0.10
m=100%

po 111 A AT
0.000
0.0 L] L) L] L] 1 ™

N — ]
25 - — L] onoan
5.0 (1] (18] - 0

- -

75

] ] [] [T

] [l
o 25 50 75 100 125 150 175 0.00 0.05 0.10

(b) Hlustrations of CSOT (transposed) coupling matrices with different curriculum budgets m.

Figure S4: Comparison with using different curriculum budgets m. The samples are plotted as
colorful dots and the class centroids are plotted as five-pointed stars, which are colored by their true
labels.
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Figure S5: Convergence behaviour of the generalized conditional gradient (GCG) algorithm
for CSOT.
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Figure S7: Comparision of confusion matrix on CIFAR-10 assym-40%. The darker the color on
the diagonal elements of the matrix, the higher the accuracy.

Effectiveness of CSOT-based denoising and relabeling. To further verify the effectiveness of
our CSOT for clean label identification and corrupted label correction, we also conduct ablation
experiments on OT-, SOT-, COT-, and CSOT-based denoising and relabeling. As depicted in Fig.
KA, the incorporation of curriculum constraints ensures high accuracy of clean labels during
the early training stage. This, in turn, facilitates effective learning by providing the model with
correct and reliable information, which avoids error accumulation. Furthermore, local coherent
regularized terms contribute to improved label correction.
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Table S6: Comparison with state-of-the-art methods in test accuracy (%) on Clothing1 M.
Method \ Meta-L. [874] DivideMix [6] ELR+ [80] ELR+[80] RRL [28] NCE% [85] \ CSOT

Accuracy | 73.50 74.48 72.87 74.80 74.84 7471 | 75.16
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Figure S8: Visualization of coupling matrix with different entropic regularized weights . We
conduct experiments on randomly selected 200 samples of CIFAR-10 (after 10-epoch warm-up train-
ing) and the curriculum budget m is set to 0.5.

Result of ClothinglM. ClothinglM [[74] is another real-world noisy dataset, which consists of
1 million training images collected from online shopping websites with labels generated from sur-
rounding texts. We use the augmentation provided in [62] as Aug(-). Following the similar setting
in NCE [49] and DivideMix [46], we also conduct the experiment on ClothinglM and achieve
superior performance compared to existing approaches, as shown in Tab. 8. Since NCE utilized
an inaccessible data augmentation and hence we reproduce NCE with the augmentation in [62] for
a fair comparison, denoted by 1.

B.5 Hyperparameter Analysis

Entropic regularized weight c. When ¢ — 0, the entropic regularized CSOT formulation be-
comes closer to the exact CSOT. Therefore, in order to obtain a solution that closely approximates
the exact CSOT, we prefer to set € to a small value. We visualize the coupling matrix with different
¢ in Fig. B, and it can be observed that the ¢ also influences the mapping smoothness. A smaller ¢
leads to sharper pseudo labels. To ensure discriminative relabeling and reliable selection, we set €
to 0.1.

Local coherent regularized weight x. The local coherent regularized weight, «, determines the
strength of local coherent mapping. As shown in Fig. 89, we can observe that the performance is
not sensitive to the different values of x, and it is relatively easy to tune. It is important to note
that setting ~ too high can result in performance degradation, particularly in scenarios with
high noise rates. This is because the label-level local consistency term Q¥, may introduce incorrect
consistency in such cases.
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C More Discussion about CSOT

D Background on Computational Optimal Transport

D.1 Sinkhorn’s Algorithm

Algorithm S4 Sinhorn algorithm, for entropic regularized classical OT

1: Input: Cost matrix C, marginal constraints vectors o and (3, entropic regularization weight €
Initialize: K < ¢~ €/, (0 1ig,
. K T K . :
Compute: K, gL o m” Kﬁ — e B) im0 a // Saving computation
forn=1,2,3,...do
Ljor|

(n) ]
v\ K

end for
Return: diag(u(™))Kdiag(v(™)

AR S

The Sinkhorn algorithm for solving entropic regularized OT problem is presented in Algorithm S4.
It is evident that our proposed scaling iteration is very similar to the existing efficient Sinkhorn
algorithm. The main difference lies in Line B of Algorithm 84, which corresponds to Line B of Al-
gorithm [. Therefore, our scaling iteration shares the same quadratic time complex as the Sinkhorn
algorithm.

D.2 Relation Between Kullback-Leibler Divergence and Entropic Regularized OT

Given a convex set C, and a matrix M, the projection according to the Kullback-Leibler (KL) diver-
gence is defined as

PEL(M) = argmin KL(Q|M). (S22)
Qec
According to [R], the classical OT can be rewritten in a KL projection form as follows:

min  (C,Q)= min eKL(Qle €/%), (S23)
QEl(e,8) < Q> QEll(e,8) (Q| )

which can be interpreted as that solving a classical OT problem is equivalent to solving a KL pro-

jection from a given matrix e~C/¢ to the constraint II(c, 3). In light of this, it was proposed in

[B] that when C is an intersection of closed convex and affine sets, the classical OT problem can be

solved by iterative Bregman projections [10]. However, when C is an intersection of closed convex

21



but not affine sets, Dykstra’s algorithm [21] is employed to guarantee convergence [], as iterative
Bregman projections do not generally converge to the KL projection on the intersection.

D.3 Dykstra’s Algorithm
Assume that C is an intersection of closed convex but not affine sets:

L
c=()¢: (S24)

and we extend the indexing of the sets by L-periodicity so that they satisfy

Vn € N7 C71,+L = Cn- (825)

Dykstra’s algorithm [Z1] starts by initializing

QYW =K and UO® =utb =... 2 gtL+d) — 1, (526)

One then iteratively defines

Q(n) pKL(Q(n D ouln— L))’ and UM = yr-1) o (S27)

D.4 Generalized Conditional Gradient Algorithm

We are interested in the problem of minimizing under constraints a composite function such as

glélg = f(Q) +9(Q), (S28)

where both f(+) is a differentiable and possibly non-convex function; g(+) is a convex, possibly non-
differentiable function; C denotes any convex and compact set. One might want to benefit from this
composite structure during the optimization procedure. For instance, if we have an efficient solver
for optimizing
min = (Vf, Q) + ¢(Q). (529)
Qec
It is of prime interest to use this solver in the optimization scheme instead of linearizing the whole
objective function as one would do with a conditional gradient algorithm [H, 8Y], as shown in Algo-
rithm §3.

Algorithm S5 Generalized conditional gradient algorithm

1: Input: A differentiable and possibly non-convex function f and its gradient function V f, a
convex, possibly non-differentiable function g, a convex and compact set C.

2: Initialize: Q) c

3: fori=1,2,3,.

4: GO Q(Z) n Vf(Q(i)) // Gradient computation

55 Q) argmingce (Q,G") + ¢(Q) // Partial linearization

6

Find the optimal step () with AQ = Q) — Q®

o = argmin f(QU +10AQ) +9(Q +40AQ)
nelo,1

or choose (") € [0, 1] so that it satisfies the Armijo rule.
// Exact or backtracking line-search
QU (1 —7®) QM +nWQ® // Update

end for

Return: Q")

0 ® A
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E Derivation Details of the Efficient Scaling Iteration Method (Lemma )

We have developed a lightspeed computational method that involves a scaling iteration within a
generalized conditional gradient framework to solve CSOT efficiently. Specifically, the efficiency is
mainly brought by the scaling iteration method for solving the COT problem (Problem (7)), which
is proposed in Lemma [I.

This section presents the derivation details of this efficient scaling iteration method. First, we show
that solving COT is equivalent to solving the KL projection problem with the curriculum constraints
(Lemma K2). Then such a KL projection problem can be solved by iterating Dykstras algorithm
(Lemma K3). However, Dykstras algorithm is based on matrix-matrix multiplication which is com-
putationally extensive. Therefore, we propose a fast implementation of Dykstras algorithm by only
performing matrix-vector multiplications, i.e. efficient scaling iteration (Lemma ).

Lemma S2. Solving the Problem (IA) is equivalent to solving the KL projection problem from the
matrix e~/ to the curriculum constraint TI (v, 3), i.e.

min  (C,Q)+¢(Q,logQ) < min eKL(Qle €/9), S30
QGHC(aﬁ)< Q) +¢(Q,logQ) qelin Q| ) (S30)

Proof.

Qelml“i(%,ﬁ) (C,Q) +(Q,log Q)

= min ,C+elo
qerim o (Q gQ)

= min £(Q,C/e+1o
qetin =(Q /€ +1og Q)

~ i Q
T Qert(as <Q’ log _=c7e

= min eKL(Qle ©/c
Qe o Q| )

O

Recall that the curriculum constraints IT°(cx, 3) can be expressed as an intersection of two convex
but not affine sets:

Cld:ef{QElerxlxlﬁ”Q]Hm Sa} and Co = {QGRT‘X"B"QT]I‘Q‘ :ﬂ} (831)

Lemma S3. The KL projection from a matrix M to the C1 and Cy are expressed as

PEL(M) = diag (mm <M‘]’l‘m, 11ﬁ,|)) M, (S32)
PEL(M) = Mdiag <Mf]l) . (S33)

Then the Problem (I2Q) can be solved by Dykstra iterations, presented in Algorithm 54.

Lemma K3 can be derived form the Proposition 1 and Proposition 5 in [8].

The limitation of Dykstras algorithm comes from its computationally extensive matrix-matrix mul-
tiplication. To handle this issue, we propose a fast implementation of Dykstras algorithm by only
performing matrix-vector multiplications, i.e. efficient scaling iteration (Lemma ).

Lemma 1. (Efficient scaling iteration for Curriculum OT) When solving Problem (I2) by iterating
Dykstra’s algorithm, the matrix Q™) at n iteration is a diagonal scaling of K := e~C/¢, which is
the element-wise exponential matrix of —C /e:

Q™ = diag (u<”>) Kdiag (v(”)) : (S34)

where the vectors u(™ e Rl v ¢ RIBI sarisfy v(©) = 15| and follow the recursion formula

and o™ = B (S35)

(") — mi
u min ( Ka®

a
oo el
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Algorithm S6 Dykstras algorithm for entropic regularized Curriculum OT

1: Input: Cost matrix C, marginal constraints vectors  and 3, entropic regularization weight ¢
2: Initialize: Q) + e—C/E U@ 14 x5 U 1o«
3: fort=1,2,3,..
4 Q/(t) — PKL(Q(t 1) o U/(t 1))
5. UW —yut-D LQ“/(;)

KL -1
6 QM P¥] (Q/(t) o Ut ))
7
8
9

U® Ut o L7

: end for
: Return: Q)

Proof. Firstly, let «!) := min (ﬁ%, ]1‘04). Following the Algorithm Sf and Lemma 53, we
derive Q'Y and U’(Y). Now we have

Q'Y = PE(QY 0 U'Y) = diag (min < ]la)> Q¥ = diag (u(l)) Q,

x>
Qg

QO QO
Q’(l) - diag (u(l)) Q(O)

= diag (1/11,(1)) ]l\a\xlﬁ\~

Then let vV := And we derive Q) and UM as follows:

m
QW = péL(Q/(l) o U)

(s B
- Qe (K“)Tﬂa)

o MY A0) 1 B8
= diag (u Q™ diag <Q(0)Tdiag (u(l)) ]la>

@ diag (u) Q)
1 _ g0 ~ QY g B . o
vesuTe QM "~ diag (uM) QO diag (v) Lja|x|pdiag (1/v )

For simplicity, before deriving Q') and U’ we derive Q") ® U’ firstly:

Q) 6 U = (diag (u(l)) Q" diag (v(”)) © (diag (l/u“)) lha\xm\)
— (Q®diag (v@)) © (1jajx/a)
= Q(O)diag (v(l)) .
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Let u(® := min ( ]l‘a‘). We can now derive Q'(?) and U’ as follows:

o
Q@)

QI(Q) _ Pé(L(Q(l) ® U/(l))
1

. . «a
= diag (mm ((Q(l) S U’(l)) T ,]l|a|)> (Q(l) ® U/(l))

a
= diag | min - , 1o Q(O)diag oM
(o { ey 1)) @ (o)

= diag (min <Q(0()1v(1)’ ]1|a|)> Q(O)diag (v(l))
= diag (u(z)) Q(O)diag (v(l)) ,

U —y o 3/((12))
(g (1) o) o ot LT 0]
— (diag (1/uV) Djajxjg) © m
— (diag (1/6M) 1jajxj)) © diag (u®) /u)

= diag (1/u(2)) L= 8|
For simplicity, before deriving Q(?) and U, we derive Q' © UM firstly:
Q@ oUWl = (diag (u@)) Q©diag (v(l))) ® (]l‘odxwdiag <1/v(1)))
= (diag (u(Q)) Q(O)) O 1iqx Bl
— diag (u(2)> Q.
Letv(® := ﬁ We can now derive Q®) and U(® as follows:

Q¥ = ng(Q/@) @U(l))

— di @) QO g B
diag (u ) Q% diag ((diag (u(2)) Q(0)>T1|al>

= diag (u(2)) Q) diag (v<2>)

QO diag (v?)

= ]l‘a‘xwdlag (1/’0(2))
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To conclude, it can be easily summarized that
Q™ = diag (u(”)) Kdiag (U(”)) ,

and ’U(O) = ]l‘lg‘.

(n) _— 3 o (n) _ B8
where u'™ = min (Kv(nfl) , 1L|a|), v\ = =
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