
Published as a conference paper at ICLR 2025

PIG: PHYSICS-INFORMED GAUSSIANS AS ADAPTIVE
PARAMETRIC MESH REPRESENTATIONS

Namgyu Kang∗
Department of Artificial Intelligence
Yonsei University

Jaemin Oh∗

Department of Mathematical Sciences
KAIST

Youngjoon Hong†
Department of Mathematical Sciences
Seoul National University

Eunbyung Park†

Department of Artificial Intelligence
Yonsei University

ABSTRACT

The numerical approximation of partial differential equations (PDEs) using neu-
ral networks has seen significant advancements through Physics-Informed Neural
Networks (PINNs). Despite their straightforward optimization framework and
flexibility in implementing various PDEs, PINNs often suffer from limited accu-
racy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle
to effectively learn high-frequency and nonlinear components. Recently, paramet-
ric mesh representations in combination with neural networks have been inves-
tigated as a promising approach to eliminate the inductive bias of MLPs. How-
ever, they usually require high-resolution grids and a large number of colloca-
tion points to achieve high accuracy while avoiding overfitting. In addition, the
fixed positions of the mesh parameters restrict their flexibility, making accurate
approximation of complex PDEs challenging. To overcome these limitations, we
propose Physics-Informed Gaussians (PIGs), which combine feature embeddings
using Gaussian functions with a lightweight neural network. Our approach uses
trainable parameters for the mean and variance of each Gaussian, allowing for
dynamic adjustment of their positions and shapes during training. This adapt-
ability enables our model to optimally approximate PDE solutions, unlike mod-
els with fixed parameter positions. Furthermore, the proposed approach main-
tains the same optimization framework used in PINNs, allowing us to benefit
from their excellent properties. Experimental results show the competitive per-
formance of our model across various PDEs, demonstrating its potential as a ro-
bust tool for solving complex PDEs. Our project page is available at https:
//namgyukang.github.io/Physics-Informed-Gaussians/

1 INTRODUCTION

Machine learning techniques have become promising tools for numerical solutions to partial dif-
ferential equations (PDEs) (Raissi et al., 2017; Yu et al., 2018; Karniadakis et al., 2021; Finzi
et al., 2023; Gaby et al., 2024). A notable example is the Physics-Informed Neural Network
(PINN) (Raissi et al., 2019), which leverages Multi-Layer Perceptrons (MLPs) and gradient-based
optimization algorithms. This approach circumvents the need for the time-intensive mesh design
prevalent in numerical methods and allows us to solve both forward and inverse problems within
the same optimization framework. With the increased computational power and the development of
easy-to-use automatic differentiation software libraries (Abadi et al., 2015; Bradbury et al., 2018;
Innes, 2018; Paszke et al., 2019), PINNs have successfully tackled a broad range of challenging
PDEs (Hu et al., 2024c; Li et al., 2024; Oh et al., 2024).

Although the neural network approach shows significant promise in solving PDEs, it has several lim-
itations. Training PINNs typically requires numerous iterations to converge (Saarinen et al., 1993;

∗Equal contribution
†Corresponding authors

1

https://namgyukang.github.io/Physics-Informed-Gaussians/
https://namgyukang.github.io/Physics-Informed-Gaussians/

Published as a conference paper at ICLR 2025

Figure 1: Training visualization of the Allen-Cahn equation (400, 800, 1200, 4000 training iter-
ations): Each Gaussian is displayed as the ellipsoids, exhibiting different positions and shapes ac-
cording to the Gaussian parameters, mean and covariance. Since we adopt a causal loss (Wang et al.,
2024c), the solution is gradually approximated from t = 0 to t = 1. Note that the Gaussians are
densely aligned in the locations where the solution changes abruptly.

Wang et al., 2021; De Ryck et al., 2023). Despite recent techniques aimed at reducing computational
costs, multiple forward and backward passes of neural networks are still necessary to update net-
work parameters. Furthermore, obtaining more accurate approximations demands the use of wider
and deeper neural networks, which enhances their expressiveness but significantly increases compu-
tational costs (Cybenko, 1989; Baydin et al., 2018; Kidger & Lyons, 2020). In addition, inductive
biases inherent in MLPs often hinder the accuracy of solution approximations. A well-known exam-
ple is the spectral bias, which favors learning low-frequency components of solutions and disturbs
capturing high-frequency or singular behaviors (Rahaman et al., 2019). Although some solutions
to the spectral bias have been proposed (Tancik et al., 2020; Sitzmann et al., 2020), eliminating
inductive biases from neural networks remains a challenge.

To address these issues, recent studies have explored combining classical grid-based representations
with lightweight neural networks (Hui et al., 2018; Cao et al., 2023). In this approach, the parametric
grids map input coordinates to intermediate features, which are then processed by neural networks
to produce the final solutions. By relying on high-resolution parametric grids for representational
capacity, this approach presents the potential to reduce the impact of neural networks’ inductive
biases. Moreover, using lightweight neural networks significantly reduces computational demands,
leading to faster training speeds compared to traditional approaches only using neural networks.

While promising, existing methods that combine parametric grids with neural networks face a fun-
damental challenge. The positions of the parameters (the locations of vertices) are predetermined
by the grid resolutions and remain fixed during training. Since the optimal allocation of represen-
tational capacity (determining where to place more vertices) is unknown, these methods typically
use high-resolution grids that uniformly distribute many vertices across the entire input domain to
achieve high accuracy. This approach results in using a large set of learnable parameters, which
often leads to overfitting issues, i.e., low PDE residual losses but inaccurate solutions. To mitigate
this problem, a large number of collocation points are sometimes used during training at the expense
of the increased computational costs.

In this work, we introduce a novel representation for approximating solutions to PDEs. Drawing
inspiration from adaptive mesh-based numerical methods (Berger & Oliger, 1984; Seol et al., 2016)
and recent parametric grid representations (Li & Lee, 2021; Jang et al., 2023), we propose Physics-
Informed Gaussian (PIG) that learns feature embeddings of input coordinates, using a mixture of
Gaussian functions. For a given input coordinate, PIG extracts a feature vector as the weighted
sum of the feature embeddings held by Gaussians with their learnable parameters (positions and
shapes). They are adjusted during the training process, and underlying PDEs govern this dynamic
adjustment. To update the parameters of all Gaussians, we leverage the well-established PINNs
training framework, which employs numerous collocation points to compute PDE residuals and
uses gradient-based optimization algorithms.

The proposed approach offers several advantages over existing parametric grid methods. PIG dy-
namically adjusts the computational mesh structure and the basis functions (Gaussians) to learn the
feature embeddings. By following the gradient descent directions, the Gaussians move towards re-
gions with high residual losses or singularities, and this adaptive strategy allows for more efficient

2

Published as a conference paper at ICLR 2025

and precise solutions than the static uniform grid structures. In addition, Gaussian functions are in-
finitely differentiable everywhere, allowing for the convenient computation of high-order derivatives
for PDE residuals, and they can be seamlessly integrated into deep-learning computation pipelines.
The final architecture of the proposed approach, presented in Figure 2-(c), which combines the learn-
able Gaussian feature embedding and the lightweight neural network is a new learning-based PDE
solver that can provide more efficient and accurate numerical solutions.

We have tested the proposed method on an extensive set of challenging PDEs (Raissi et al., 2019;
Wang et al., 2021; Kang et al., 2023; Wang et al., 2023; Cho et al., 2024; Wang et al., 2024b). The
experimental results show that the proposed PIG achieved competitive accuracy compared to the
existing methods that use large MLPs or high-resolution parametric grids. When the number of
Gaussians in PIG is comparable to the number of vertices in previous parametric grids, our method
significantly outperformed existing approaches, demonstrating its superior efficiency. Furthermore,
the proposed PIG shows significantly faster convergence speed than PINNs using large neural net-
works, demonstrating its effectiveness as a promising learning-based PDE solver. Our contributions
are summarized as follows.

• We introduce Physics-Informed Gaussians, an efficient and accurate PDE solver that uti-
lizes learnable Gaussian feature embeddings and a lightweight neural network.

• We propose a dynamically adaptive parametric mesh representation that effectively ad-
dresses the challenges encountered in previous static parametric grid approaches.

• We demonstrate that PIG achieves competitive accuracy and faster convergence with fewer
parameters compared to state-of-the-art methods, establishing its effectiveness and paving
the way for new research avenues.

2 RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs are a class of machine learning algorithms designed to integrate physical laws into the learn-
ing process, popularized by Raissi et al. (2019). This is achieved by incorporating the PDE residuals
directly into the loss function, allowing the model to be trained using standard gradient-based op-
timization methods. PINNs have gained significant attention for their ability to handle complex
problems (Yang et al., 2021; Pensoneault & Zhu, 2024) including high-dimensional PDEs (Wang
et al., 2022b; Hu et al., 2024b;a) that are challenging for traditional numerical methods. They are
particularly effective in scenarios where data is sparse or expensive to obtain, as they can incorporate
prior knowledge about the physical system. Applications of PINNs span various domains, including
fluid dynamics, solid mechanics, and electromagnetics, demonstrating their versatility and effective-
ness in solving real-world problems (Cai et al., 2021; Khan & Lowther, 2022; Bastek & Kochmann,
2023). Key advantages of PINNs include their mesh-free nature, the ability to easily incorporate
boundary and initial conditions, and their flexibility in handling various types of PDEs. However,
they also face challenges, such as the need for extensive computational resources and the difficulty
in training deep networks to achieve accurate solutions. For example, Wang et al. (2024b) typi-
cally uses around 9 hidden layers with 256 hidden units (sometimes up to 18 layers) to achieve high
accuracy. This requires massive computations to run the neural network, which involves multiple
forward and backward passes to compute the gradients for PDE residual loss.

2.2 PHYSICS-INFORMED PARAMETRIC GRID REPRESENTATIONS

Physics-informed parametric grid representations combine traditional grid-based methods with neu-
ral networks to solve PDEs (Kang et al., 2023; Huang & Alkhalifah, 2024; Wang et al., 2024a;
Shishehbor et al., 2024a). These representations have also been extensively explored in image,
video, and 3D scene representations (Liu et al., 2020; Yu et al., 2021; Fridovich-Keil et al., 2022;
Müller et al., 2022; Chen et al., 2022; Sun et al., 2022; Fridovich-Keil et al., 2023) by training the
models as supervised regression problems. By discretizing the domain into a grid and associating
each grid point with trainable parameters, these methods leverage the structured nature of grids to
capture spatial variations effectively. This hybrid approach maintains high accuracy and reduces
computational costs compared to purely neural network-based methods. Key benefits include the

3

Published as a conference paper at ICLR 2025

Figure 2: (a) PINN directly takes input coordinates (four collocation points) as inputs and produces
outputs. (b) Parametric grids first map input coordinates to output feature vectors. Each vertex in the
grids holds learnable parameters, and output features are extracted through interpolation schemes.
(c) The proposed PIG consists of numerous Gaussians moving around within the input domain, and
their shapes change dynamically during training. Each Gaussian has learnable parameters, and a
feature vector for an input coordinate is the weighted sum of the learnable parameters based on the
distance to the Gaussians.

ability to handle high-resolution representations and integrate boundary conditions efficiently, which
are especially important for solving PDEs. However, the fixed grid structure can lead to suboptimal
allocation of representational capacity during training.

2.3 ADAPTIVE MESH-BASED METHODS

Adaptive mesh-based methods dynamically adjust the computational mesh to minimize the error
between approximated and true solutions. This process involves a posteriori error analysis, which
estimates errors after solving, allowing for targeted mesh refinement. Such adaptivity is crucial
in the numerical analysis as it ensures efficient allocation of computational resources, focusing on
regions with high errors and thus improving overall accuracy and efficiency (Ainsworth & Oden,
1993; 1997).

There are also some studies on non-uniform adaptive sampling methods in the context of PINNs.
Lu et al. (2021) proposed a residual-based adaptive refinement method in their work with Deep-
XDE, aiming to enhance the training efficiency of PINNs (Wu et al., 2023). More recently, Yang
et al. (2023b) introduced Dynamic Mesh-based Importance Sampling (DMIS), a novel approach that
constructs a dynamic triangular mesh to efficiently estimate sample weights, significantly improv-
ing both convergence speed and accuracy. Similarly, Yang et al. (2023a) developed an end-to-end
adaptive sampling framework called MMPDE-Net, which adapts sampling points by solving the
moving mesh PDE. When combined with PINNs to form MS-PINN, MMPDE-Net demonstrated
notable performance improvements. While these adaptive methods offer significant benefits, they
also introduce additional complexity into the PINN framework.

2.4 POINT-BASED REPRESENTATIONS

Irregular point-based representations have long been considered promising approaches for data rep-
resentation, reconstruction, and processing (Qi et al., 2017; Xu et al., 2022; Zhang et al., 2022).
A recent study in 3D scene representation utilized Gaussians as a graphical primitive and showed
remarkable performance in image rendering quality and training speed (Kerbl et al., 2023). The
combination of Gaussian representation and neural networks has recently been explored in regress-
ing images or 3D signed distance functions, showing its great expressibility (Chen et al., 2023).
While those studies share some architectural similarities with our method, they all primarily focus
on supervised regression problems to reconstruct the visual signals. We developed the architecture
suitable for effective PDE solvers and first showed that the Gaussian features and neural networks
can be trained in an unsupervised manner guided by the physical laws.

4

Published as a conference paper at ICLR 2025

3 METHODOLOGY

3.1 PRELIMINARY: PHYSICS-INFORMED NEURAL NETWORKS

Consider an abstract underlying equation,

D[u](x) = f(x), x ∈ Ω ⊂ Rd, (1)

B[u](x) = g(x), x ∈ ∂Ω, (2)
where D is a differential operator, and B is a boundary operator which could contain the initial
condition. The physics-informed neural network methods try to find an approximate solution by
minimizing

L(θ) =

∫
Ω

|D[uθ](x)− f(x)|2dx+ λ

∫
∂Ω

|B[uθ](x)− g(x)|2dσ(x) (3)

where uθ is a neural network with the set of network parameters θ, λ is a positive real number,
and σ is a surface measure. In practice, integrals are usually estimated via Monte Carlo integration.
PINNs typically utilize automatic differentiation to compute the PDE residuals and ∇θL(θ). For
more details, please refer to the original paper (Raissi et al., 2019).

3.2 PHYSICS-INFORMED GAUSSIANS

In this section, we present the proposed Physics-Informed Gaussian representation (PIG) for nu-
merical solutions to PDEs. It comprises two stages: Gaussian feature embedding (3.2.1) and feature
refinement with a lightweight MLP (3.2.2).

3.2.1 LEARNABLE GAUSSIAN FEATURE EMBEDDING

Let ϕ = {(µi,Σi, fi) : i = 1, . . . , N} be the set of Gaussian model parameters, where µi ∈ Rd is a
position of a Gaussian and Σi ∈ Sd++ is a covariance matrix. Each Gaussian has a learnable feature
embedding fi ∈ Rk for a feature dimension k. For simplicity, we consider k = 1. Given an input
coordinate x ∈ Rd, the learnable embedding FEϕ : Rd → R extracts Gaussian features as follows.

FEϕ(x) =

N∑
i=1

fiGi(x), Gi(x) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi), (4)

where N is the number of Gaussians and Gi represents the i-th Gaussian function. FEϕ maps an
input coordinate to a feature embedding by a weighted sum of the individual features fi of each
Gaussian. Extensions to k > 1 for enhanced expressiveness are provided in Appendix A.1.

Gaussian features distant from the input coordinates do not contribute to the final feature embedding,
while only neighboring Gaussian features remain significant. Similar to the previous parametric grid
methods, which obtain feature embeddings by interpolating only neighboring vertices, this locality
encourages the model to capture high-frequency details by effectively alleviating spectral bias.

All Gaussian parameters ϕ are learnable and iteratively updated throughout the training process.
This dynamic adjustment, akin to adaptive mesh-based numerical methods, optimizes the structure
of the underlying Gaussian functions to accurately approximate the solution functions. For example,
Gaussians will migrate to the regions with high-frequency or singular behaviors that require more
computational parameters, following the gradients ∂L

∂µi
(see Figure 1). Compared to the existing

parametric grid approaches, which achieve this goal by uniformly increasing grid resolution, the
proposed method can build a more parameter-efficient and optimal mesh structure.

3.2.2 LEARNABLE FEATURE REFINEMENT

Once the features are extracted, a neural network processes the feature to produce the solution out-
puts.

uϕ,θ(x) = NNθ(FEϕ(x)), (5)
where NNθ is a lightweight MLP with the parameter θ. We employed a single hidden layer MLP
with a limited number of hidden units, adding negligible computational costs. Feature extraction

5

Published as a conference paper at ICLR 2025

plays a primary role in producing the final solution, while the MLP functions as a feature refinement
mechanism. Even though Gaussian features are already universal approximators (see 3.3), using a
small MLP at the end improved the solution accuracy by a large margin compared to the method
without the MLP, i.e., uϕ(x) = FEϕ(x).

3.2.3 PIG AS A NEURAL NETWORK

Figure 3: PIG as a neural network.

The proposed Gaussian feature embedding ad-
mits a form of radial basis function (RBF) net-
work. Figure 3 depicts the overall PIG archi-
tecture as a neural network. The first layer con-
tains N (the number of Gaussians) RBF units,
and an input coordinate passes through all RBF
units, Gi(x), resulting in a N -dimensional vec-
tor. A single fully connected layer processes
this vector to produce a k-dimensional feature
vector. The weight matrix W ∈ Rk×N in this
layer corresponds to the feature vectors held by
each Gaussian, i.e., W:,i ∈ Rk equals fi ∈ Rk.

The extracted feature vector is further pro-
cessed by a single hidden layer MLP (we used the tanh activation function) to produce the final
output, as depicted in Figure 3. Overall, PIG can be interpreted as an MLP with one input layer with
N RBF units and two hidden layers (no activation for the first hidden layer, and tanh for the second
hidden layer).

A related study by Bai et al. (2023) has explored solving various PDEs using RBF networks (Park
& Sandberg, 1991; Buhmann, 2000) within the framework of physics-informed machine learning.
However, their approach differs from ours in that the positions of the basis functions are fixed.
In contrast, our method allows the positions of the Gaussians to adjust dynamically, moving in
directions that minimize the loss function. In addition, we extract the feature vectors from Gaussians
and further process them using shallow neural networks while they directly predict the solution
output from the Gaussians.

3.3 UNIVERSAL APPROXIMATION THEOREM FOR PIGS

Here, we present the Universal Approximation Theorem (UAT) for PIGs. A PIG consists of two
functions: FEϕ and NNθ (see equation 5). We will prove the UAT only for FEϕ, as the UAT for PIGs
follows directly from the standard UAT for MLPs. Given our earlier discussion on the relationship
between PIGs and radial basis function networks, we begin with the following UAT specific to radial
basis function networks.

Theorem 1 (Park & Sandberg (1991)) Let K : Rd → R be an integrable bounded function such
that K is continuous and ∫

Rd

K(x) dx ̸= 0. (6)

Then the family SK , defined as linear combinations of translations of K,

SK =

{
n∑

i=1

fiK(x− µi)

∣∣∣∣fi ∈ R, µi ∈ Rd, n ∈ N

}
, (7)

is dense in C(Rd).

However, Theorem 1 does not apply to PIGs, as the feature embedding FEϕ in PIGs takes a slightly
different form:

FEϕ(x) =

n∑
i=1

fiK (x− µi; Σi) , (8)

where the key difference lies in the presence of Σi. Notably, the set

S′
K =

{
n∑

i=1

fiK(x− µi; Σi)

∣∣∣∣fi ∈ R, µi ∈ Rd,Σi ∈ Sd++, n ∈ N

}
, (9)

6

Published as a conference paper at ICLR 2025

Methods Allen-Cahn Helmholtz Nonlinear Diffusion Flow Mixing Klein-Gordon
PINN - 4.02e-1 9.50e-3 - 3.43e-2
LRA - 3.69e-3 - - -

PIXEL 8.86e-3 8.63e-4 - - -
SPINN - - 6.10e-3 2.90e-3 3.90e-3
JAX-PI 5.37e-5 - - - -

PirateNet 2.24e-5 - - - -
PIG (Ours) 1.04e-4 4.13e-5 2.69e-3 4.51e-4 2.76e-3
± 1std ± 4.12e-5, ± 2.59e-05, ± 6.55e-4, ± 1.74e-4, ± 4.27e-4,

best 5.93e-5 2.12e-5 1.44e-3 2.67e-4 2.36e-3

Table 1: Comparison of relative L2 errors across different methods. Three experiments were con-
ducted using seeds 100, 200, and 300, with the mean and standard deviation presented in the table.
The methods compared include PINN (Raissi et al., 2019), Learning Rate Annealing (LRA) (Wang
et al., 2021), PIXEL (Kang et al., 2023), SPINN (Cho et al., 2024), JAX-PI (Wang et al., 2023),
and Pirate-Net (Wang et al., 2024b). For fair comparisons, we included the reported values from the
respective references and omitted results that were not provided in the original papers.

with S++ denoting the set of positive definite matrices, contains SK . Therefore, S′
K is dense in

C(Rd). We summarize this in the following corollary:

Corollary 1 The scalar-valued, d-dimensional PIGs {NNθ ◦ FEϕ|(θ, ϕ) ∈ Rp1+p2} are dense in
C(Rd).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To validate the effectiveness of PIGs, we conducted extensive numerical experiments on vari-
ous challenging PDEs, including Allen-Cahn, Helmholtz, Nonlinear Diffusion, Flow Mixing, and
Klein-Gordon equations (for more experiments, please refer to the Appendix). We used the Adam
optimizer (Kingma & Ba, 2014) for all equations except for the Helmholtz equation, in which
the L-BFGS optimizer (Liu & Nocedal, 1989) was applied for a fair comparison to the base-
line method PIXEL. For computational efficiency, we considered a diagonal covariance matrix
Σ = diag(σ2

1 , . . . , σ
2
d) and we will discuss non-diagonal cases in Section 4.3.3.

4.2 EXPERIMENTAL RESULTS

4.2.1 (1+1)D ALLEN-CAHN EQUATION

We compared our method against one of the state-of-the-art PINN methods on the Allen-Cahn equa-
tion, JAX-PI (Wang et al., 2023). For the detailed description, please refer to Appendix A.2.1. As
shown in Figure 4, our method converges significantly faster and achieves competitive final accu-
racy (see Table 1). JAX-PI used a modified MLP architecture and 4 hidden layers with 256 hidden
neurons. Thus, the number of parameters in JAX-PI is more than 250K, while ours used only around
20K parameters ((N, d, k) = (4000, 2, 1)). Also, note that the relative L2 error curve in Figure 4
is displayed per iteration, and computational costs per iteration of ours are significantly lower than
JAX-PI (7.25×10−3s/it vs. 1.67×10−2s/it), which requires multiple forward and backward passes
of the wide and deep neural network.

4.2.2 2D HELMHOLTZ EQUATION

Figure 5 illustrates the numerical performance of our proposed PIG method for the 2D Helmholtz
equation, comparing it to PIXEL (Kang et al., 2023), one of the state-of-the-art methods within the
PINN family that uses parametric grid representations. A more detailed description of the experi-
mental setup is available in Appendix A.2.2. The experiments were conducted using three different
random seeds, with PIG achieving the best relative L2 error of 2.22 × 10−5 when employing the
L-BFGS optimizer, and a relative L2 error of 2.12 × 10−5 with the Adam optimizer (For fair com-

7

Published as a conference paper at ICLR 2025

Figure 4: Allen-Cahn Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (JAX-PI) to Allen-Cahn Equation (x-axis: t, y-axis: x). The rightmost
depicts a relative L2 error curve during the training process (x-axis: iterations, y-axis: L2 error).
The experiment was conducted with three different seeds, and the best relative L2 error of PIG is
5.93× 10−5.

Figure 5: 2D Helmholtz Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (PIXEL) to 2D Helmholtz Equation. The rightmost depicts a relative
L2 error curve during the training process and the best relative L2 error of PIG is 2.22× 10−5.

parison, we reported the result using L-BFGS since PIXEL used L-BFGS). Notably, the results show
that PIG’s error is four times lower than that of PIXEL, highlighting the efficiency and accuracy of
our method. We did not compare against other state-of-the-art methods, such as JAX-PI or Pirate-
Net, as they did not conduct experiments in this setting. While we could have used their codes, the
sensitivity of PINN variants to hyperparameters complicates fair comparisons.

4.2.3 (2+1)D KLEIN-GORDON EQUATION

Figure 6 presents the predicted solution profile for the Klein-Gordon equation, comparing our results
with SPINN. The best relative L2 error achieved is 2.36× 10−3. For further details, please refer to
Appendix A.2.3.

4.2.4 (2+1)D NONLINEAR DIFFUSION EQUATION

We evaluated the performance of PIGs on the (2+1) dimensional nonlinear diffusion equation, with
visualizations presented in Figure 18. The relative L2 error achieved is 1.44× 10−3. For details on
the experimental setup, please refer to Appendix A.2.5.

4.2.5 (2+1)D FLOW MIXING PROBLEM

Figure 7 displays the numerical solutions and absolute errors for the (2+1) flow mixing problem.
Our solutions closely match the reference, with PIG achieving the relative L2 error of 2.67× 10−4,
compared to 2.90× 10−3 for SPINN, underlining the enhanced accuracy of PIG. Figure 19 presents
solution profiles up to t = 4. Additional details can be found in Appendix A.2.4.

4.3 HYPERPARAMETER ANALYSIS AND ABLATION STUDY

In this section, we present the experimental results to show the effects of each component of the pro-
posed PIG (using MLP, learnable Gaussian positions, and dense covariance matrices), In addition,
we study the effect of the number of Gaussians, the size of MLP and input dimensions.

8

Published as a conference paper at ICLR 2025

Figure 6: Klein-Gordon Equation. Reference solution and absolute error maps of PIG and one of
the state-of-the-art methods (SPINN) to Klein-Gordon Equation. Both models used 163 collocation
points. The rightmost panel depicts a relative L2 error curve during the training process and the best
relative L2 error of PIG is 2.36× 10−3.

Figure 7: Flow mixing problem. The best relative L2 error of PIG is 2.67×10−4, while its maximum
absolute error is 4.47× 10−3. In comparison, one of the state-of-the-art methods, SPINN achieved
2.90× 10−3 L2 error and showed a maximum absolute error of 3.23× 10−2.

4.3.1 THE NUMBER OF GAUSSIANS

In numerical analysis, there is a general trend that the quality of the solution improves as the mesh
is refined. Given our approach of using Gaussians as mesh points, we expect that the accuracy of
PIGs will improve with an increased number of Gaussians. Table 2 illustrates the accuracy improve-
ments of PIGs to the number of Gaussians. Overall, we observe a positive correlation between the
number of Gaussians and improved accuracy. It is important to note that achieving this trend can be
challenging for other PINN-type methods.

Gaussians Flow Mixing Nonlinear Diffusion Allen-Cahn
200 6.07e-03 2.33e-03 1.83e-02
400 3.13e-03 2.22e-03 2.93e-03
600 1.50e-03 2.23e-03 2.75e-03
800 1.44e-03 1.95e-03 1.22e-03
1000 1.31e-03 7.33e-03 4.81e-04
1200 1.03e-03 3.96e-03 3.98e-04

Table 2: The number of Gaussians and approximation accuracy (Flow Mixing, Nonlinear Diffusion,
and Allen-Cahn). The results indicate that increasing the number of Gaussians typically leads to a
decrease in relative L2 error.

4.3.2 MLP IMPACT AND ADAPTIVE GAUSSIAN POSITIONS

While FEϕ serves as a universal approximator, we found that adding a small MLP NNθ significantly
enhances performance. Additionally, our ablation study explores the effectiveness of allowing adap-
tive Gaussian positions (learnable µ vs. fixed µ). The results in Table 3 illustrate that varying
Gaussian positions µ improve accuracy, particularly when combined with the MLP. We also evalu-
ate the sensitivity of PIGs to the width and input dimensions of the MLP, as summarized in Table 8.
Notably, no clear trend emerges, highlighting the robustness of PIGs to MLP variations.

9

Published as a conference paper at ICLR 2025

(MLP, µ) Allen-Cahn Helmholtz Nonlinear Diffusion Flow Mixing Klein-Gordon
(X, Fixed) 4.72e-03 3.97e-04 6.32e-03 4.33e-03 6.44e-02
(O, Fixed) 1.82e-03 2.12e-04 2.10e-03 1.09e-03 2.69e-02
(X, Learn) 7.29e-05 1.86e-04 5.26e-03 7.93e-04 8.51e-03
(O, Learn) 7.27e-05 2.12e-05 1.44e-03 4.51e-04 2.76e-03

Table 3: Ablation study results on MLP and µ across various equations.

4.3.3 COVARIANCE MATRICES

Dense covariance matrices have the potential of improved accuracy over diagonal covariance matri-
ces, at the expense of increased computational and memory costs. We compared these two types of
covariance matrices across several equations: the 2D Helmholtz equation, the Klein-Gordon equa-
tion, the flow mixing problem, and the nonlinear diffusion equation. We found that training PIGs
with dense covariance matrices from scratch did not result in accurate solutions. To address this
issue, we first trained PIGs with diagonal covariance matrices and then initialized dense covariance
matrices with pre-trained diagonal elements. As presented in Table 4, there were improvements in
the Klein-Gordon and flow mixing equations. We believe that advanced training techniques and
engineering would improve the performance of PIG with dense covariance matrices and leave it to
future works.

Helmholtz Klein-Gordon Flow Mixing Nonlinear Diffusion
Dense 5.17e-05 1.81e-03 3.48e-04 3.86e-03

Diagonal 2.12e-05 2.76e-03 4.51e-04 1.44e-03

Table 4: Comparison of error levels between dense and diagonal covariance matrices in PIGs. For
dense covariance matrix experiments, we first trained PIG using a diagonal covariance matrix and
then fine-tuned full covariance matrix parameters initialized from the trained diagonal elements.

5 CONCLUSION AND LIMITATIONS

In this work, we introduced PIGs as a novel method for approximating solutions to PDEs. By
leveraging explicit Gaussian functions combined with deep learning optimization, PIGs address the
limitations of traditional PINNs that rely on MLPs. Our approach dynamically adjusts the positions
and shapes of the Gaussians during training, overcoming the fixed parameter constraints of previous
methods and enabling more accurate and efficient numerical solutions to complex PDEs. Exper-
imental results demonstrated the superior performance of PIGs across various PDE benchmarks,
showcasing their potential as a robust tool for solving high-dimensional and nonlinear PDEs.

Despite the promising results, PIGs have certain limitations that warrant further investigation.
Firstly, the dynamic adjustment of Gaussian parameters introduces additional computational over-
head. While this improves accuracy, it may also lead to increased training times, particularly for very
large-scale problems. However, by leveraging the locality of Gaussians, we can limit the evaluations
to nearby Gaussians, which reduces the necessary computations and saves GPU memory. Secondly,
the number of Gaussians is fixed at the beginning of training. Ideally, additional Gaussians should
be allocated to regions requiring more computational resources to capture more complex solution
functions. We believe it is a promising research direction and leave it to future work. Finally, a
complete convergence analysis of the proposed method is not yet available. While empirical results
show improved accuracy and efficiency, theoretical understandings of the convergence properties
would provide deeper insights and guide further enhancements.

ACKNOWLEDGMENTS

This work was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Education (NRF2021R1A2C1093579), the
Korean government (MSIT) (RS-2023-00219980, RS-2024-00337548). This work was also sup-
ported by the Culture, Sports, and Tourism R&D Program through the Korea Creative Content

10

Published as a conference paper at ICLR 2025

Agency grant funded by the Ministry of Culture, Sports and Tourism in 2024 (Project Name: Re-
search on neural watermark technology for copyright protection of generative AI 3D content, RS-
2024-00348469).

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our research. All experimental procedures, data
sources, and algorithms used in this study are clearly documented in the paper. We already submit-
ted the codes and command lines to reproduce the part of the results in Table 1 as supplementary
materials. The code and datasets will be made publicly available upon publication, allowing others
to validate our findings and build upon our work.

ETHICS STATEMENT

This research adheres to the ethical standards required for scientific inquiry. We have considered the
potential societal impacts of our work and have found no clear negative implications. All experi-
ments were conducted in compliance with relevant laws and ethical guidelines, ensuring the integrity
of our findings. We are committed to transparency and reproducibility in our research processes.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Mark Ainsworth and J Tinsley Oden. A unified approach to a posteriori error estimation using
element residual methods. Numerische Mathematik, 65:23–50, 1993.

Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite element analysis. Com-
puter methods in applied mechanics and engineering, 142(1-2):1–88, 1997.

Jinshuai Bai, Gui-Rong Liu, Ashish Gupta, Laith Alzubaidi, Xi-Qiao Feng, and YuanTong Gu.
Physics-informed radial basis network (pirbn): A local approximating neural network for solving
nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineer-
ing, 415:116290, 2023.

Jan-Hendrik Bastek and Dennis M Kochmann. Physics-informed neural networks for shell struc-
tures. European Journal of Mechanics-A/Solids, 97:104849, 2023.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research,
18(153):1–43, 2018.

Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Martin Dietrich Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000.

11

https://www.tensorflow.org/
http://github.com/google/jax
http://github.com/google/jax

Published as a conference paper at ICLR 2025

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based phys-
ical simulation with bi-stride multi-scale graph neural network. In International Conference on
Machine Learning, pp. 3541–3558. PMLR, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXII, pp. 333–350. Springer, 2022.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu. Neurbf: A
neural fields representation with adaptive radial basis functions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4182–4194, October 2023.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Sys-
tems, 36, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator
preconditioning perspective on training in physics-informed machine learning. arXiv preprint
arXiv:2310.05801, 2023.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Marc Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wilson. A sta-
ble and scalable method for solving initial value pdes with neural networks. arXiv preprint
arXiv:2304.14994, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

Nathan Gaby, Xiaojing Ye, and Haomin Zhou. Neural control of parametric solutions for high-
dimensional evolution pdes. SIAM Journal on Scientific Computing, 46(2):C155–C185, 2024.

Zheyuan Hu, Zekun Shi, George Em Karniadakis, and Kenji Kawaguchi. Hutchinson trace estima-
tion for high-dimensional and high-order physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 424:116883, 2024a.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse
of dimensionality with physics-informed neural networks. Neural Networks, pp. 106369, 2024b.

Zheyuan Hu, Zhongqiang Zhang, George Em Karniadakis, and Kenji Kawaguchi. Score-based
physics-informed neural networks for high-dimensional fokker-planck equations. arXiv preprint
arXiv:2402.07465, 2024c.

Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash en-
coding. Journal of Computational Physics, 501:112760, 2024. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2024.112760. URL https://www.sciencedirect.com/science/
article/pii/S0021999124000093.

Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight convolutional neural
network for optical flow estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8981–8989, 2018.

12

https://www.sciencedirect.com/science/article/pii/S0021999124000093
https://www.sciencedirect.com/science/article/pii/S0021999124000093

Published as a conference paper at ICLR 2025

Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. CoRR, abs/1810.07951,
2018. URL http://arxiv.org/abs/1810.07951.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Hojun Jang, Minkwan Kim, Jinseok Bae, and Young Min Kim. Dynamic mesh recovery from partial
point cloud sequence. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15074–15084, 2023.

Namgyu Kang, Byeonghyeon Lee, Youngjoon Hong, Seok-Bae Yun, and Eunbyung Park. Pixel:
Physics-informed cell representations for fast and accurate pde solvers. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 8186–8194, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Aly-Khan Kassam and Lloyd N Trefethen. Fourth-order time-stepping for stiff pdes. SIAM Journal
on Scientific Computing, 26(4):1214–1233, 2005.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Arbaaz Khan and David A Lowther. Physics informed neural networks for electromagnetic analysis.
IEEE Transactions on Magnetics, 58(9):1–4, 2022.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pp. 2306–2327. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Chen Li and Gim Hee Lee. Coarse-to-fine animal pose and shape estimation. Advances in Neural
Information Processing Systems, 34:11757–11768, 2021.

Zhengyi Li, Yanli Wang, Hongsheng Liu, Zidong Wang, and Bin Dong. Solving the boltzmann
equation with a neural sparse representation. SIAM Journal on Scientific Computing, 46(2):C186–
C215, 2024.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Jaemin Oh, Seung Yeon Cho, Seok-Bae Yun, Eunbyung Park, and Youngjoon Hong. Separable
physics-informed neural networks for solving the bgk model of the boltzmann equation. arXiv
preprint arXiv:2403.06342, 2024.

Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function net-
works. Neural computation, 3(2):246–257, 1991.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

13

http://arxiv.org/abs/1810.07951

Published as a conference paper at ICLR 2025

Andrew Pensoneault and Xueyu Zhu. Efficient bayesian physics informed neural networks for in-
verse problems via ensemble kalman inversion. Journal of Computational Physics, 508:113006,
2024.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear differential
equations using gaussian processes. Journal of Computational Physics, 348:683–693, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Max Rensen, Michael Weinmann, Benno Buschmann, and Elmar Eisemann. Physics-informed gaus-
sian splatting. Master’s thesis, 2024.

Sirpa Saarinen, Randall Bramley, and George Cybenko. Ill-conditioning in neural network training
problems. SIAM Journal on Scientific Computing, 14(3):693–714, 1993.

Yunchang Seol, Wei-Fan Hu, Yongsam Kim, and Ming-Chih Lai. An immersed boundary method
for simulating vesicle dynamics in three dimensions. Journal of Computational Physics, 322:
125–141, 2016.

Mehdi Shishehbor, Shirin Hosseinmardi, and Ramin Bostanabad. Parametric encoding with atten-
tion and convolution mitigate spectral bias of neural partial differential equation solvers. arXiv
preprint arXiv:2403.15652, 2024a.

Mehdi Shishehbor, Shirin Hosseinmardi, and Ramin Bostanabad. Parametric encoding with atten-
tion and convolution mitigate spectral bias of neural partial differential equation solvers. Struc-
tural and Multidisciplinary Optimization, 67(7):128, 2024b.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Panos Tamamidis and Dennis N Assanis. Evaluation of various high-order-accuracy schemes with
and without flux limiters. International Journal for Numerical Methods in Fluids, 16(10):931–
948, 1993.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Haoxiang Wang, Tao Yu, Tianwei Yang, Hui Qiao, and Qionghai Dai. Neural physical sim-
ulation with multi-resolution hash grid encoding. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(6):5410–5418, Mar. 2024a. doi: 10.1609/aaai.v38i6.28349. URL
https://ojs.aaai.org/index.php/AAAI/article/view/28349.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022a.

14

https://ojs.aaai.org/index.php/AAAI/article/view/28349

Published as a conference paper at ICLR 2025

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024b.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024c.

Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor neural network and its numerical integration.
arXiv preprint arXiv:2207.02754, 2022b.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neu-
mann. Point-nerf: Point-based neural radiance fields. In CVPR, pp. 5438–5448, 2022.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neu-
ral networks for forward and inverse pde problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

Yu Yang, Qihong Yang, Yangtao Deng, and Qiaolin He. Mmpde-net and moving sampling physics-
informed neural networks based on moving mesh method. arXiv preprint arXiv:2311.16167,
2023a.

Zijiang Yang, Zhongwei Qiu, and Dongmei Fu. Dmis: Dynamic mesh-based importance sampling
for training physics-informed neural networks. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, pp. 5375–5383, 2023b.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. Differentiable point-
based radiance fields for efficient view synthesis. arXiv preprint arXiv:2205.14330, 2022.

A APPENDIX

A.1 ENHANCED GAUSSIAN FEATURE EMBEDDING

To enhance the expressive capability, different Gaussians can be used for each feature dimension.
The learnable Gaussian feature embedding FE(x;ϕ) : Rd → Rk and the set of Gaussian model
parameters ϕ = {(µi,Σi, fi) : i = 1, . . . , N} are defined as previously described. Then, we have
different Gaussians for each feature dimension, where µi ∈ Rk×d is the Gaussian position parame-
ters, µi,j ∈ Rd denotes the position parameter for j-th feature dimension, and fi,j ∈ R represents
j-th feature value. Similarly, Σi,j ∈ Sd++ is a covariance matrix for j-th feature dimension. Given
an input coordinate x ∈ Rd, j-th element of the learnable Gaussian feature embedding FEj(x;ϕ) is
defined as follows,

FEj(x;ϕ) =

N∑
i=1

fi,jGi,j(x), Gi,j(x) = e−
1
2 (x−µi,j)

⊤Σ−1
i,j (x−µi,j), (10)

where Gi,j is the Gaussian function using Gaussians parameters for j-th feature dimension.

15

Published as a conference paper at ICLR 2025

A.2 DETAILED DESCRIPTION OF EXPERIMENTS

A.2.1 (1+1)D ALLEN-CAHN EQUATION

The Allen-Cahn equation is a one-dimensional time-dependent reaction-diffusion equation that de-
scribes the evolutionary process of phase separation, which reads

ut − 0.0001uxx + 5u3 − 5u = 0, (x, t) ∈ [−1, 1]× [0, 1], (11)

with the periodic boundary condition

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t). (12)

The initial condition for the experiment was u(x, 0) = x2cos(πx). We used the NTK-based loss
balancing scheme (Wang et al., 2022a) to mitigate the ill-conditioned spectrum of the neural tangent
kernel (Jacot et al., 2018). We used N = 4000 Gaussians for training and a diagonal covariance
matrix for parameter efficiency, where the diagonal elements of the initial Σ were set to a constant
value of 0.025. The µi was uniformly initialized following Uniform[0, 2]2. We used shallow MLP
with one hidden layer with 16 hidden units, and the dimension of the Gaussian feature was k = 1.

Reference solution was generated by Chebfun (Driscoll et al., 2014), which utilizes the Fourier col-
location method with N = 4096 Fourier modes with ETDRK4 time stepping (Kassam & Trefethen,
2005) with a fixed time step ∆t = 1/200.

A.2.2 2D HELMHOLTZ EQUATION

The Helmholtz equation is the eigenvalue problem of the Laplace operator ∆ = ∇2. We consider
the manufactured solution

u(x, y) = sin(a1πx) sin(a2πy), (a1, a2) = (4, 1), (13)

to the two-dimensional Helmholtz equation with the homogeneous Dirichlet boundary condition
given by

∆u+ k2u = q, (x, y) ∈ [−1, 1]2, k = 1, (14)
where

q(x, y) = k2 sin (a1πx) sin (a2πy)− (a1π)
2 sin (a1πx) sin (a2πy)− (a2π)

2 sin (a1πx) sin (a2πy)
(15)

can be extracted from the solution u.

We used N = 3000 Gaussians in this experiment. The weights and scales of Gaussians were initial-
ized following Uniform[−1, 1] and 0.1, respectively. The feature size of Gaussians was fixed at 4.
The shallow MLP has 16 hidden nodes, and its network parameters were initialized by Glorot nor-
mal. The inputs for the Gaussians were rescaled into [0, 1]2, therefore the positions were initialized
following Uniform[0, 1]2.

A.2.3 (2+1)D KLEIN-GORDON EQUATION

The Klein-Gordon equation is a relativistic wave equation, which predicts the behavior of a particle
at high energies. We consider the manufactured solution

u(x, y, t) = (x+ y) cos(2t) + xy sin(2t) (16)

to the (2+1) dimensional inhomogeneous Klein-Gordon equation

utt −∆u+ u2 = f, (x, y, t) ∈ [−1, 1]2 × [0, 10], (17)

where the forcing f , initial condition, and Dirichlet boundary condition are extracted from the man-
ufactured solution u. In this experiment, we employed N = 100 Gaussians and a shallow MLP
whose input dimension is 4 and hidden layer size is 16. The network parameters for the shal-
low MLP were initialized by Glorot Normal. Every weight of Gaussian was initialized following
Normal(0, 0.012). The scale parameter σi’s were initialized with a constant value of 0.5. Instead
of direct usage of the computational domain [−1, 1]2 × [0, 10], we used linearly rescaled values
∈ [0, 2]3 for the inputs of Gaussians. Accordingly, position parameters of Gaussians were initialized
following Uniform[0, 2]3.

16

Published as a conference paper at ICLR 2025

A.2.4 (2+1)D FLOW MIXING PROBLEM

A mixing procedure of two fluids in a two-dimensional spatial domain could be described in the
following equation

ut + aux + buy = 0, (x, y, t) ∈ [−4, 4]2 × [0, 4], (18)

a(x, y) = − vt
vt,max

y

r
, b(x, y) =

vt
vt,max

x

r
, (19)

vt = sech2(r)tanh(r), (20)

r =
√
x2 + y2, vt,max = 0.385. (21)

The analytic solution is u(x, y, t) = − tanh
(
y
2 cos(wt)−

x
2 sin(wt)

)
, where w = vt/(rvt,max);

see e.g., Tamamidis & Assanis (1993). The initial condition can be extracted from the analytic
solution.

To predict the solution to the PDE, we used N = 4000 Gaussians. The weights and scales were
initialized to Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was fixed at
4. MLP had 16 hidden nodes, and its parameters were initialized by Glorot normal. Inputs for
the Gaussians were rescaled to [0, 2]3, hence the positions of Gaussians were initialized following
Uniform[0, 2]3.

A.2.5 (2+1)D NONLINEAR DIFFUSION EQUATION

The diffusion equation is a parabolic PDE describing the diffusion process of a physical quantity,
such as heat. We consider a nonlinear diffusion equation for our benchmark, which reads

ut = 0.05
(
∥∇u∥2 + u∆u

)
, (x, y, t) ∈ [−1, 1]2 × [0, 1], (22)

u0(x) = 0.25g

(
x; 0.2, 0.3,

1√
10

)
+ 0.4g

(
x;−0.1,−0.5,

1√
15

)
+ 0.3g

(
x;−0.5, 0,

1√
20

)
,

where
x = (x, y) and g(x, y; a, b, σ) = e−

(x−a)2+(y−b)2

σ2 .

There are three peaks at the initial time and the peaks spread out as time goes on.

We employed N = 4000 Gaussians. The weights and scales of Gaussians were initialized to
Normal(0, 0.012) and 0.1, respectively. The size of Gaussian features was 4. The hyperbolic tan-
gent MLP had only a single hidden layer with 16 nodes, and its parameters were initialized by Glorot
normal. The inputs for the Gaussians were rescaled into [0, 1]3. Correspondingly, the positions of
Gaussians were initialized following Uniform[0, 1]3.

A.3 ADDITIONAL EXPERIMENTS

Here, we compare PIGs to PIRBNs (Bai et al., 2023). Two equations in the PIRBN paper are chosen
as benchmarks.

Equation (15) in Bai et al. (2023):

∂2

∂x2
u(x− 100)− 4µ2π2 sin(2µπ(x− 100)) = 0, (23)

and u(100) = u(101) = 0. The exact solution is u(x) = − sin(2µπ(x − 100)). We considered
µ = 4.

Equation (30) in Bai et al. (2023):

∂2

∂x2
u(x) = −2π(22− x) cos(2πx) + 0.5 sin(2πx)− π2(22− x)2 sin(2πx)

+ 16π(x− 20) cos(16πx) + 0.5 sin(16πx)− 64π2(x− 20)2 sin(16πx),

(24)

and u(20) = u(22) = 0. The exact solution is u(x) =
(
22−x

2

)2
sin(2πx) +

(
x−20

2

)2
sin(16πx).

Referring to the numbers in 5, PIGs achieved error levels by two orders of magnitude smaller than
PIRBNs. This improvement could be attributed to the introduction of a tiny MLP and letting posi-
tions move during training.

17

Published as a conference paper at ICLR 2025

Equation 23 Equation 24
PIRBNs 6.87e-03 ± 3.70e-04 1.47e-02 ± 9.16e-03

PIGs 1.79e-05 ± 3.80e-06 1.14e-04 ± 1.19e-05

Table 5: Results of the comparison study between PIGs and PIRBNs for Equations 23 and 24. PIGs
achieve lower errors than PIRBNs, highlighting their superior performance in both equations.

A.4 SEPARABLE PIGS

Separable PINNs have shown excellent performance across various PDEs (Cho et al., 2024; Oh
et al., 2024). When mesh points are tensor products of 1D grids, the number of network forward
passes of SPINNs scale linearly O(Nd), in contrast to the exponential scaling O(Nd) of traditional
PINNs, which adopt a single MLP.

Here, we provide a proof-of-concept for combining SPINNs and PIGs. Separable PIGs (SPIGs)
might have the following form:

u(x1, . . . , xd) ≈
R∑

r=1

d∏
i=1

PIGr(xi; θi) (25)

where PIGr is the r-th component of the output vector.

Figure 8: Klein-Gordon equationA.2.3. The relative L2 error of SPIG is 3.68× 10−4.

2D L-shaped Poisson equation the two-dimensional Poisson equation defined on an L-shaped do-
main. Despite the non-tensor-product nature of the computational domain, SPINNs can deal with
such complex domains by masking outputs. Please refer to (Cho et al., 2024) for the description of
this benchmark problem. A SPIG achieved 1.89 × 10−2 relative L2 error for this problem, while
SPINN solution was 3.22× 10−2.

(2+1)D Klein-Gordon equation SPIG achieved 3.68 × 10−4 relative L2 error. PIG’s best relative
L2 error was 2.36× 10−3. Please refer to A.2.3 for a description of PDE. SPIG used modified MLP
with 2 layer and 16 hidden features. The weights and scales were initialized to Normal(0, 0.012)
and 0.1, respectively. position parameters of Gaussians were initialized following Uniform[0, 2]3.
2500 Gaussians are used.

(3+1)D Klein-Gordon equation SPIG achieved 2.88 × 10−4 relative L2 error. SPINN’s relative
L2 error was 1.20 × 10−3. Please refer to (Cho et al., 2024) for the description of this benchmark
problem. SPIG used modified MLP with 2 layer and 16 hidden features. The weights and scales
were initialized to Normal(0, 0.012) and 0.25, respectively. position parameters of Gaussians were
initialized following Uniform[0, 2]3. 2500 Gaussians are used.

3D Helmholtz equation SPIG achieved 1.50 × 10−3 relative L2 error. SPINN’s relative L2 error
was 3.00 × 10−2. Please refer to (Cho et al., 2024) for the description of this benchmark problem.
SPIG used modified MLP with 2 layers and 16 hidden features. The weights and scales were initial-
ized to Normal(0, 0.012) and 0.05, respectively. position parameters of Gaussians were initialized
following Uniform[0, 2]3. 2500 Gaussians are used.

18

Published as a conference paper at ICLR 2025

Figure 9: 3D Helmholtz equation A.4. The relative L2 error of SPIG is 1.50× 10−3.

A.5 INVERSE PROBLEM

With observation data, the PINN framework can estimate unknown equation parameters by letting
them be learnable. Here we consider (1+1)D Allen-Cahn equation

ut − 10−4uxx + λu3 − 5u = 0,

with an unknown coefficient λ. Other conditions are the same with Section A.2.1. We estimated λ
using reference solution as observation data. Figure 10 presents estimated λ over iterations, clearly
showing PIG’s faster convergence.

Figure 10: Allen-Cahn Inverse problem. The experiment was conducted on five different seeds (100,
200, 300, 400, 500). PIG showed better performance than PINN.

A.6 HIGH-DIMENSIONAL EQUATIONS

Hu et al. introduced stochasticity in the dimension during the gradient descent (SDGD) to efficiently
handle high-dimensional PDEs within the PINN framework Hu et al. (2024b). PIGs can utilize
SDGD to tackle extremely high dimensional PDEs, e.g., 100D Allen-Cahn, and Poisson equation.
Specifically, let d = 100 and Bd = {x ∈ Rd : ∥x∥2 ≤ 1} be the domain. We consider a function

uexact =
(
1− ∥x∥22

)(d−1∑
i=1

ci sin (xi + cos(xi+1) + xi+1 cos(xi))

)
,

as our exact solution, where ci ∼ Normal(0, 12). Our benchmark problems are the Poisson equation
and the Allen-Cahn equation, which read

∆u = g (Poisson) and ∆u+ u− u3 = g (Allen-Cahn)
where g is induced from the exact solution.

Figure 11 presents relative L2 error curves over iterations. Note that global polynomial-based meth-
ods cannot handle such high dimensional equations due to the curse of dimensionality.

19

Published as a conference paper at ICLR 2025

Figure 11: Relative L2 error curves for two high dimensional PDEs. Left: 100D Allen-Cahn equa-
tion. Right: 100D Poisson equation. PIGs achieved 8.88× 10−3, and 8.42× 10−3, respectively.

A.7 LID-DRIVEN CAVITY

To further illustrate the effectiveness of PIGs over traditional parametric mesh methods, we chose
PGCAN Shishehbor et al. (2024b) as our baseline and considered the lid-driven cavity problem
presented in the paper. The domain is [0, 1]2. The homogeneous Dirichlet boundary condition
is imposed except for the lid {(x, 1) : x ∈ [0, 1]}. The governing equation is a 2D stationary
incompressible Naiver-Stokes equation,

∇ · u = 0
ρ(u · ∇)u = −∇p+ µ∇2u

where the boundary conditions are given as follows:

u(0, y) = u(1, y) = (0, 0),
u(x, 0) = (0, 0),
u(x, 1) = (A sin(πx), 0), A = 1,
p(0, 0) = 0.

We used 2000 Gaussians. Covariance matrices were diagonal and initialized at 0.1 and positions
were initialized following Uniform[0, 2].

Figure 12 depicts numerical results. PIG shows excellent agreement with the reference solution.
Figure 13 illustrates faster convergence of PIGs compared to the baseline method PGCAN.

A.8 EXAMPLE FOR SPECTRAL BIAS

Figure 14 illustrates PIG’s ability to approximate high-frequency functions. We considered 2D
Helmholtz equation (see Section A.2.2) with a high wavenumber (a1, a2) = (10, 10) for a bench-
mark problem.

A.9 THE HISTOGRAM OF VARIANCES AND DISTANCES OF GAUSSIANS

Figure 15 shows the histograms of the Gaussian parameters for the two benchmark problems dis-
cussed in Section 4.2.5 and Section 4.2.3. Readers may observe that the Gaussians in the right panels
are more global and, therefore, more sparsely distributed compared to those in the left panels.

A.10 COMPARISON BETWEEN PIG AND SIREN

In this section, we compare the performance of PIG with SIREN Sitzmann et al. (2020). PIG is
composed of a feature embedding FEϕ and a lightweight neural network NNθ. Here, we investigate
the effectiveness of SIREN when used either as a feature embedding or as a lightweight neural
network.

20

Published as a conference paper at ICLR 2025

Figure 12: Lid-driven cavity flow problem. PIG achieved 4.04× 10−4 relative L2 error whereas the
baseline parametric grid method PGCAN resulted in 1.22× 10−3.

When used as FEϕ, SIREN is implemented as an MLP with 4 layers, each containing 256 units, and
sin(3x) as the activation function. As NNθ, SIREN is a shallow MLP with 16 units and sin(30x)
activation function. It is worth noting that using sin(30x) as the activation function for the feature
embedding FEϕ did not yield effective results.

FEϕ + NNθ Helmholtz Flow Mixing Klein-Gordon
SIREN + Id 1.68e-03 ± 2.02e-03 1.22e-02 ± 4.17e-03 1.18e-01 ± 4.88e-02

SIREN + tanh 1.31e-03 ± 8.26e-04 2.80e-02 ± 2.50e-02 1.04e-01 ± 8.61e-02
PIG + SIREN 1.37e-05 ± 1.64e-06 1.28e-03 ± 1.09e-04 2.37e-02 ± 4.62e-03

PIG + tanh 4.13e-05 ± 2.59e-05 4.51e-04 ± 1.74e-04 2.76e-03 ± 4.27e-04

Table 6: Comparison of PIG and SIREN performance. For all cases except the Helmholtz equation,
the original PIG + tanh formulation outperformed other methods. The improved performance of
PIG + SIREN on the Helmholtz equation may be attributed to the functional form of its exact solu-
tion.

The results, summarized in Table 6, indicate that SIREN as FEϕ did not perform notably well.
However, when SIREN was employed as NNθ, it demonstrated excellent performance in solving
the Helmholtz equation discussed in Section 4.2.2. This improvement is likely due to the structural
similarity between the SIREN activation and the functional form of the exact solution (equation 13).

21

Published as a conference paper at ICLR 2025

Figure 13: Relative L2 error curve of the lid-driven cavity problem. PIG achieved 4.04× 10−4 and
PGCAN which used the parametric grid method achieved 1.22× 10−3.

Figure 14: 2D Helmholtz equation with a high wavenumber (a1, a2) = (10, 10). PIG achieved a
relative L2 error of 7.09 × 10−3, while the parametric fixed grid method PIXEL reached a relative
L2 error of 7.47× 10−2. PINN failed to converge.

A.11 COMPARISON WITH A CONCURRENT WORK

We conducted several experiments to compare PIG with the Physics-Informed Gaussian Splatting
(PI-GS) method proposed by Rensen et al. (2024). Table 7 summarizes the relative L2 errors and
computation times per iteration (shown in parentheses). Across the three benchmark problems, PIG
consistently outperforms PI-GS in both accuracy and efficiency.

Burgers’ equation (1) Burgers’ equation (2)
PIG 7.68× 10−4 (0.28s/it) 1.08× 10−3 (0.29s/it)

PI-GS 1.62× 10−1 (1.5s/it) 2.61× 10−1 (1.68s/it)

Table 7: Performance comparison of PIG and PI-GS across 3 benchmark problems. Results include
relative L2 errors and computation times per iteration (s/it). Benchmarks are conducted on two
variations of the (2+1)D Burgers equation.

Across all experiments, We considered [−2.5, 2.5]2 as spatial domain with zero Dirichlet boundary
condition.

(2+1)D Burgers’ Equation For ν = 1/(10π), the (2+1)D Burgers’ equation is given by:

∂u

∂t
+ u

∂u

∂x
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
,

where u is a scalar-valued function.

22

Published as a conference paper at ICLR 2025

Figure 15: Histograms of the Gaussian parameters for the flow mixing problem and the Klein-
Gordon equation. The upper panels display histograms of the minimum distances between the
Gaussian centers, where distances > 0 indicate the absence of mode collapse. The lower panels
show histograms of the Gaussian variances, highlighting the non-degeneracy of the Gaussians.

In the first example, the initial condition is set as the probability density function (PDF) of a standard
two-dimensional Normal distribution. In the second example, the initial condition is the PDF of a
mixture of two Gaussians. Figures 16 and 17 illustrate the reference solutions and the corresponding
PIG solutions.

A.12 ADDITIONAL FIGURES AND TABLES

Hidden units MLP input dimension (k)
1 2 3 4

4 7.77e-03 9.60e-03 7.68e-03 9.60e-03
8 8.55e-03 6.44e-03 1.06e-02 8.54e-03
16 8.24e-03 1.06e-02 1.21e-02 6.90e-03
32 7.14e-03 8.06e-03 1.22-02 6.87e-03
64 6.33e-03 7.50e-03 1.09e-02 9.48e-03

128 6.38e-03 6.88e-03 8.48e-03 7.47e-03
256 5.21e-03 6.60e-03 5.22e-03 5.40e-03

Table 8: The performance of different MLP configurations for the Helmholtz equation, displaying
L2 relative errors at iteration 1,000 across various configurations of hidden units and MLP input
dimensions. Overall, the results highlight the robustness to the size of MLP, showing minimal
variation in errors across different settings.

23

Published as a conference paper at ICLR 2025

Figure 16: Prediction results of PIG for the first example of the (2+1)D Burgers’ equation. PIG
achieved a relative L2 error of 7.68× 10−4, with a computation time of 0.28 seconds per iteration.
In contrast, PI-GS attained a relative L2 error of 1.62× 10−1, requiring 1.50 seconds per iteration.

Figure 17: Prediction results of PIG for the second example of the (2+1)D Burgers’ equation. PIG
achieved a relative L2 error of 1.08×10−3, with a computation time of 0.29 seconds per iteration. In
comparison, PI-GS attained a relative L2 error of 2.61× 10−1, requiring 1.68 seconds per iteration.

24

Published as a conference paper at ICLR 2025

Figure 18: Non-linear diffusion equation 4.2.4. The experiment was conducted on three different
seeds (100, 200, 300). The best relative L2 error is 1.44× 10−3.

Figure 19: Flow mixing equation 4.2.5. The experiment was conducted on three different seeds
(100, 200, 300). The best relative L2 error is 2.67× 10−4.

25

	Introduction
	Related Work
	Physics-Informed Neural Networks
	Physics-Informed Parametric Grid Representations
	Adaptive Mesh-based Methods
	Point-based Representations

	Methodology
	Preliminary: Physics-Informed Neural Networks
	Physics-Informed Gaussians
	Learnable Gaussian Feature Embedding
	Learnable Feature Refinement
	PIG as a Neural Network

	Universal Approximation Theorem for PIGs

	Experiments
	Experimental Setup
	Experimental Results
	(1+1)D Allen-Cahn Equation
	2D Helmholtz Equation
	(2+1)D Klein-Gordon Equation
	(2+1)D Nonlinear Diffusion Equation
	(2+1)D Flow Mixing Problem

	Hyperparameter Analysis and Ablation Study
	The Number of Gaussians
	MLP Impact and Adaptive Gaussian Positions
	Covariance Matrices

	Conclusion and Limitations
	Appendix
	Enhanced Gaussian Feature Embedding
	Detailed description of experiments
	(1+1)D Allen-Cahn Equation
	2D Helmholtz Equation
	(2+1)D Klein-Gordon Equation
	(2+1)D Flow Mixing Problem
	(2+1)D Nonlinear Diffusion Equation

	Additional Experiments
	Separable PIGs
	Inverse Problem
	High-Dimensional Equations
	Lid-Driven Cavity
	Example for Spectral Bias
	The histogram of variances and distances of Gaussians
	Comparison between PIG and SIREN
	Comparison with a concurrent work
	Additional Figures and Tables

