
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Material: Progressive Prototype Evolving for
Dual-Forgetting Mitigation in Non-Exemplar Online Continual

Learning
Anonymous Authors

1 DETAILS ABOUT EVALUATION METRIC
Following [1, 4, 5], we choose Final Accuracy and Average Forgetting
to evaluate our methods. For a continual learning task that has
𝑇 stages. Final Accuracy is the accuracy of all the classes after
training the model of 𝑇 -th stage. Average Forgetting represents the
average performance degradation of different stages. Specifically,
the forgetting of 𝑗-th continual learning stage after training on 𝑡-th
stage can be computed as :

𝑓 𝑡𝑗 = max
𝑙∈{1,...,𝑡−1}

𝑎𝑙, 𝑗 − 𝑎𝑡, 𝑗 , (1)

where 𝑎𝑡, 𝑗 represents the accuracy of stage 𝑗 , after training the
model from stage 1 to 𝑡 . Then the average forgetting at stage 𝑡 can
be computed as:

𝐹𝑡 =
1

𝑡 − 1

𝑡−1∑︁
𝑗=1

𝑓 𝑡𝑗 . (2)

2 MORE EXPERIMENTAL RESULTS
2.1 Average Forgetting
In Table 1, we present the Average Forgetting results of various
state-of-the-art Online Continual Learning methods with different
memory sizes. Notably, our method employs a memory size of zero
for all experiments. It is evident that as the memory size increases,
the average forgetting rate of the existing OCL method decreases.
This trend can be attributed to the preservation of exemplars from
previous samples, explicitly aiding knowledge retention through
data replay. Remarkably, even without retaining any exemplars,
our method achieves the lowest average forgetting results. This
remarkable performance can be attributed to our approach, which
leverages information stored in progressive prototypes to mitigate
intra-stage forgetting. Additionally, Prototype Similarity Preserving
and Prototype-Guided Gradient Constraint components are also
introduced to address the inter-stage forgetting problem.

2.2 Intra-stage Forgetting Mitigation
In this section, we will demonstrate the anti-intra-stage forgetting
ability of our proposed L𝑝𝑐𝑒 method. Apart the results in Section
4.3 in the main paper, to further illustrate the effectiveness of our
proposed progressive prototypes in resisting intra-stage forgetting,
we present the accuracy of newly encountered classes at each stage
on CIFAR-10, CIFAR-100, and MiniImageNet in Figure 1. The results
reveal that the method incorporating the proposed L𝑝𝑐𝑒 achieves
higher accuracy for newly encountered classes across different
datasets and different stages. This improvement can be attributed
to the progressive prototypes, which accumulate knowledge from
previously seen samples during a stage. The inclusion of L𝑝𝑐𝑒

takes this accumulated knowledge into consideration, effectively
mitigating intra-stage forgetting.

1 2 3 4 5
Number of stages

60

80

100 +0.2

+0.7
+3.1

+0.8 +2.5

CIFAR-10

w/ pce

w/o pce

1 2 3 4 5 6 7 8 9 10
Number of stages

30

40

50
+0.4

+2.2

+3.2

+2.1
+3.4 +2.8

+2.0

+3.8
+3.5

+5.1

CIFAR-100

1 2 3 4 5 6 7 8 9 10
Number of stages

20

30

40

50

Av
er

ag
e A

cc
ur

ac
y(

%
)

+3.7

+4.8

+3.3

+6.2

+1.7 +2.3

+6.1

+0.0
+4.6

+7.2

MiniImageNet

Figure 1: Accuracy of newly encountered classes of each stage
on various datasets.

3 INFLUENCE OF HYPERPARAMETERS
In this section, we examine the impact of various hyperparameters
on the CIFAR-100 dataset. The results for different 𝛼 and 𝛽 , which
are used to calculate 𝜖𝑡 in Eq.7 in the main paper, are presented
in Table 2 and Table 3. The parameter 𝛼 serves as the intercept of
the linear function and a higher 𝛼 means that a higher threshold
𝜖𝑡 is used to construct the projection matrix. 𝛽 defines the scope
of the linear function, representing how changes in the similarity
between prototypes, 𝑠𝑡 , influence 𝜖𝑡 . Based on the results, we set
𝛼 = 2.65 and 𝛽 = 2.

In ourmethod, instead of changing theweight of theL𝑝𝑝𝑒 , which
is designed for prototype optimization, we implement progressive
prototypes with varying learning rates to control their optimiza-
tion. Results for different learning rates are shown in Table 4. Our
method demonstrates robustness across different learning rates
for prototypes, with a marginal improvement observed at a learn-
ing rate of 60. Consequently, we select a learning rate of 60 for
prototypes.

Furthermore, we explore the influence of weight parameters 𝛾 ,
𝜇 in Table 5 and Table 6. 𝛾 represents the weight of L𝑝𝑐𝑒 , which is
designed to mitigate intra-stage forgetting, while 𝜇 is the weight of
L𝑝𝑠𝑝 , which is designed to mitigate inter-stage forgetting. When

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Average Forgetting (lower is better) of different methods on various datasets. All experiment results are the average
results across 15 runs.

Dataset CIFAR-10 CIFAR-100 MiniImageNet
Memory size 10 20 100 100 200 500 100 200 500

SCR CVPR-W2021 51.9±4.7 56.9±2.0 46.8±1.4 26.8±0.9 26.7±0.8 24.1±0.6 16.4±1.0 17.8±1.0 15.5±0.7
RAR NeurIPS2022 57.2±4.4 61.3±3.0 54.2±1.2 40.0±1.0 41.9±0.8 38.7±0.8 22.4±1.4 24.9±1.1 24.0±1.0
DVC CVPR2022 50.9±2.7 48.1±2.8 36.3±2.5 42.0±1.0 39.0±0.9 34.2±0.8 36.5±1.1 34.2±0.9 29.2±0.9
GSA CVPR2023 62.4±1.4 57.3±1.4 38.3±1.2 51.6±0.6 48.4±0.6 40.5±0.5 40.9±0.4 38.8±0.6 32.4±0.7
PCR CVPR2023 45.0±4.1 37.0±4.2 23.8±3.2 36.7±0.8 31.3±0.8 21.0±1.2 35.4±0.5 30.5±0.9 20.5±1.2
SSD AAAI2024 65.3±1.0 65.0±1.0 48.4±1.4 36.0±0.6 32.7±0.7 24.7±0.6 19.5±0.6 18.0±0.8 16.0±0.5
PPE(Ours) This Paper 23.3±0.7 23.3±0.7 23.3±0.7 14.8±0.6 14.8±0.6 14.8±0.6 10.8±0.5 10.8±0.5 10.8±0.5

Table 2: Ablation study of 𝛼 in Eq.9 in the main paper.

𝛼 2.55 2.60 2.65 2.70 2.75
acc(%) 21.5±0.4 21.9±0.4 22.0±0.4 21.6±0.3 20.6±0.3

Table 3: Ablation study of 𝛽 in Eq.9 in the main paper.

𝛽 1.8 1.9 2.0 2.1 2.2
acc(%) 17.2±0.2 20.7±0.3 22.0±0.4 21.6±0.4 20.3±0.4

Table 4: Ablation study of the learning rate (lr) of progressive
prototypes.

lr 40 50 60 70 80
acc(%) 21.4±0.3 22.0±0.3 22.0±0.4 21.9±0.3 22.0±0.3

Table 5: Ablation study of 𝛾 , the weight of L𝑝𝑐𝑒 .

𝛾 0.3 0.5 1 1.5 2
acc(%) 21.8±0.3 22.0±0.4 21.9±0.3 21.7±0.3 21.4±0.4

these parameters are too small, the model tends to forget previous
knowledge, while excessively large values lead the model to primar-
ily focus on retaining prior knowledge, hindering the acquisition
of new knowledge. Based on experiment results, we set 𝛾 = 0.5 and
𝜇 = 10 to achieve an optimal balance.

4 DETAILS ABOUT GRADIENT PROJECTION
4.1 Relation between input and gradient space
According to [2, 3], the gradient update of each layer lies in the
span of input. The linear layer without bias can be formed as:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊𝑇 𝑥𝑖𝑛), (3)

where 𝑥𝑖𝑛 ∈ R𝑑𝑖𝑛 , 𝑥𝑜𝑢𝑡 ∈ R𝑑𝑜𝑢𝑡 denote the input and output,
𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 denote the input and output dimension, 𝜎 denotes the
activation function,𝑊 ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 denote the weight. Given the
loss function 𝐿, the gradient of𝑊 can be computed by chain rule:

Table 6: Ablation study of 𝜇, the weight of L𝑝𝑠𝑝 .

𝜇 6 8 10 12 14
acc(%) 21.9±0.3 21.9±0.4 22.0±0.4 22.0±0.4 21.9±0.4

𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕𝑥𝑜𝑢𝑡

𝜕𝑥𝑜𝑢𝑡

𝜕𝑊
= (𝜕𝐿

𝜕𝑥𝑜𝑢𝑡
𝜎′)𝑥𝑇𝑖𝑛 . (4)

Thus Equation (4) shows that the the gradient of𝑊 lies in the span
of input.

The convolution layer without bias can be formed as:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊 ∗ 𝑥𝑖𝑛) (5)

where 𝑥𝑖𝑛 ∈ R𝐶𝑖𝑛×ℎ𝑖𝑛×𝑤𝑖𝑛 , 𝑥𝑜𝑢𝑡 ∈ R𝐶𝑜𝑢𝑡×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 denote the
input and output, 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 denote the input and output channel,
ℎ𝑖𝑛 , 𝑤𝑖𝑛 , ℎ𝑜𝑢𝑡 , 𝑤𝑜𝑢𝑡 denote the size of the input and output, 𝜎
denotes the activation function,𝑊 ∈ R𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×𝑘×𝑘 denote the
weight. We can reshape 𝑥𝑖𝑛 into 𝑥𝑖𝑛 ∈ R(𝐶𝑖𝑛×𝑘×𝑘)×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 and
reshape𝑊 into 𝑊̂ ∈ R(𝐶𝑖𝑛×𝑘×𝑘)×𝐶𝑜𝑢𝑡 , then the convolution can
be reformed as matrix multiplication:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊̂𝑇 𝑥𝑖𝑛), (6)

where 𝑥𝑜𝑢𝑡 ∈ R𝐶𝑜𝑢𝑡×(ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡) . Similar to the chain rule in Equa-
tion (4), the gradient of the weight of the convolution layer also
lies in the span of input.

4.2 Construction of input matrix R𝑡
As mentioned after Equation (5) in the main paper, existing offline
continual learning methods [2, 3] construct the input matrix R𝑡
by sampling data from the entire dataset which is impractical in
NEOCL due to the one-pass data stream. Therefore, we handle this
constraint by utilizing the latest batch of a learning stage to obtain
R𝑡 . To validate the adequacy of R𝑡 constructed from the latest batch
in representing the input space, we conduct experiments where R𝑡
is replaced with data sampled from the entire dataset. The results
presented in Table 7 indicate that constructing R𝑡 with the latest
batch achieves superior performance. This outcome is attributed to
the nature of the online setting, where the model continuously up-
dates based on the single-pass data stream. Consequently, features
extracted from later encountered samples may better represent the
input space of the model.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Material: Progressive Prototype Evolving for Dual-Forgetting Mitigation in Non-Exemplar Online Continual Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 7: Results of differnt R𝑡 on CIFAR-100.

R𝑡 Latest Batch Entire Dataset
acc(%) 22.0±0.4 21.9±0.4

REFERENCES
[1] Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. 2022. Not just selection, but

exploration: Online class-incremental continual learning via dual view consis-
tency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

[2] Yan-Shuo Liang and Wu-Jun Li. 2023. Adaptive Plasticity Improvement for Con-
tinual Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

[3] Gobinda Saha, Isha Garg, and Kaushik Roy. 2021. Gradient Projection Memory
for Continual Learning. In International Conference on Learning Representations.
https://openreview.net/forum?id=3AOj0RCNC2

[4] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and
Jongseong Jang. 2021. Online class-incremental continual learning with adversar-
ial shapley value. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35.

[5] Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. 2023.
Online Prototype Learning for Online Continual Learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision.

https://openreview.net/forum?id=3AOj0RCNC2

	1 Details about evaluation metric
	2 More Experimental Results
	2.1 Average Forgetting
	2.2 Intra-stage Forgetting Mitigation

	3 Influence of Hyperparameters
	4 Details about gradient projection
	4.1 Relation between input and gradient space
	4.2 Construction of input matrix Rt

	References

