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1 DETAILS ABOUT EVALUATION METRIC
Following [1, 4, 5], we choose Final Accuracy and Average Forgetting
to evaluate our methods. For a continual learning task that has
𝑇 stages. Final Accuracy is the accuracy of all the classes after
training the model of 𝑇 -th stage. Average Forgetting represents the
average performance degradation of different stages. Specifically,
the forgetting of 𝑗-th continual learning stage after training on 𝑡-th
stage can be computed as :

𝑓 𝑡𝑗 = max
𝑙∈{1,...,𝑡−1}

𝑎𝑙, 𝑗 − 𝑎𝑡, 𝑗 , (1)

where 𝑎𝑡, 𝑗 represents the accuracy of stage 𝑗 , after training the
model from stage 1 to 𝑡 . Then the average forgetting at stage 𝑡 can
be computed as:

𝐹𝑡 =
1

𝑡 − 1

𝑡−1∑︁
𝑗=1

𝑓 𝑡𝑗 . (2)

2 MORE EXPERIMENTAL RESULTS
2.1 Average Forgetting
In Table 1, we present the Average Forgetting results of various
state-of-the-art Online Continual Learning methods with different
memory sizes. Notably, our method employs a memory size of zero
for all experiments. It is evident that as the memory size increases,
the average forgetting rate of the existing OCL method decreases.
This trend can be attributed to the preservation of exemplars from
previous samples, explicitly aiding knowledge retention through
data replay. Remarkably, even without retaining any exemplars,
our method achieves the lowest average forgetting results. This
remarkable performance can be attributed to our approach, which
leverages information stored in progressive prototypes to mitigate
intra-stage forgetting. Additionally, Prototype Similarity Preserving
and Prototype-Guided Gradient Constraint components are also
introduced to address the inter-stage forgetting problem.

2.2 Intra-stage Forgetting Mitigation
In this section, we will demonstrate the anti-intra-stage forgetting
ability of our proposed L𝑝𝑐𝑒 method. Apart the results in Section
4.3 in the main paper, to further illustrate the effectiveness of our
proposed progressive prototypes in resisting intra-stage forgetting,
we present the accuracy of newly encountered classes at each stage
on CIFAR-10, CIFAR-100, and MiniImageNet in Figure 1. The results
reveal that the method incorporating the proposed L𝑝𝑐𝑒 achieves
higher accuracy for newly encountered classes across different
datasets and different stages. This improvement can be attributed
to the progressive prototypes, which accumulate knowledge from
previously seen samples during a stage. The inclusion of L𝑝𝑐𝑒

takes this accumulated knowledge into consideration, effectively
mitigating intra-stage forgetting.
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Figure 1: Accuracy of newly encountered classes of each stage
on various datasets.

3 INFLUENCE OF HYPERPARAMETERS
In this section, we examine the impact of various hyperparameters
on the CIFAR-100 dataset. The results for different 𝛼 and 𝛽 , which
are used to calculate 𝜖𝑡 in Eq.7 in the main paper, are presented
in Table 2 and Table 3. The parameter 𝛼 serves as the intercept of
the linear function and a higher 𝛼 means that a higher threshold
𝜖𝑡 is used to construct the projection matrix. 𝛽 defines the scope
of the linear function, representing how changes in the similarity
between prototypes, 𝑠𝑡 , influence 𝜖𝑡 . Based on the results, we set
𝛼 = 2.65 and 𝛽 = 2.

In ourmethod, instead of changing theweight of theL𝑝𝑝𝑒 , which
is designed for prototype optimization, we implement progressive
prototypes with varying learning rates to control their optimiza-
tion. Results for different learning rates are shown in Table 4. Our
method demonstrates robustness across different learning rates
for prototypes, with a marginal improvement observed at a learn-
ing rate of 60. Consequently, we select a learning rate of 60 for
prototypes.

Furthermore, we explore the influence of weight parameters 𝛾 ,
𝜇 in Table 5 and Table 6. 𝛾 represents the weight of L𝑝𝑐𝑒 , which is
designed to mitigate intra-stage forgetting, while 𝜇 is the weight of
L𝑝𝑠𝑝 , which is designed to mitigate inter-stage forgetting. When
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Table 1: Average Forgetting (lower is better) of different methods on various datasets. All experiment results are the average
results across 15 runs.

Dataset CIFAR-10 CIFAR-100 MiniImageNet
Memory size 10 20 100 100 200 500 100 200 500

SCR CVPR-W2021 51.9±4.7 56.9±2.0 46.8±1.4 26.8±0.9 26.7±0.8 24.1±0.6 16.4±1.0 17.8±1.0 15.5±0.7
RAR NeurIPS2022 57.2±4.4 61.3±3.0 54.2±1.2 40.0±1.0 41.9±0.8 38.7±0.8 22.4±1.4 24.9±1.1 24.0±1.0
DVC CVPR2022 50.9±2.7 48.1±2.8 36.3±2.5 42.0±1.0 39.0±0.9 34.2±0.8 36.5±1.1 34.2±0.9 29.2±0.9
GSA CVPR2023 62.4±1.4 57.3±1.4 38.3±1.2 51.6±0.6 48.4±0.6 40.5±0.5 40.9±0.4 38.8±0.6 32.4±0.7
PCR CVPR2023 45.0±4.1 37.0±4.2 23.8±3.2 36.7±0.8 31.3±0.8 21.0±1.2 35.4±0.5 30.5±0.9 20.5±1.2
SSD AAAI2024 65.3±1.0 65.0±1.0 48.4±1.4 36.0±0.6 32.7±0.7 24.7±0.6 19.5±0.6 18.0±0.8 16.0±0.5
PPE(Ours) This Paper 23.3±0.7 23.3±0.7 23.3±0.7 14.8±0.6 14.8±0.6 14.8±0.6 10.8±0.5 10.8±0.5 10.8±0.5

Table 2: Ablation study of 𝛼 in Eq.9 in the main paper.

𝛼 2.55 2.60 2.65 2.70 2.75
acc(%) 21.5±0.4 21.9±0.4 22.0±0.4 21.6±0.3 20.6±0.3

Table 3: Ablation study of 𝛽 in Eq.9 in the main paper.

𝛽 1.8 1.9 2.0 2.1 2.2
acc(%) 17.2±0.2 20.7±0.3 22.0±0.4 21.6±0.4 20.3±0.4

Table 4: Ablation study of the learning rate (lr) of progressive
prototypes.

lr 40 50 60 70 80
acc(%) 21.4±0.3 22.0±0.3 22.0±0.4 21.9±0.3 22.0±0.3

Table 5: Ablation study of 𝛾 , the weight of L𝑝𝑐𝑒 .

𝛾 0.3 0.5 1 1.5 2
acc(%) 21.8±0.3 22.0±0.4 21.9±0.3 21.7±0.3 21.4±0.4

these parameters are too small, the model tends to forget previous
knowledge, while excessively large values lead the model to primar-
ily focus on retaining prior knowledge, hindering the acquisition
of new knowledge. Based on experiment results, we set 𝛾 = 0.5 and
𝜇 = 10 to achieve an optimal balance.

4 DETAILS ABOUT GRADIENT PROJECTION
4.1 Relation between input and gradient space
According to [2, 3], the gradient update of each layer lies in the
span of input. The linear layer without bias can be formed as:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊𝑇 𝑥𝑖𝑛), (3)

where 𝑥𝑖𝑛 ∈ R𝑑𝑖𝑛 , 𝑥𝑜𝑢𝑡 ∈ R𝑑𝑜𝑢𝑡 denote the input and output,
𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 denote the input and output dimension, 𝜎 denotes the
activation function,𝑊 ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 denote the weight. Given the
loss function 𝐿, the gradient of𝑊 can be computed by chain rule:

Table 6: Ablation study of 𝜇, the weight of L𝑝𝑠𝑝 .

𝜇 6 8 10 12 14
acc(%) 21.9±0.3 21.9±0.4 22.0±0.4 22.0±0.4 21.9±0.4

𝜕𝐿

𝜕𝑊
=

𝜕𝐿

𝜕𝑥𝑜𝑢𝑡

𝜕𝑥𝑜𝑢𝑡

𝜕𝑊
= ( 𝜕𝐿

𝜕𝑥𝑜𝑢𝑡
𝜎′)𝑥𝑇𝑖𝑛 . (4)

Thus Equation (4) shows that the the gradient of𝑊 lies in the span
of input.

The convolution layer without bias can be formed as:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊 ∗ 𝑥𝑖𝑛) (5)

where 𝑥𝑖𝑛 ∈ R𝐶𝑖𝑛×ℎ𝑖𝑛×𝑤𝑖𝑛 , 𝑥𝑜𝑢𝑡 ∈ R𝐶𝑜𝑢𝑡×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 denote the
input and output, 𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 denote the input and output channel,
ℎ𝑖𝑛 , 𝑤𝑖𝑛 , ℎ𝑜𝑢𝑡 , 𝑤𝑜𝑢𝑡 denote the size of the input and output, 𝜎
denotes the activation function,𝑊 ∈ R𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×𝑘×𝑘 denote the
weight. We can reshape 𝑥𝑖𝑛 into 𝑥𝑖𝑛 ∈ R(𝐶𝑖𝑛×𝑘×𝑘 )×ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 and
reshape𝑊 into 𝑊̂ ∈ R(𝐶𝑖𝑛×𝑘×𝑘 )×𝐶𝑜𝑢𝑡 , then the convolution can
be reformed as matrix multiplication:

𝑥𝑜𝑢𝑡 = 𝜎 (𝑊̂𝑇 𝑥𝑖𝑛), (6)

where 𝑥𝑜𝑢𝑡 ∈ R𝐶𝑜𝑢𝑡×(ℎ𝑜𝑢𝑡×𝑤𝑜𝑢𝑡 ) . Similar to the chain rule in Equa-
tion (4), the gradient of the weight of the convolution layer also
lies in the span of input.

4.2 Construction of input matrix R𝑡
As mentioned after Equation (5) in the main paper, existing offline
continual learning methods [2, 3] construct the input matrix R𝑡
by sampling data from the entire dataset which is impractical in
NEOCL due to the one-pass data stream. Therefore, we handle this
constraint by utilizing the latest batch of a learning stage to obtain
R𝑡 . To validate the adequacy of R𝑡 constructed from the latest batch
in representing the input space, we conduct experiments where R𝑡
is replaced with data sampled from the entire dataset. The results
presented in Table 7 indicate that constructing R𝑡 with the latest
batch achieves superior performance. This outcome is attributed to
the nature of the online setting, where the model continuously up-
dates based on the single-pass data stream. Consequently, features
extracted from later encountered samples may better represent the
input space of the model.
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Table 7: Results of differnt R𝑡 on CIFAR-100.

R𝑡 Latest Batch Entire Dataset
acc(%) 22.0±0.4 21.9±0.4
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