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Abstract
Federated Learning (FL) has emerged as a promising paradigm for collabora-1

tive machine learning, while preserving user data privacy. Despite its potential,2

standard FL algorithms lack support for diverse heterogeneous device prototypes,3

which vary significantly in model and dataset sizes—from small IoT devices to4

large workstations. This limitation is only partially addressed by existing knowl-5

edge distillation (KD) techniques, which often fail to transfer knowledge effec-6

tively across a broad spectrum of device prototypes with varied capabilities. This7

failure primarily stems from two issues: the dilution of informative logits from8

more capable devices by those from less capable ones, and the use of a single9

integrated logits as the distillation target across all devices, which neglects their10

individual learning capacities and and the unique contributions of each device. To11

address these challenges, we introduce TAKFL, a novel KD-based framework that12

treats the knowledge transfer from each device prototype’s ensemble as a separate13

task, independently distilling each to preserve its unique contributions and avoid14

dilution. TAKFL also incorporates a KD-based self-regularization technique to15

mitigate the issues related to the noisy and unsupervised ensemble distillation16

process. To integrate the separately distilled knowledge, we introduce an adap-17

tive task arithmetic knowledge integration process, allowing each student model18

to customize the knowledge integration for optimal performance. Additionally,19

we present theoretical results demonstrating the effectiveness of task arithmetic20

in transferring knowledge across heterogeneous device prototypes with varying21

capacities. Comprehensive evaluations of our method across both computer vi-22

sion (CV) and natural language processing (NLP) tasks demonstrate that TAKFL23

achieves state-of-the-art results in a variety of datasets and settings, significantly24

outperforming existing KD-based methods.25

1 Introduction26

Federated Learning (FL) has rapidly gained traction as a promising approach to train machine learn-27

ing models collaboratively across multiple devices, while preserving the privacy of user data. Stan-28

dard federated learning methods, such as FedAvg [33], however, are primarily designed for un-29

realistic device-homogeneous scenarios, where all devices are assumed to have identical compute30

resource and can train the same neural network architecture [28, 33, 47, 21, 27, 46, 31]. Therefore,31

standard FL cannot support the participation of heterogeneous devices, all of which could signif-32

icantly contribute to model training due to their unique and invaluable local datasets. To address33

this gap, knowledge distillation (KD) techniques have emerged as a promising approach to establish34

federation among heterogeneous device prototypes and facilitate knowledge transfer between them.35

In this approach, locally updated client models from different device prototypes, collectively termed36

as ensembles, serve as teachers to distill their knowledge into each device prototype’s server student37

model using an unlabeled public dataset.38
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Despite their success, however, existing KD-based methods for device heterogeneous FL are primar-39

ily designed for scenarios where device prototypes are in the same-size with similar capabilities, i.e.40

same model and dataset sizes. However, in practice, device capabilities vary widely, ranging from41

small devices like IoTs with small models and small datasets to large devices like workstations with42

large models and large datasets. This diversity, often overlooked in the existing literature, results in43

device prototypes with varying strengths and information qualities. Unfortunately, existing methods44

struggle to establish effective knowledge transfer in these challenging, real-world device heteroge-45

neous settings, primarily due to two reasons: 1 Existing methods often disregard the individual46

strengths and information quality of each device prototype’s ensembles and integrate their logits47

into a single distillation target. This approach dilutes the richer, more informative logits from larger,48

more capable devices with less informative logits from smaller, less capable ones. 2 Additionally,49

these methods employ this single integrated distillation target to transfer knowledge across all dif-50

ferent size student models. This one-size-fits-all approach fails to provide customized knowledge51

integration based on the unique learning capacities of each student and the specific helpfulness of52

each device prototype’s ensembles.53

Moreover, the heterogeneous ensemble distillation process can inadvertently lead student models54

into erroneous learning directions, causing them to forget their self-knowledge acquired through55

averaged locally updated parameters. This issue arises primarily due to two reasons: 1 The distilla-56

tion process introduces noise, as the ensembles’ logits are inferred on an unfamiliar public dataset,57

distinct from their original training data. Additionally, the presence of data heterogeneity and the58

insufficient training of some ensembles, due to computational constraints, can further exacerbate59

this noise. 2 The distillation process lacks supervision from the actual private datasets, which are60

the ultimate learning objectives. Consequently, these factors, combined with the limitations outlined61

earlier, result in suboptimal knowledge transfer in device heterogeneous settings. This underscores62

the urgent need for a more effective knowledge transfer framework.63

In this paper, we introduce TAKFL, a novel “Task Arithmetic Knowledge Transfer Integration for64

Federated Learning” framework, designed to overcome the fundamental limitations in the existing65

methods and improve knowledge transfer in scenarios where device prototypes vary in size—both66

model and dataset—and consequently, in strength. TAKFL treats knowledge transfer from each67

device prototype’s ensembles as separate tasks, distilling them independently to ensure that each68

prototype’s unique contributions are accurately distilled without interference. To tackle the chal-69

lenges associated with noisy and unsupervised ensemble distillation, we incorporate a KD-based70

self-regularization technique into this individual knowledge transfer process. Subsequently, to se-71

lectively integrate the separately distilled knowledge from heterogeneous prototypes’ ensembles, we72

introduce an adaptive task arithmetic knowledge integration method by extending the notion of task73

vectors from centralized learning to federated learning. Our approach enables the student model74

to strategically customize the knowledge integration process based on the quality of knowledge75

from each prototype’s ensembles and its intrinsic capacity, aiming to achieve optimal performance.76

We present theoretical results, grounded on the established theoretical learning properties of over-77

parametrized neural networks, that conceptualize knowledge distillation as the allocation of device78

prototypes’ capacities to accurately fit the chosen logits. These results demonstrate the advantages79

of employing task arithmetic for knowledge transfer in terms of overall accuracy, coverage, and effi-80

ciency, as well as the adaptive knowledge integration based on the capacity of the student prototype.81

Furthermore, we comprehensively evaluate our method across both computer vision (CV) and nat-82

ural language processing (NLP) tasks, utilizing various datasets and architectures, and demonstrate83

that TAKFL consistently achieves state-of-the-art (SOTA) performance.84

The contribution of our paper is as follows:85

1. We formalize and review the important considerations of the problem statement of federated86

learning with heterogeneous device prototypes.87

2. We introduce TAKFL, a novel KD-based method designed to overcome the fundamental limita-88

tions of existing approaches, effectively facilitating knowledge transfer across diverse heteroge-89

neous device prototypes with varying capabilities.90

3. We present a theoretical model for device heterogeneous KD, and demonstrate the effectiveness91

and efficiency of TAKFL compared to the standard alternatives that do not adapt to the student’s92

self-knowledge quality and available learning capacity.93

4. Our comprehensive experimental evaluations on both CV and NLP tasks, spanning various94

datasets and architectures, reveal that TAKFL consistently achieves SOTA performance, out-95

performing existing KD-based methods.96
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(a) Vanilla Ensemble Distillation (b) Overview of TAKFL

Figure 1: Overview of our approach and its distinction from prior works. (a) This figure il-
lustrates the vanilla ensemble distillation process, where logits from ensembles of various sizes are
averaged and used as the distillation target across all prototypes. This approach leads to the dilution
of information and suboptimal knowledge transfer (refer to Sections 6 and 7 for details). (b) This
figure depicts our approach, TAKFL, which treats knowledge transfer from each prototype’s ensem-
ble as a separate task and distills them independently. Additionally, a KD-based self-regularization
technique is introduced to mitigate issues related to the noisy and unsupervised ensemble distilla-
tion. Finally, the heterogeneously distilled knowledge is strategically integrated using an adaptive
task arithmetic operation, allowing for customized knowledge integration based on each student pro-
totype’s needs.

2 Related Works97

Device Heterogeneous FL. Prior works on device heterogeneous FL have considered two distinct98

approaches with different objectives and settings. The first array of studies focuses on accommo-99

dating devices with varying compute resources, aiming to train a single global model. Techniques100

such as static and rolling-based partial model training allow devices to train a sub-model of the101

global model tailored to their compute resources [11, 18, 3, 1]. However, this approach does not102

fully reflect real-world scenarios. In practice, device prototypes such as IoTs and smartphones have103

unique neural network architectures designed for their specific configurations and underlying tasks,104

which may not support training varying neural architectures. This highlights a significant limitation105

in accommodating the full spectrum of device heterogeneity in this approach. The second array of106

studies addresses a more practical scenario where device prototypes with heterogeneous model ar-107

chitectures participate in FL to enhance their global model performance through mutual knowledge108

sharing [30, 41, 6]. In this context, KD techniques are used to transfer knowledge among prototypes,109

where locally updated client models, termed as ensembles, serve as teachers to distill their knowl-110

edge into each server’s student model using an unlabeled public dataset. For example, FedDF [30]111

uses vanilla logit averaging, while Fed-ET [6] applies an uncertainty-weighted logit averaging, en-112

hanced by a diversity regularization technique. However, existing works typically focus on settings113

where prototypes have similar capabilities—both model and dataset sizes—and thus neglecting the114

challenges in more diverse settings with varying capabilities. This oversight leaves their effective-115

ness in such settings largely unexplored. In this paper, we aim to study the underexplored diverse116

heterogeneous device settings. See Appendix A for a more detailed discussion on the related works.117

Model Editing via Task Arithmetic. Traditional methods for model editing often involve expen-118

sive joint fine-tuning across multiple tasks, which can limit scalability and democratization [60].119

Recently, a promising technique called task arithmetic has emerged as a cost-effective and scal-120

able method for updating pre-trained models with new information or refining undesired behav-121

ior [51, 37, 32]. The concept of “task vectors” introduced by Wortsman et al. [51] plays a pivotal122

role in these techniques. For any given task t, a task vector is derived by subtracting the model’s123

pre-trained weights θpre from its fine-tuned weights θt
ft on task t , i.e. τt = θft − θpre. These task124

vectors act as unique representations for specific tasks. Furthermore, researchers have demonstrated125

that by summing multiple task vectors {τt}Tt=1, and integrating them into a pre-trained model via126

θ = θpre+λ
∑T

t=1 τt, one can effectively create a model capable of handling multiple tasks [51, 55].127

To the best of our knowledge, this work is the first to extend the notion of task vectors to the federated128

learning setting, introducing a task arithmetic for knowledge distillation across diverse heteroge-129

neous device prototypes.130
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3 Problem Statement: FL with Heterogeneous Device Prototypes131

Consider a cross-device FL setup with a set of M distinct device prototypes M, i.e., M = |M|.132

Each device prototype mj ∈ M has a distinct neural network architecture f j(·;θj) parameterized133

by θj ∈ Rnj and a set of clients Cj , with N j = |Cj | clients in total. Each client ck ∈ Cj has a134

local private dataset Dj
k = {(xi, yi)}

nj,k

i=1 , where nj,k = |Dj
k|, and locally trains the parameters θj135

of the neural network architecture f j on its local dataset. Furthermore, denote Dj = ∪k∈CjDj
k to be136

the union of the private datasets for device prototype j. We assume Dj ∼ Dj , that is a subsample137

from the population distribution Dj and similarly Dj
k ∼ D

j
k. The union of the private datasets, i.e.138

D =
⋃

j∈M Dj , is sampled from the entire population D, which is defined as an unknown mixture139

of the distributions each device prototype sampled its data from, i.e. generically non-i.i.d. We140

formalize this as a mixture of local clients data population, i.e., D =
∑

j ωj,:Dj =
∑

j

∑
k ωj,kDj

k,141

where 0 ≤ ωj,k ≤ 1 and
∑

jk ωj,k = 1, and ωj,k is unknown.142

The ultimate objective is to minimize the test error and thus enable accurate inference for each device143

prototype j, aiming to obtain the optimal parameters for the population dataset:144

argmin
θj

E(x,y)∼D[ℓ(f
j(x;θj), y)] = argmin

θj

M∑
j=1

Nj∑
k=1

ωi,kE(x,y)∼Dj
k
[ℓ(f j(x;θj), y)] (1)

where ℓ(·, ·) is the sample-wise loss function (e.g. cross entropy for image classification) and we145

decompose by total population loss with the linearity of expectation in the mixture. See Fig 4b for a146

visual illustration of heterogeneous device prototype FL.147

4 Background: Federated Ensemble Distillation148

To address the limitations of standard FL in device heterogeneous settings, Lin et al. [30] proposed149

ensemble knowledge distillation to transfer knowledge between heterogeneous device prototypes in150

FL. This procedure consists of two stages: (1) local per-prototype FL, and (2) server-side vanilla151

ensemble distillation. The details of each stage discussed in the following paragraphs.152

Local Per-Prototype FL. In this context, at each round r a subset of clients Cj
r from each device153

prototype j ∈ M is randomly selected by the server and download their corresponding model ini-154

tialization θj
r . Each client cjk ∈ Cj

r, starting from this model initialization, locally train the model f j155

on its local private data Dj
k by taking multiple steps of stochastic gradient descent. Then, they send156

back their updated parameters {θ̂j
k}k∈Cj

r
to the server. The server aggregates the received clients157

parameters, and computes θj
avg =

∑
k∈Cj

r

|Dk|∑
k∈Cjr

|Dk| θ̂
j
k. In classic federated learning formalism,158

the parameters θj
avg satisfy,159

θj
avg ∈ argmin

θj

Nj∑
k=1

E(x,y)∼Dj
k

[
ℓ(f j(x;θj), y)

]
(2)

160

Vanilla Ensemble Distillation. In this stage, each server model f j gets initialized with θj , and161

undergoes updates using ensemble knowledge distillation. Here, heterogeneous client models from162

heterogeneous device prototypes, collectively termed as ensembles, serve as teachers, i.e. T :=163

{f i(·, θ̂i
k)| i ∈ M, k ∈ Ci}, transferring their knowledge to each server student model, i.e. Si :=164

f i(·,θi). For simplicity, we drop the index for each server student model, denoting it as S. The165

ensemble distillation loss using a mini-batch of data from an unlabeled public dataset, i.e x ∈166

Dpublic, can be defined by the following equation:167

LED = KL
[
σ

(
1

|T |
∑
F∈T
F(x)

)
, σ (S(x))

]
, (AvgLogits) (3)

where σ(·) is the softmax function. As illustrated in Eq. 3, vanilla ensemble distillation treats all168

heterogeneous device prototypes’ ensembles equally by uniformly averaging their logits. This way169

of knowledge integration overlooks the individual strengths and informational value of each pro-170

totype’s ensembles. As a result, the richer, more informative logits from stronger ensembles are171

diluted by less informative logits from weaker ensembles, leading to information loss. Furthermore,172
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this averaged logits is used as the distillation target across different-sized student models, irrespec-173

tive of their intrinsic capacity and the helpfulness of each prototype’s ensembles. Consequently, this174

leads to suboptimal knowledge transfer in device heterogeneous FL. See Section 6 for theoretical175

analysis and Section 7 for experimental observations.176

5 Task Arithmetic Knowledge Transfer and Integration177

In this section, we introduce TAKFL, designed to overcome the fundamental limitations of previous178

approaches and enhance knowledge transfer across diverse heterogeneous device prototypes, which179

vary in size—in terms of both model and dataset size. TAKFL consists of two main components:180

(1) individually transferring knowledge from each device prototype’s ensembles, and (2) adaptively181

integrating knowledge via task arithmetic. Detailed descriptions of each component are provided in182

Section 5.1 and 5.2, respectively. An illustrative overview of TAKFL is presented in Figure 1b, and183

the full algorithm is detailed in Appendix B, Algorithm 1.184

5.1 Knowledge Transfer from Individual Device Prototype185

We begin by discussing our proposed knowledge transfer framework from each individual device186

prototype’s ensembles. This process consists of two main components: ensemble knowledge trans-187

fer and self-regularization, each detailed in the subsequent paragraphs.188

Ensemble Knowledge Transfer. Vanilla ensemble distillation integrates the knowledge of vary-189

ing strength ensembles by uniformly averaging their logits. This approach can potentially trans-190

form or even degrade the overall quality of the knowledge being transferred, leading to suboptimal191

knowledge transfer. To effectively distill the unique knowledge and contributions of each proto-192

type’s ensembles, and to avoid dilution, information loss, and interference from other prototypes’193

ensembles, we propose transferring the knowledge from each prototype’s ensembles separately and194

independently.195

Specifically, let’s consider Ti := {f i(·, θ̂i
k)| k ∈ Ci} denotes the ensembles of device prototype196

i as teacher and Sj denotes the server student model of the device prototype j. Without loss of197

generality, we refer to each device prototype’s server student model as just student denoted as S.198

Therefore, the knowledge distillation loss between the teacher ensembles Ti and server student S199

(Ti → S) is defined below:200

LTi )S
KD = KL

[
σ

(
1

|Ti|
∑
F∈Ti

F(x)
)
, σ (S(x))

]
. (4)

Scaffolding Student from Noisy Ensemble Distillation. The ensemble distillation process may201

adversely impact the student, causing it to forget its own knowledge acquired through averaged202

locally updated parameters and be drifted into erroneous directions. This is primarily due to two203

key factors: (1) The ensemble distillation process introduces noise, mainly because the ensembles’204

logits are inferred on an unfamiliar public dataset they have not been trained on. These ensembles205

are originally trained on local private datasets, which usually differ from the unlabeled public dataset206

used for distillation. Moreover, other factors such as the presence of data heterogeneity within FL207

and insufficient training of some ensembles due to limited computational resources can exacerbate208

this noise, particularly in the initial rounds of federation. (2) The ensemble distillation process lacks209

supervision from the actual private datasets, which is the ultimate learning objective.210

To scaffold the student models from the noisy and unsupervised distillation process, which may211

cause them to drift into erroneous directions and forget their invaluable self-knowledge, we introduce212

a KD-based self-regularization technique. Our self-regularization technique mitigates these issues213

by enforcing similarity between the logits of the student and its initial logits (when the student is214

initialized with averaged parameters) using KL divergence loss defined below:215

Lself
S = KL

[
σ (S(x;θavg)) , σ (S(x))

]
. (5)

216

Overall Knowledge Transfer Objective. The overall knowledge transfer objective from teacher217

ensembles Ti of device prototype i to the student S is the combination of the ensemble knowledge218

distillation loss LTi )S
KD (Eq. 4) and the self-regularization loss Lself

S (Eq. 5) defined in the following:219

LTi

S = LTi )S
KD + γ · Lself

S . (6)
Here, γ is a hyperparameter controlling the effect of self-regularization term. We associate the220

knowledge transfer from each device prototype i to a task Ti with the loss LTi

S .221
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5.2 Task Arithmetic Knowledge Integration222

Figure 2: Analogy between task
vector in centralized learning
and federated learning.

Herein, we delve into the details of our proposed method for223

customized integration of the separately distilled knowledge224

from heterogeneous ensembles. Drawing inspiration from225

recent advances in model editing via task arithmetic [51],226

where a pre-trained model’s knowledge can be edited via task-227

specific vectors using arithmetic operation, we propose a novel228

customizable knowledge integration method via task arith-229

metic. To do so we extend the notion of task vector from230

centralized learning to federated learning. We conceptualize231

the averaged locally updated parameters, i.e. θavg , as a “pre-232

trained”, similar to those in centralized learning, and the pa-233

rameters of the distilled model via knowledge transfer objective (Eq. 4), denoted as θdistilled, as a234

“fine-tuned” version of the model (see Fig. 2). Consequently, the task vector τi associated with the235

knowledge transfer task LTi

S can be defined by subtracting the distilled parameters from the averaged236

locally updated parameters as follows:237

τi = θTi )S
distilled − θavg. (7)

Essentially, task vectors serve as a unique representations for the transferred knowledge from each238

prototype’s ensembles to the student and encapsulate the distinct contributions of each prototype’s239

ensembles to the student model. To selectively merge the knowledge of each prototype’ ensembles240

into the student, we employ an adaptive task arithmetic operation as follows:241

θmerged = θavg +
∑
i∈M

λiτi, (8)

where λi denotes the merging coefficient associated with task vector τi, and they sum to one, i.e.242 ∑
i∈M λi = 1. The merging coefficients determine the extent of knowledge integration from each243

prototype’s ensembles. Essentially, they enable the student to have customized knowledge inte-244

gration to achieve maximum performance. The student can determine these merging coefficients245

based on its own learning capacity and the relative knowledge and helpfulness of other device proto-246

types’ ensembles. This approach provides an effective, low-cost, and scalable knowledge integration247

strategy in settings with diverse device heterogeneity. In our experiments, we considered this as a248

hyperparameter and tuned it manually or determined it using held-out validation sets which achieves249

similar results. More details can be found in Appendix F.3.250

6 Theoretical Results251

We present a theoretical understanding on the efficacy of knowledge distillation in device heteroge-252

neous FL. We argue that vanilla ensemble distillation (VED) diffuses the information from logits,253

which presents a notable disadvantage for solving (1). This effect is particularly pronounced when254

the teacher ensembles are from a device prototype of small capacity, and the student model is from a255

device prototype of large capacity. By contrast, our proposed method of task arithmetic knowledge256

integration, mitigates the drawbacks of VED and is able to simultaneously incorporate information257

from differently sized heterogeneous ensembles, efficiently filling up the capacity of each student258

with the most informative knowledge, achieving optimal knowledge transfer.259

Assumptions and Preliminaries. Standard practice, including the setting in consideration as well260

as the numerical experiments here, involves overparametrized neural networks, that is, the total261

number of weights far exceeds the training sample size. This implies that the set of weights that262

minimize the loss is non-unique, and moreover, it has been argued that they form a submanifold [8].263

This submanifold structure of solution sets will provide the critical source of understanding the264

subsequent results. In particular, we shall consider knowledge distillation as filling up the capacity265

of device prototypes’ models with basis vectors corresponding to submanifolds that minimize as266

many device prototypes’ data distributions as possible.267

Since we are interested in server-side distillation across heterogeneous device prototypes, we assume268

optimal conditions at the local per-prototype FL level, meaning that the perfect solution for local269

per-prototype FL is achieved. The formal details of the assumptions and statements are presented in270

Appendix C.271

Proposition 1. (information loss in VED, informal). Consider the VED procedure in the form of272

solving (3). Consider two device prototypes with a device capacity and solution dimension of Q1, Q2273
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and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Denote W i,j , i, j = 1, 2 as the274

capacity allocated by student i in order to distill knowledge from teacher j’s logits.275

1. Case 1: When the capacities are the same, that is Q1 = Q2 and W 1 = W 2 = W 1,2 = W 2,1,276

then with VED, there will be some capacity, in the sense of eigenspace, of student prototypes that277

will be allocated with parameters that do not minimize the student’s its own data distribution.278

2. Case 2: Assume that Q1 > Q2 and W 1 = W 1,2 > W 2. Then the phenomenon as for Case279

1 holds. Moreover, there will be some capacity of student 1’s model that will be allocated with280

parameters that do not minimize either of the teacher or student prototype’s data distribution.281

An interesting key mechanism of the proof is that when VED is applied in distilling logits from a282

small device prototype to a large one, the modeling capacity of W 1,2 is structurally reduced to that283

of W 2 < W 1,2, i.e., it is an operation wasteful of the potential model capacity.284

Remark 1. This proposition proves that in general, VED is prone to diffuse knowledge already285

present in students, and leads to inefficient and inaccurate use of model capacity. Furthermore,286

under the case that device prototypes have different capacities, VED ends up leading to more er-287

ronous models entirely as the small information within the small teacher is transferred onto a larger288

capacity target.289

Proposition 2. (improve knowledge transfer with task arithmetic, informal). Consider the TAKFL290

procedure as in the form of computing (8). Consider two device prototypes with a device capac-291

ity and solution dimension of Q1, Q2 and W 1,W 2, respectively, and with associated eigenbases292

Qi,Wi.293

1. Case 1: In the case that that Q1 ≥ Q2 and W 1 ≥ W 2, it holds that the TAKFL with prototype294

1 as student preserves the eigenbasis associated to the parameters used to accurately fit the data295

D1.296

2. Case 2: Assume that Q1 = Q2 and W 1 = W 2. TAKFL yields a solution for the student that is297

at the intersection of the subspaces corresponding to minimizing the two data distributions.298

3. Case 3: Assume that Q1 > Q2 and W 1 > W 2. In the case of prototype 1 being the student,299

TAKFL yields a solution that:300

(a) retains the approximation accuracy on device 1’s data distribution,301

(b) ensures approximation accuracy to the level of device 2’s relative capacity302

(c) fills the remaining local capacity device 1 has allocated for device 2’s logits with no infor-303

mative new knowledge, unless enforced otherwise.304

Remark 2. This proposition proves that in general, TAKFL promotes the most efficient allocation305

of the devices’ capacity in order to accurately fit a diverse set of data distributions. With TAKFL,306

the previously acquired knowledge is entirely preserved. Even under the case that device prototypes307

have different capacities, TAKFL smartly transfers the most informative knowledge to each proto-308

type’s student model based on its own intrinsic capacity. Still, the final statement indicates that in309

the case that there are many different teachers, while a small device prototype serving as teacher310

will not be necessarily compromise information, it would still be preferable to allocate that capacity311

to a more informative, larger, teacher model.312

7 Experiments313

7.1 Main Experimental Setup314

Dataset and Architecture. We evaluate our method on computer vision (CV) and natural language315

processing (NLP) tasks. For CV, we train image classification using CIFAR10/100 [24], CINIC-316

10 [9], and TinyImagenet [25]. For NLP, we fine-tune pre-trained models for text classification on317

MNLI [50], SST-2 [43], MARC [22], and AG News [58]. Our architectures include ResNet [17],318

VGG [42], and ViT [12] for CV, and small BERT variants [45] (-Tiny, -Mini, -Small) for NLP.319

We simulate a federated non-i.i.d setting using a Dirichlet distribution Dir(α), where a lower α320

indicates higher heterogeneity [27, 36]. Further details can be found in Appendix F.1 and F.2.321

Implementation Details. We use the Adam optimizer for both CV and NLP tasks. For CV, local322

training involves 20 epochs with a learning rate of 0.001, weight decay of 5e-5, and a batch size323

of 64. NLP training is conducted over 1 epoch with a learning rate of 3e-5, no weight decay, and324

a batch size of 32. For distillation, Adam is used with a learning rate of 1e-5 and weight decay of325

5e-4 for CV, and 3e-5 with no weight decay for NLP. Batch sizes for distillation are 128 for CV326

and 32 for NLP. The softmax temperature is set at 3 for both tasks, with a temperature of 20 for327

self-regularization. Further details are provided in Appendix F.1 and F.2.328
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Table 1: Performance Results for CV task on CIFAR-10 and CIFAR-100. Training data is distributed
among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dirichlet distribution.
Public datasets are CIFAR-100 [24] for CIFAR-10 [24] and ImageNet-100 [10] for CIFAR-100. Client config-
urations include 100, 20, and 4 clients for S, M, and L, with sampling rates of 0.1, 0.2, and 0.5. Architectures
are ResNet-8, ResNet-14, and ResNet-18 [17] for S, M and L, respectively. All models are trained from scratch
for 60 rounds. See Appendix D.1 for additional experiments using hetero-family architecture and more details.

Low Data Heterogeneity (Dir(0.3)) High Data Heterogeneity (Dir(0.1))
Dataset Baseline S M L Average S M L Average

CIFAR-10

FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.60 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.62
TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

CIFAR-100

FedAvg 13.22±0.14 21.39±1.11 29.47±0.86 21.36 11.86±0.08 14.63±0.65 26.25±1.64 17.58
FedDF 19.54±0.20 24.32±0.45 29.29±1.45 24.38 16.09±0.32 19.80±0.17 26.59±0.25 20.83
FedET 19.67±0.35 25.27±0.66 31.10±1.53 25.35 11.18±1.68 18.22±0.35 26.40±0.65 18.60
TAKFL 24.48±0.42 27.60±0.25 29.84±0.94 27.31 22.90±0.18 23.63±0.72 26.98±0.13 24.50
TAKFL+Reg 27.18±0.27 29.14±0.20 31.15±0.97 29.15 22.88±0.37 23.92±0.57 28.01±0.34 24.94

Baselines and Evaluation Metric. We compare our method against standard FL, i.e. Fe-329

dAvg [33] and SOTA KD-based methods designed for heterogeneous device prototypes FL, includ-330

ing FedDF [30] and FedET [6]. The evaluation metric is the final top-1 classification accuracy of331

each device prototype’s global model on the test dataset, as per the methodology described in [36].332

We report the average results and the standard deviation over three independent runs, each with a333

different random seed. A more detailed version of the experiments, alongside additional experiments334

and ablation studies, is presented in Appendix D and E.335

7.2 Main Experimental Results336

In this section, we evaluate the performance of our method, TAKFL, in a federated learning environ-337

ment that mirrors real-world scenarios with diverse, heterogeneous device prototypes, as illustrated338

in Fig. 4b. Our experimental setup includes three different device prototype sizes: Small (S) with a339

small model and small dataset, Medium (M) with a medium-sized model and medium-sized dataset,340

and large (L) with a large model and large dataset.341

Performance on CV Task. Table 1 presents the performance of TAKFL in the homo-family ar-342

chitecture setting on the CIFAR-10 and CIFAR-100 [24] datasets (for hetero-family architecture343

results, see Appendix D.1, Table 4). TAKFL consistently enhances performance across all device344

prototypes in various scenarios, achieving SOTA results. Notably, in the Dir(0.3) setting on CIFAR-345

10, TAKFL improves average performance across all prototypes by 8%, and by 4% on CIFAR-100.346

From Table 1, inconsistent performance improvements are observed with prior KD-based methods,347

especially for the L prototype. While S and M prototypes achieve gains, the L prototype suffers up348

to a 10% degradation compared to vanilla FedAvg, highlighting the dilution issue where valuable349

information from larger, more capable device prototypes is diluted by less informative outputs from350

smaller devices. Moreover, the significant performance improvements TAKFL achieves for each351

device prototype, particularly for S and M prototypes, illustrate the ineffectiveness of the one-size-352

fits-all approach used in the existing KD methods. These observations confirm the shortcomings353

of vanilla ensemble distillation and corroborate our theoretical findings in Remark 1 and 2. The354

effectiveness of our self-regularization technique is further supported by these experimental results.355

For more detailed and insightful analysis see Appendix D.1.1.356

Performance on NLP Task. Table 2 presents the results on MNLI [50] and SST-2 [43] datasets (see357

Appendix D.3 for further experiments). Similar to the CV task, TAKFL has consistently improved358

performance across all device prototypes of varying sizes, achieving SOTA results: a 3% average359

increase on MNLI and 2% on SST-2. The suboptimality of existing KD methods, is evident from the360

results presented here as well. Notably, FedET suffers from a significant performance degradation361

compared to vanilla FedAvg. This issue stems from FedET’s reliance on the confidence scores of362

neural networks for uncertainty estimates. However, neural networks, especially pretrained language363

models (PLMs), tend to be poorly calibrated and overconfident, undermining reliable uncertainty364

estimates [48, 15, 5, 53].365

7.3 Scalability Evaluation366

We evaluate the scalability of TAKFL across a spectrum of device prototypes, from extremely small367

(XXS) to extremely large (XXL), to see how well our method adapts from a uniform array of small-368

size prototypes to a diverse mix of sizes. Each prototype is equipped with appropriately scaled369

model and dataset sizes, simulating real-world variations in device capabilities.370
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Table 2: Performance Results for NLP Task on MNLI and SST-2. Training data distribution is similar to
the CV task using only Dir(0.5) here. Public datasets are SNLI [2] for MNLI [50] and Sentiment140 [14] for
SST-2 [43]. Client configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0,
respectively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small [45] for S, M, and L, initialized from
pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more details.

Baseline MNLI SST-2
S M L Average S M L Average

FedAvg 36.15±0.46 54.47±2.48 57.51±2.79 49.37 54.98±1.81 74.71±8.22 86.69±0.06 72.13
FedDF 54.21±0.15 60.44±1.91 66.71±1.09 60.45 74.41±2.62 80.71±1.63 84.35±1.66 79.82
FedET 48.03±6.32 50.33±7.87 53.80±6.18 50.72 66.63±9.14 65.89±16.35 70.05±15.83 67.52
TAKFL 57.43±0.21 63.58±0.31 68.74±0.12 63.25 74.73±0.55 82.17±0.31 86.93±0.42 81.28
TAKFL+Reg 57.61±0.89 63.91±1.05 68.96±1.10 63.49 74.88±0.43 82.40±0.83 87.33±0.63 81.54

Figure 3: Scalability Evaluation of TAKFL. Image classification on CINIC-10 [9] dataset is used to evaluate
TAKFL’s scalability across device prototypes ranging from XXS to XXL. Training data is distributed among
prototypes in a 1:2:3:4:5:6:7 ratio, further subdivided using Dir(0.5). Client configurations range from 35 for
XXS to 5 for XXL. Architectures span from ResNet10-XXS for XXS to ResNet50 for XXL prototype, all
initialized from scratch and trained over 30 communication rounds. The public dataset is CIFAR-100 [24]. See
Appendix D.4 for more details.

Figure 3 illustrates TAKFL’s ability to effectively scale from 3 to 7 device prototypes. In scenarios371

where all devices are similarly small, i.e. 3-device setup, TAKFL’s performance is slightly better372

than FedDF. This is because when devices are homogeneously small and similar in capability, they373

do not offer unique contributions that could benefit from more complex distillation strategies. How-374

ever, as the scenario expands to include larger devices like XL and XXL in the 5- and 7-device375

configurations, TAKFL significantly outperforms existing KD-based methods. This improvement is376

driven by the larger devices’ ability to offer more significant and higher-quality knowledge, which377

TAKFL effectively distills across all prototypes, contrasting sharply with existing methods that fail378

to utilize this potential. These experimental observations, corroborated by our theoretical insights in379

Remark 2, demonstrate TAKFL’s superior scalability and effectiveness.380

8 Conclusion and Discussion381

In this work, we addressed a fundamental issue in standard federated learning: the lack of support for382

heterogeneous device prototypes. Existing KD-based methods often fall short in real-world scenar-383

ios, where device capabilities vary widely. To address this, we introduced TAKFL, a novel KD-based384

method that treats knowledge transfer from each prototype’s ensembles as separate tasks and distills385

them independently. TAKFL susequently integrates the knowledge using an adaptive task arithmetic386

technique for optimized performance. We also introduced a KD-based self-regulation technique to387

mitigate issues arising from noisy and unsupervised ensemble distillation. The effectiveness of our388

method is substantiated by both theoretical results and extensive experimentation across CV and389

NLP tasks, using various datasets and models.390

Limitations remain, notably in real-world applicability. While TAKFL’s effectiveness in an approx-391

imated real-world setup has been demonstrated, actual deployment on physical devices and in envi-392

ronments with extremely large models remains untested due to resource constraints. Experiencing393

TAKFL in genuine real-world settings could unveil additional challenges or limitations, providing394

further insights into its scalability and efficiency.395
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Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,487

and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. 16488

[39] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. Federated learning for computationally489

constrained heterogeneous devices: A survey. ACM Computing Surveys, 55(14s):1–27, 2023. 2490

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish491

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from492

natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,493

2021. 14494

11



[41] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled aux-495

iliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems, 2021. 3,496

1497

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-498

nition, 2015. 7, 9, 16499

[43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and500

Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In501

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–502

1642, Seattle, Washington, USA, 2013. Association for Computational Linguistics. 7, 8, 9, 12, 18503

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:504

a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15505

(1):1929–1958, 2014. 1506

[45] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better: On507

the importance of pre-training compact models. arXiv preprint arXiv:1908.08962v2, 2019. 7, 9, 12, 18508

[46] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Feder-509

ated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020. 1510

[47] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective incon-511

sistency problem in heterogeneous federated optimization. Advances in neural information processing512

systems, 33:7611–7623, 2020. 1513

[48] Yuxia Wang, Daniel Beck, Timothy Baldwin, and Karin Verspoor. Uncertainty estimation and reduction514

of pre-trained models for text regression. Transactions of the Association for Computational Linguistics,515

10:680–696, 2022. 8, 2, 12516

[49] Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training procedure517

in timm. In NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future. 17518

[50] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence519

understanding through inference, 2018. 7, 8, 9, 12, 18520

[51] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S521

Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-522

aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In523

International Conference on Machine Learning, pages 23965–23998. PMLR, 2022. 3, 6, 4524

[52] Yebo Wu, Li Li, Chunlin Tian, and Chengzhong Xu. Breaking the memory wall for heterogeneous525

federated learning with progressive training. arXiv preprint arXiv:2404.13349, 2024. 1526

[53] Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-Philippe527

Morency. Uncertainty quantification with pre-trained language models: A large-scale empirical analysis.528

arXiv preprint arXiv:2210.04714, 2022. 8, 2, 12, 14529

[54] Ziyue Xu, Mingfeng Xu, Tianchi Liao, Zibin Zheng, and Chuan Chen. Fedbrb: An effective solution to530

the small-to-large scenario in device-heterogeneity federated learning. arXiv preprint arXiv:2402.17202,531

2024. 1532

[55] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving533

interference when merging models. Advances in Neural Information Processing Systems, 36, 2024. 3534

[56] Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl: Heterogeneity-aware535

asynchronous federated learning with adaptive partial training. In Proceedings of the IEEE/CVF Confer-536

ence on Computer Vision and Pattern Recognition, pages 5064–5073, 2023. 1537

[57] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifica-538

tion. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2015. 12, 18539

[58] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classi-540

fication. In NIPS, 2015. 7, 12, 18541

[59] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifica-542

tion, 2016. 12, 18543

[60] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and544

Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020. 3545

12



Appendix546

The supplementary materials are organized as follows:547

• Appendix A: Provides more details on related works.548

• Appendix B: Presents the full algorithm description of TAKFL.549

• Appendix C: Presents formal theoretical statements, assumptions, and proofs supporting550

our method.551

• Appendix D: Presents detailed experimental results including some additional experiments.552

• Appendix E: Presents the ablation studies experiments.553

• Appendix F: Presents hyper-parameters and implementation details.554

A More Detailed Related Works555

(a) Partial Model Training (b) Heterogeneous Device Prototypes

Figure 4: Overview of Two Different Device Heterogeneous FL Settings. (a) In the partial model
training setting, the objective is to train a single global model where heterogeneous devices train
a specific sub-model based on their computational resources. This approach necessitates device
support for varying neural network architectures, which is impractical as devices typically have spe-
cialized architectures designed to match their hardware, software configurations, and underlying
machine learning tasks. (b) In the heterogeneous device prototypes setting, device prototypes par-
ticipate in FL to enhance the performance of their global model by transferring knowledge across
prototypes. This setting is more feasible as it accommodates diverse device prototypes with their
own specific configurations, including neural network architecture and dataset. However, establish-
ing effective knowledge transfer between differently sized prototypes (like IoTs and workstations)
and diverse configurations is challenging. In this paper, we address this issue.

Prior works on device heterogeneous FL have considered two distinct approaches with different ob-556

jectives and settings. The first group of studies focuses on accommodating devices with varying557

compute resources, aiming to train a single global model [11, 3, 56, 52, 54]. Various partial model558

training techniques have been proposed for this setting, where devices are tasked with training a sub-559

model of a global model according to their compute resources. These include dropout-based [3],560

static [11, 18], and rolling-based sub-model extraction techniques [1]. Federated Dropout builds561

upon the concept of dropout [44] to extract smaller sub-models. Static sub-model extraction tech-562

niques like in HeteroFL [11] and FjORD [18] consistently extract designated portions of the global563

model, whereas FedRolex [1] introduces a more flexible rolling method for sub-model extraction.564

However, these approaches assume that devices can support various sub-model architectures for565

training, which does not fully reflect the real-world scenario. In practice, there exist a diverse spec-566

trum of device prototypes such as IoT devices and smartphones each have unique and unhashable567

neural network architectures tailored to their specific hardware and software configurations and un-568

derlying machine learning tasks. Consequently, these device prototypes may not support training569

various neural network architectures, highlighting a significant limitation in accommodating the full570

spectrum of device heterogeneity in this setting.571

The second array of studies tackles a more practical scenario where device prototypes with heteroge-572

neous model architectures participate in FL to enhance their global model performance through mu-573

tual knowledge sharing. In this context, knowledge distillation techniques are employed to transfer574

knowledge among device prototypes [30, 6, 41]. Here, locally updated client models from various575

1



device prototypes, collectively referred to as ensembles, serve as teachers to distill their knowl-576

edge into each server’s student model using an unlabeled public dataset. For instance, FedDF [30]577

utilizes vanilla averaging of all ensemble logits as the distillation target for all server student mod-578

els. In contrast, FedET [6] employs an uncertainty-weighted average of ensembles’ logits as the579

distillation target for all server student models, complemented by a diversity regularization tech-580

nique. However, methods like FedET rely on the neural networks’ confidence scores for uncertainty581

estimates, overlooking the fact that neural networks are often poorly calibrated and prone to over-582

confidence, which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].583

These existing works typically focus on settings where device prototypes have similar capabilities,584

i.e. similar model and dataset sizes, thus neglecting the challenges presented in more diverse set-585

tings where device prototypes vary significantly in terms of model and dataset size. This oversight586

limits the effectiveness of these methods in truly diverse and heterogeneous environments. In this pa-587

per, we introduce TAKFL, which is designed to address the limitations of existing methods in these588

underexplored diverse device heterogeneous settings.589

Figure 1 illustrates the distinctions between these two different settings studied in the literature. For590

more information, we refer the reader to recent surveys [35, 26, 39, 4].591
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B Full Algorithm Description of TAKFL592

The full algorithm description of TAKFL is presented in Algorithm 1.593

Algorithm 1 TAKFL Algorithm

Require: number of communication rounds (R), public unlabeled dataset Dpublic, server training
iterations I , heterogeneous device prototypes (i ∈M) with their associated clients (Ci) and local
datasets ({Di

k}k∈Ci ), model architecture (f i), local training iterations (Ilocal), local learning rate
(ηlocal), server distillation iterations (Idistill), and server distillation learning rate (ηdistill).

1: Server Executes:
2: Randomly initialize all device prototype’s server model {θi

0}i∈M
3: for each round r = 0, 1, . . . , R− 1 do
4: Ci

r ← (randomly select clients from each device prototype) ∀i ∈M
5: for each client k ∈ Ci

r, ∀i ∈M in parallel do
6: θ̂i

k ← ClientUpdate(k;θi
r)

7: end for
8: θi

avg =
∑

k∈Ci
r

|Di
k|∑

k∈Cir
|Di

k|
θ̂i
k

9: for each device prototype’s server student i = 1, 2, . . . ,M in parallel do
10: for each device prototype’s teacher ensembles j = 1, 2, . . . ,M in parallel do
11: θ ← θi

avg
12: for each server distillation iteration t = 0, 1, 2, . . . , Idistill do
13: x← sample a mini-batch of data from public dataset Dpublic

14: θt+1 ← θt − ηdistill · ∇LTi

S defined in Eq. 6.
15: end for
16: τj ← θIdistill − θi

avg
17: end for
18: θi

r+1 ← θi
avg +

∑M
j=1 λjτj

19: end for
20: θi

r+1 ← θi

21: end for

22: function ClientUpdate(k,θi
r)

23: θ ← θi
r

24: for each local update iteration t = 0, 1, . . . , Ilocal − 1 do
25: {x, y} ← sample a mini-batch of data from local dataset Di

k

26: θt+1 ← θt − ηlocal · ∇ℓ(f i(x;θt), y)
27: end for
28: θ̂i

k ← θIlocal

29: end function
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C Theoretical Results594

C.1 Proofs of the Main Propositions595

First we present the formal assumptions associated with our theoretical derivations.596

Assumption 1. Local federated averaging is performed with perfect test accuracy, i.e.,597

argmin
θj

M∑
j=1

Nj∑
k=1

E(x,y)∼Dj
k

[
ℓ(f j(x;θj), y)

]
= argmin

θj

E(x,y)∼Dj

[
ℓ(f j(x;θ), y

]
(9)

That is, the training error on the datasets {Dj
k} for the computed θjavg is the same as the test error on598

the population distributionDj . Moreover assume that we can write Ti =

{
Ni∑
k=1

f i(·, θ̂i
k)|k ∈ Ci

}
=599

{f i(·, θiavg)}. Finally, we assume that the same population distribution
∑

j ωjDj is the same that600

the clients perform their testing on as the server performs distillation on.601

These assumptions are made for mathematical practicality while at the same time not starkly unrea-602

sonable. The local FL the device prototypes perform is generically prone to imprecision, especially603

as the clients’ data varies, but this discrepancy is bounded [16]. Similarly the difference in the aver-604

age of logits and the logit of averages has a bounded difference norm [51]. Thus, violations of the605

Assumption add additional perturbations to quantities derived in the Theoretical analysis without606

having structural/qualitative effects, and thus would only present clutter in the presentation.607

Notations. Now we present the notation defining the specific quantities we refer to in the derivations608

below. The set of important quantities is given in Table 3. Note that the formal definitions of the609

first two quantities are,610

Θj := argmin
θ

E(x,y)∼Dj

[
ℓ(f j(x;θ), y

]
, Θj,k := argmin

θ
E(x,y)∼Di

[
ℓ(f j(x;θ), y

]

Table 3: Notation and Definitions
Notation Definition

Θj Parameters in j’s device model that minimize the loss on its population distribution
Θj,k Parameters in j’s device model that minimize the loss on i’th population distribution

Qj = dim(θj) The total capacity of device prototype j

Qj = {ejk}k=1,...,Qj Eigenbasis for the model of device prototype j
W j = dim(Θj) Dimension of the solution submanifold Θj

W j,k = dim(Θj,k) Dimension of the solution submanifold Θj,k

Wj = {ejk}k=1,...,W j Eigenbasis the solution submanifold Θj

Wj,k = {ej,kl }l=1,...,W j,k Eigenbasis the solution submanifold Θj,k

We shall make use of the “Choose” combinatorial operator, defined to be Ch(n, p) = n!
p!(n−p)! . The611

standard O(·) notation indicates ak = O(bk) to mean there exists K and C such that for k ≥ K,612

ak ≤ Cbk.613

A recent finding that inspired the methodology in this work is the discovery of the weight disentan-614

glement phenomenon underlying task arithmetic [37]. Indeed the task arithmetic property provides615

the ideal circumstance for federated knowledge transfer as we shall see below. Formally, adapting616

their definition to our notation:617

(Task Arithmetic Property) holds for a set of vectors {τj} if for all j it holds that,618

f j

x;θj
avg +

∑
i ̸=j

λiτi

 =

{
f j(x;θj

avg + λiτi) x ∈ Di

f j(x;θj
avg) x ∈ Dj \ ∪i ̸=jDi (10)

Let us define an important property of task arithmetic that we shall use in the sequel.619
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(Weight disentanglement).[37] A parametric function f : X ×Θ→ Y is weight disentangled with620

respect to a set of task vectors T = {τj}j∈T and the corresponding supports DT := {Dj}j∈T if621

f(x;θ0 +

T∑
i∈T

αiτi) =
∑
i∈T

gj(x;αiτi) + g0(x),

where gi(x;αiτi) = 0 for x ̸∈ Di and i ∈ T, and g0(x) = 0 for x ∈
⋃

i∈TDi.622

We now present the formal statements as well as the proofs of the main propositions.623

Proposition 1. (Information Loss in VED). Consider the VED procedure in the form of solv-624

ing (3). Consider two device prototypes with a device capacity and solution dimension of Q1, Q2625

and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Let the solution set of VED626

with prototype i as student be Θ̂i
V ED with dim(Θ̂i

V ED) = W vi with eigenbasisWvi . In addition,627

denote W s,t, s, t ∈ {1, 2} the dimension of the solution set for the student model trained on the628

data from the teacher device’s ensembles. We assume that self-distillation is executed appropriately,629

e.g., W 1,1 = W 1 and W 2,2 = W 2.630

1. Case 1: Assume that Q1 = Q2 and W 1 = W 2 = W 1,2 = W 2,1. Then it holds that, in631

expectation,632

dim
(
Θ̂1

V ED ∩
[
Q1 \W1]) = O

(
(Q1 −W 1)(W 1)!(Q1 −W 1,2)!

Q1!(W 1)!(Q1 −W 1)! +Q1!W 1,2!(Q1 −W 1,2)!

)
This corresponds to the expected capacity of prototype 1 that is taken up for fitting logits that are not in the633

span of W1, that is, that do not fit the data corresponding to prototype 1.634

2. Case 2: Assume that Q1 > Q2 and W 1 = W 1,2 > W 2. Then the same quantity as for Case 1 holds.635

Moreover,636

dim
(
Θ̂V ED ∩

[
Q1 \ (W1 ∪W1,2]) = O

(
(Q1 −W 1)(W 1!)(W 1,2 −W 2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(W 1,2 −W 2)!

)
This corresponds to capacity of client 1 that has been allocated but fits, in the model of prototype 1, neither637

the data of prototype 1, nor of the data of prototype 2.638

Proof. Formally,639

Θ̂V ED := argmin
θ∈Q1

LED = argmin
θ

KL
[ ∑
i=1,2

σ

(
f i(x,θi

avg)

)
, σ (S(x))

]
Since by assumption θi

avg solves the training problem on the data associated with device prototype640

i, the logit is accurate, and thus there is a map O(i, j) : Ti → T j
i ⊆ Wi,j . The self distillation, that641

is, Sj defines a bijective map fromWj toWj and thus does not affect the capacity allocation.642

Case 1: In this case, generically (that is, measure zero on some non-atomic sampling on a dis-643

tribution of operators) O(i, j) is bijective. Now let us compute the expectation of the number of644

eigenvectors of, e.g. W1,2 that are in the complement of the span of W1. Assuming, for simplic-645

ity, independence, this would correspond to counting the possible choices within the capacity of646

Q1 \W1 over the range of possible choices of filling the capacity ofQ1 with vectors inW1 together647

with choices of filling it with vectors inW1,2:648

Q1−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

For, e.g., Q1 = 4 and W 1 = W 1,2 = 2 this is 1
3 .649

To derive a scaling rate we can write:650 ∑
i i

(Q1−W1)!

i!(Q1−W1−i)!

Q1!

(W1)!(Q1−W1)!
+ Q1!

W1,2!(Q1−W1,2)!

= O
(

(Q1−W 1)(W 1)!(Q1−W 1,2)!
Q1!(W 1)!(Q1−W 1)!+Q1!W 1,2!(Q1−W 1,2)!

)
Case 2: In this case, it must be that, at best almost surely, O(2, 1) is injective, but not surjective.651

This means that distilling from 2 to 1 does not fill the capacity ofW1,2, and is thus a fundamentally652

5



wasteful operation, that is |T j
i | = W 2 < W 1,2. Now let us compute the expectation of the number653

of eigenvectors of, e.g.W1,2 that are in the complement of the span ofW1. SinceW1,2 are being654

structurally allocated for fitting, the combinatorial expression is the same:655

Q1−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

Thus for, e.g., Q1 = 4 and W 1 = W 1,2 = 2 this is, again, 1
3 . The scaling in this case is656

O

(
(Q1 −W 1)(W 1!)(Q1 −W 1,2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(Q1 −W 2)!

)
However, we observe that there are vectors in the range of W1,2 \ O(2, 1)(W2) that have been657

allocated by the VED but lie in neitherW1 nor inW1,2, that is, are garbage. We can compute those658

as the expected number of eigenvectors arising from allocating W1,2 \ O(2, 1)(W2) that intersect659

with Q1 \ W1 (that is, the spare capacity not used for fitting data D1). This is, using similar660

principles:661

W 1,2−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2 −W 2)

This is for, e.g., Q1 = 4, W 1,2 = 2 and W 2 = 1, this would be 3
10662

The scaling here is663

O

(
(Q1 −W 1)(W 1!)(W 1,2 −W 2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(W 1,2 −W 2)!

)
■664

Proposition 2. (Improve knowledge transfer with task arithmetic). Consider the TAKFL procedure665

as in the form of computing (8). Consider two device prototypes with a device capacity and solution666

dimension of Q1, Q2 and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Let the667

solution set of TAKFL with prototype i as student be Θ̂i
TA with dim(Θ̂i

TA) = W v with eigenbasis668

Wv . In addition, denote W s,t, s, t ∈ {1, 2} dimension of the solution set for the student model669

trained on the data from the teacher device’s ensembles. . The following statements hold:670

In the case that that Q1 ≥ Q2 and W 1 ≥ W 2, it holds that the TAKFL preserves that the671

eigenbasis used to model the data D1’s accuracy for device prototype 1, that is for student 1672

dim
(
Wv ∩

[
Q1 \W1]) = 0

Case 1: Assume that Q1 = Q2 and W 1 = W 2. Then it holds that,673

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2]) = 0

Moreover, it holds that,674

Θ̂TA ∈ Span(W1 ∩W1,2)

Thus, with equal capacity, no information is lost in Task Arithmetic aided knowledge ensemble distillation675

and capacity is efficiently used to model the data from both prototype 1 and prototype 2.676

Case 2: Assume that Q1 > Q2 and W 1 > W 2. Then it again holds that,677

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2]) = 0

However, while Θ̂TA ∈ Span(W1), it holds that dim
(
Wv ∩W1,2

)
= W 2 < W 1,2.678

Proof. We can see immediately from the weight disentanglement property of Task Arithmetic that,679

f1(x;θ1
avg + α1τ1 + α2τ2) = g1,1(x;α1τ1) + g1,2(x;α2, τ2) + g1,0(x)

with g1,1(x;α1τ1) for x /∈ D1, g1,2(x;α2τ2) for x /∈ D2 and g1,0(x) = 0 for x ∈ D1 ∪D2. From680

this, we can immediately conclude the first statement of the Proposition as well as the expression681

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2

])
= 0
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Figure 5: Illustration of Geometric Intuition. Each panel presents a different case example. The
left and center panels present the geometric intuition of KD for vanilla ensemble distillation (VED)
and TAKFL in the case where two different large device prototypes performing knowledge transfer.
The planes represent the solution subspaces. The right panel presents a circumstance by which two
small device prototypes (2, and 3) serve as teacher for transferring knowledge to a larger device
prototype 1.

and also, in the case of W 1 = W 1,2 = W 2 implies682

Θ̂TA ∈ Span(W1 ∩W1,2)

For the last statement we observe again as in the second Case in the Proposition describing VED,683

dim
(
O(2, 1)(W2)

)
< W 1,2 from which we can conclude that, generically684

dim
({

v : v ∈ O(2, 1)(W2) ⊆ Wv, E(x,y)∼D2 l(f1(x; v), y) > 0
})

= W 1,2 −W 2

proving the final statement. ■685

We observe that a key mechanism of the proof is the dimension of the target space of the teaching686

operator O(i, j). As an informative model, we can consider coefficients λj of task vectors as re-687

stricting the rank, relative to other teachers. For instance, in the previous Proposition, if W 1,2 = 2688

and W 2 = 1, then λ2 = 1/2, so as to enforce one vector ofW1,2 is a target for the map Õ(2, 1),689

would be appropriately sensible.690

C.2 Geometric Intuition691

In this section we aim to provide geometric intuition for the mechanism of VED and Task Arithmetic692

KD on three different cases. Figure 5 presents the geometry illustration for three different cases. We693

discuss each case in the following.694

Case I: KD between two large prototypes with different data distributions. Consider Figure 5695

left panel. This panel corresponds to a setting where two large device prototypes with similar total696

capacity, i.e. Q1 = Q2 = 3 perform knowledge transfer. We consider the solution dimensions of697

both prototypes to be the same, i.e. W 1 = W 2 = 2. These would correspond to planes in the698

ambient space. Therefore, one plane corresponds to the solution subspace of the prototype 1 trained699

on its own data, i.e. Θ1 subspace in the panel, and the other corresponds to the (theoretical) solution700

subspace of this prototype trained on prototype 2’s data, i.e. Θ(1,2) in the panel. In this case, since701

the data distributions of the prototypes are fairly disparate, this has resulted into near orthogonal702

subspaces corresponding to these solutions. As we can see from the panel, VED will lead to point703

which is far away from either of the planes corresponding to optimal solution subspaces, and far704

from the optimal set of parameters, which is their intersection, suggesting a loss of knowledge. By705

contrast, the TAKFL approach, by customizing the merging coefficients and putting each to half, i.e.706

λ1,1λ1,2 = 0.5, can traverse in the tangent space of zero loss surface and get into the intersection707

subspace which is exactly the optimal solution (θ∗
merged = θ1

avg + λ1,1τ1,1 + λ1,2τ1,2).708

Case II: KD between two large prototypes with similar data distributions. Consider Figure 5709

center panel. Similar to Case I, this panel corresponds to a setting where two large device prototypes710

with similar total capacity, i.e. Q1 = Q2 = 3 performing knowledge transfer. We consider the711

solution dimensions of both prototypes to be the same, i.e. W 1 = W 2 = 2. These would correspond712
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to planes in the ambient space. Therefore, one plane corresponds to the solution subspace of the713

prototype 1 trained on its own data, i.e. Θ1 subspace in the panel, and the other corresponds to the714

(theoretical) solution subspace of this prototype trained on prototype 2’s data, i.e. Θ(1,2) in the panel.715

In this case, since the data distributions of the prototypes are fairly close, this has resulted into non-716

orthogonal solution subspaces. As we can see from the panel, while VED could still lead to some717

information loss, by and large we expect straightforward KD. Our task arithmetic (TA) approach,718

again by customizing the merging coefficients λ1,1λ1,2 = 0.5, can traverse in the tangent space of719

zero loss surface on each plane and get into the intersection subspace, corresponding to the most720

efficient allocation of device prototype capacity for fitting simultaneously the logits corresponding721

to accurate modeling of device prototype 1 as well as device prototype 2’s data distribution.722

Case III: KD between two small prototypes and one large prototype. Now consider the right723

panel in Figure 5. This panel corresponds to a setting where two small prototypes serve as teachers724

and one large prototype is the student. The θ1
avg plane corresponds to the solution subspace of the725

large prototype 1 on its own data, D1. The line θ1,2
avg line corresponds to the subspace of solutions in726

prototype 1’s parameter space projected into the capacity of the information transferred from device727

prototype 2. Finally, the line labelled θ1,3
avg corresponds to the subspace of solutions in prototype 1’s728

parameter space projected into the capacity of the information transferred from device prototype 3.729

Here, we can see from the relative angle of the lines with respect to the plane that the distribution730

D1 is closer to the distribution D2 than to D3. Comparing this case to the previous cases, θ1,3
avg731

is like case I and θ1,2
avg is like case II. We can apply the same conclusions here as well regarding732

the performance of vanilla ensemble distillation and our adaptive task arithmetic approach. We733

can see from the geometric visualization that knowledge distillation towards θ1,3
avg has more margin734

of error for prototype 1. Therefore, with the TAKFL approach large prototype 1 can strategically735

select which prototype to learn more from, and since θ1,2
avg has closer data distribution to prototype736

1, TAKFL will prioritizes this by putting a larger merging coefficient, i.e λ1,2 > λ1,3. By contrast,737

VED lacks this customization and results in sub-optimal knowledge distillation.738

The geometric intuition discussed here is consistent with our detailed experimental analysis in D.1.1.739

C.3 Analytical Properties of Learning Dynamics740

Here we provide additional insights from the literature as to the nature and properties of learning741

as it takes place on overparametrized models. Specifically, we comment on literature in the area742

of Stochastic Differential Equation (SDE) models for SGD training dynamics, and its correspon-743

dence to the results above. Overparametrization has been conjectured to be a significant factor in744

contributing to the (unexpected, by classical bias-variance tradeoffs) generalization ability of deep745

neural networks, from a number of perspectives [13].746

Consider the diffusion model of SGD training for overparametrized NNs provided in [29]. Their747

analysis relies on the following two assumptions. For our purposes L is shorthand for a client748

group’s loss, L(θ) =
∑

k∈Cj

E(x,y)∼Dj
k

[
ℓ(f j(x;θ), y)

]
for some j, which will be identified from the749

context.750

Assumption 2. L : RQ → R is C3 and the solution set Γ is a W -dimensional C2-submanifold of751

RD for 0 ≤W ≤ D and rank(∇2L(θ)) = Q−W752

Assumption 3. Assume that U is an open neighborhood of Γ satisfying that gradient flow starting753

in U converges to some point in Γ754

From these, [29] derives Theorem 4.6. This Theorem decomposes the random process of the pa-755

rameter weights driven by SGD after it has reached the solution manifold, e.g., the diffusive random756

walk of θ1avg in Figure 5 along its respective solution manifold.757

Theorem 1. Given L, Γ and θµ(0) = θ(0) ∈ U as by Assumptions 2 and 3 the SDE modeling758

the optimization of F by SGD, that is, defining Φ(X) to be the gradient flow applied to the state759

random variable X , then for T as long as P[Y (t) ∈ U,∀0 ≤ t ≤ T ] = 1, θη(⌊T/η2⌋ converges in760

distribution to the stochastic process Y (T ) as η → 0, with Y (t) given as,761

dY (t) = Σ
1/2
∥ (Y )dW (t)− 1

2∇
2L(Y )†∂2(∇L)(Y )[Σ∥(Y )]dt

− 1
2∂Φ(Y )

(
2∂2(∇L)(Y )

[
∇2L(Y )†Σ⊥,∥(Y )

]
+ ∂2(∇L)(Y )

[
L−1
∇2L(Σ⊥(Y ))

])
dt

(11)
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where Σ ≡ σσT and Σ∥, Σ∥, Σ∥ are given as,762

Σ∥ = ∂ΦΣ∂Φ, Σ⊥ = (ID − ∂Φ)Σ(ID − ∂Φ),
Σ∥,⊥ = ∂Φσ(ID − ∂Φ)

(12)

This theorem indicates that the asymptotic flow of SGD on the client training can be decomposed763

into a covariance-driven random walk in the tangent space, drift to preserve the flow into the tangent764

plane, the tangent-normal portion of the noise covariance and noise in the normal direction.765

This analytical expression provides the probabilistic foundations for the more higher level theoretical766

results above. In particular, local gradient dynamics, as employed by individual device prototypes767

j using FedAvg on its local clients, yields a flow for the stochastic process defined by the weights.768

At this point of learning, the weights are traversing the solution set, with noise predominantly in the769

tangent directions. Thus knowledge distillation which preserves this noise structure is going to be770

more effective as far as preserving accuracy across data.771

D Detailed Experimental Results772

In this section we present a more detailed version of experimental results presented in the main paper773

Section 7. Additional experimental results are also presented here.774

D.1 Main Experimental Results on Computer Vision (CV) Task775

The experiments in this section complements the main experimental results in the main paper776

Section 7.2.777

Experimental Setup. For the evaluation on CV task, we employ CIFAR-10 and CIFAR-100 [24]778

datasets. For CIFAR-10, we use CIFAR-100 as the unlabeled public dataset, while ImageNet-100,779

a subset of ImageNet [10] with 100 classes (see Appendix F.1.1), is used for CIFAR-100. We780

distribute the training dataset among the device prototypes in a ratio of 1:3:6 for S, M, and L,781

respectively. Each device prototype’s data portion is further distributed among its clients using a782

Dirichlet distribution. We apply two levels of data heterogeneity for a comprehensive evaluation:783

low heterogeneity, i.e. Dir(0.3), and high heterogeneity, i.e. Dir(0.1). Additionally, we configure the784

number of clients and their sampling rates as follows: 100 clients for S, 20 for M, and 4 for L, with785

sampling rates set at 0.1, 0.2, and 0.5 respectively. To comprehensively evaluate, we use two distinct786

architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from787

the same family—employing ResNet8, ResNet14, and ResNet18 [17] for S, M, and L, respectively;788

and the “hetero-family” setting, which diverse architectures are used—ViT-S [12] for S, ResNet14789

for M, and VGG-16 [42] for L. All models are initialized from scratch, and the communication790

round is set at 60 rounds. Further details regarding hyper-parameters can be found in Table 12.791

Overview of Performance Results. Table 4 presents the performance of TAKFL across diverse792

architecture settings on the CIFAR-10 and CIFAR-100 datasets. TAKFL consistently improves all793

device prototypes of different sizes in various cases by a significant margin compared to the base-794

lines, achieving SOTA performance. Notably, in the homo-family architecture setting with Dir(0.3)795

on CIFAR-10, TAKFL improves average performance across all prototypes by 8%, and by 4% on796

CIFAR-100. In the hetero-family settings with Dir(0.1) on CIFAR-10 and Dir(0.3) on CIFAR-100,797

TAKFL enhances performance by ∼3% and 1%, respectively. Furthermore, we observe that our798

self-regularization technique has successfully mitigated issues associated with the noisy and unsu-799

pervised ensemble distillation process, thereby enhancing performance. Generally, the performance800

gains from self-regularization are more pronounced in low data heterogeneity cases, where proto-801

types’ models perform better and possess higher quality self-knowledge. Thus, self-regularization802

proves more effective as it preserves this higher quality self-knowledge.803

D.1.1 Consistency Analysis: Experimental and Theoretical Correlations804

In this part, we elaborate on our key experimental observations and their alignment with our theo-805

retical findings.806

Insight 1: From Table 4, it is evident that prior KD-based methods show inconsistent performance807

across various device prototypes, particularly for the large (L) prototype. For instance, in the CIFAR-808

10 homo-family setting with Dir(0.3), while small (S) and medium (M) prototypes see performance809
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Table 4: Performance Results for CV task on CIFAR-10 and CIFAR-100. Training data is
distributed among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using
Dirichlet distribution. Public datasets are CIFAR-100 for CIFAR-10 and ImageNet-100 for CIFAR-
100. Client configurations include 100, 20, and 4 clients for S, M, and L, with sampling rates of
0.1, 0.2, and 0.5. In homo-family settings, architectures are ResNet8, ResNet14, and ResNet18; in
hetero-family settings, they are ViT-S, ResNet14, and VGG-16. All models are trained from scratch
for 60 rounds. See Appendix F.1 for more details.

Dataset Baseline
Homo-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.61
TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

CIFAR-100

FedAvg 13.22±0.14 21.39±1.11 29.47±0.86 21.36 11.86±0.08 14.63±0.65 26.25±1.64 17.58
FedDF 19.54±0.20 24.32±0.45 29.29±1.45 24.38 16.09±0.32 19.80±0.17 26.59±0.25 20.83
FedET 19.67±0.35 25.27±0.66 31.10±1.53 25.35 11.18±1.68 18.22±0.35 26.40±0.65 18.60
TAKFL 24.48±0.42 27.60±0.25 29.84±0.94 27.31 22.90±0.18 23.63±0.72 26.98±0.13 24.50
TAKFL+Reg 27.18±0.27 29.14±0.20 31.15±0.97 29.16 22.88±0.37 23.92±0.57 28.01±0.34 24.94

Dataset Baseline
Hetero-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 27.53±0.83 47.30±3.17 55.10±8.60 43.31 20.93±1.54 25.62±6.04 36.80±5.47 27.78
FedDF 34.15±0.87 54.06±1.06 69.07±4.99 52.43 24.20±0.74 34.07±3.08 39.81±5.45 32.69
FedET 33.24±1.27 58.86±0.94 65.56±3.49 52.55 24.37±1.26 37.77±4.71 43.64±3.36 35.26
TAKFL 33.29±0.15 57.64±0.19 68.44±0.66 53.12 24.92±1.32 38.07±3.19 48.01±3.99 37.00
TAKFL+Reg 33.34±3.36 59.01±3.12 70.22±4.40 54.19 25.10±1.87 38.81±5.36 50.26±6.42 38.06

CIFAR-100

FedAvg 8.51±0.37 22.11±0.58 37.91±2.60 22.84 7.01±0.47 14.94±0.96 28.51±1.46 16.82
FedDF 10.46±0.17 23.46±0.65 36.81±0.82 23.58 7.76±0.40 18.92±0.39 29.81±1.09 18.83
FedET 11.16±0.18 25.40±0.30 37.38±0.60 24.65 8.20±0.54 20.66±0.50 28.95±1.79 19.27
TAKFL 10.29±0.11 27.14±0.89 39.15±0.88 25.53 7.88±0.68 21.41±0.37 31.31±0.66 20.20
TAKFL+Reg 11.25±0.37 27.86±0.86 38.68±0.45 25.93 8.45±0.20 22.16±0.87 31.95±1.13 20.85

gains, the L prototype experiences up to a ∼10% performance decline compared to vanilla FedAvg,810

which lacks server-side knowledge distillation. This trend is consistent across other settings, such as811

CIFAR-10 Dir(0.1) homo-family and CIFAR-100 Dir(0.3) homo-family. These outcomes underline812

the dilution problem inherent in existing methods, where the valuable insights from larger, more ca-813

pable device prototypes are overshadowed by less informative outputs from smaller devices, thereby814

degrading the performance of L prototypes. These empirical findings are supported by our theoret-815

ical insights as discussed in Remark 1. Specifically, Proposition 1 illustrates that vanilla ensemble816

distillation (VED) leads to knowledge dilution and inaccuracies due to misaligned device capacity817

allocations. Moreover, this issue becomes more significant when the smaller device prototype serve818

as teacher.819

Insight 2: From Table 4, the suboptimality of existing KD-based methods is evident from the sig-820

nificant performance improvements of our method, especially for S and M prototypes across various821

settings. This underscores the ineffectiveness of the one-size-fits-all approach these methods em-822

ploy, where a single averaged logits distillation target is used for all device sizes, proving to be sub-823

optimal. Our experimental observations regarding the shortcomings of vanilla ensemble distillation824

methods align with our theoretical findings, as substantiated in Remark 1 and 2. It becomes evident825

that an efficient knowledge distillation process must allocate capacity in a manner that appropriately826

corresponds to the information value of the teacher ensemble prototypes.827

Insight 3: Our experiments, detailed in Table 4, demonstrate TAKFL’s adept handling of knowl-828

edge from various device prototypes under different data heterogeneity conditions. We observed829

consistent performance gains for small (S) and medium (M) prototypes across both low and high830

data heterogeneity, compared to vanilla FedAvg. However, in high heterogeneity settings, large (L)831

prototypes show less improvement, prompting the question: What can smaller device prototypes832

offer to larger ones?833

In low heterogeneity scenarios, large prototypes significantly benefit from the collective knowledge,834

showing enhanced performance. Conversely, in conditions of extreme heterogeneity, where smaller835

models contribute less effectively, the performance improvements for larger devices are notably re-836

duced. This pattern highlights TAKFL’s ability to intelligently manage and utilize the available837

knowledge, selectively distilling information based on the intrinsic capacity and contributions of838
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Table 5: Performance Results for CV task on TinyImageNet, STL-10, and CINIC-10 using
pre-trained models.

Private Public Baseline S M L Average

TinyImageNet STL-10

FedAvg 8.97 13.03 15.12 12.37
FedMH 15.08 17.10 17.83 16.67
FedET 10.60 16.39 17.62 14.87
TAKFL 16.10 17.60 19.03 17.58
TAKFL+Reg 16.55 17.98 19.74 18.09

STL-10 CIFAR-100

FedAvg 26.01 34.47 42.88 34.45
FedMH 28.64 34.55 39.25 34.15
FedET 29.87 33.00 38.26 33.71
TAKFL 29.57 37.57 42.53 36.56
TAKFL+Reg 30.78 37.89 43.38 37.35

CINIC-10 CIFAR-100

FedAvg 44.87 55.49 51.33 50.56
FedMH 45.52 55.75 53.48 51.58
FedET 46.31 57.43 53.01 52.25
TAKFL 48.21 57.81 52.74 52.92
TAKFL+Reg 47.66 57.54 53.25 52.82

each prototype, and integrating only the most valuable knowledge from smaller devices when bene-839

ficial.840

By contrast, our analysis of existing KD-based methods shows their failure to effectively discern and841

utilize the most informative knowledge across prototypes. These methods often overload the capac-842

ity of larger prototypes with suboptimal or irrelevant information, particularly in high heterogeneity843

environments, leading to not just stagnation but an accumulation of inefficiencies. These experi-844

mental observations align with our theoretical insights, as outlined in Remark 2, which emphasizes845

the crucial combinatorial constraint of capacity and diverse information. This further confirms the846

superiority of TAKFL’s adaptive approach to knowledge distillation in diverse federated learning847

environments.848

D.2 Additional Experimental Results on CV Task849

Experimental Setup. For additional evaluation of the CV task, we conducted experiments on Tiny-850

ImageNet [25], STL-10 [7], and CINIC-10 [9] datasets using pre-trained models. For TinyIma-851

geNet [25], we utilized STL-10 [7] as the unlabeled public dataset. STL-10 [7] and CINIC-10 [9]852

both employ CIFAR-100 [24] as their respective public datasets. We distributed the training datasets853

among the device prototypes in a 2:3:5 ratio for small (S), medium (M), and large (L) prototypes,854

respectively. The data portion for each prototype was further subdivided among its clients using855

a Dirichlet distribution: Dir(1.0) for TinyImageNet and Dir(0.3) for both STL-10 and CINIC-10.856

Client configurations were set with 4, 3, and 2 clients for S, M, and L, respectively, all with a857

sampling rate of 1.0. The architectures employed were MobileNetV3-Large [19] for S, Mobile-858

ViTV2 [34] for M, and ResNet-34 for L, sourced from the TIMM library.1 The local training was859

conducted over 10 epochs using an Adam [23] optimizer with a learning rate of 1e-3 and weight de-860

cay of 1e-5. For server-side distillation, the epoch count was 10 for TinyImageNet and 1 for STL-10861

and CINIC-10, with a batch size of 128, employing an Adam optimizer with a learning rate of 1e-5862

and weight decay of 1e-5. For TinyImageNet, public dataset images from STL-10 were resized to863

64×64, while for STL-10, images were resized to 32×32. No data augmentation was used. The864

communication rounds is fixed to 40. These experiments were conducted by only 1 trial. Table 14865

details the configurations.866

Performance Results. Table 5 presents the results. The superiority of TAKFL’s performance across867

these challenging datasets using pre-trained models is evident here as well.868

D.3 Additional Experimental Results on Natural Language Processing (NLP) Task869

The experiments in this section complements the main experimental results in the main paper870

Section 7.2.871

1https://github.com/huggingface/pytorch-image-models
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Table 6: Performance Results for NLP Task on 4 Datasets.. Training data is distributed among
S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dir(0.5). Client
configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0, respec-
tively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small for S, M, and L, initialized from
pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more
details.

Private Public Baseline S M L Average

MNLI SNLI

FedAvg 36.15±0.46 54.47±2.48 57.51±2.79 49.37
FedDF 54.21±0.15 60.44±1.91 66.71±1.09 60.45
FedET 48.03±6.32 50.33±7.87 53.80±6.18 50.72
TAKFL 57.43±0.21 63.58±0.31 68.74±0.12 63.25
TAKFL+Reg 57.61±0.89 63.91±1.05 68.96±1.10 63.49

SST2 Sent140

FedAvg 54.98±1.81 74.71±8.22 86.69±0.06 72.13
FedDF 74.41±2.62 80.71±1.63 84.35±1.66 79.82
FedET 66.63±9.14 65.89±16.35 70.05±15.83 67.52
TAKFL 74.73±0.55 82.17±0.31 86.93±0.42 81.28
TAKFL+Reg 74.88±0.43 82.40±0.83 87.33±0.63 81.54

MARC Yelp

FedAvg 33.76±1.13 49.08±1.28 59.26±1.43 47.36
FedDF 53.01±1.24 55.37±0.87 56.81±0.99 55.06
FedET 52.63±2.29 54.28±2.31 56.11±2.61 54.34
TAKFL 55.70±2.08 58.64±1.75 59.39±1.16 57.91
TAKFL+Reg 55.96±1.66 59.18±1.13 59.61±1.89 58.25

AG-News DBPedia

FedAvg 83.64±3.51 83.47±2.35 91.48±2.22 86.20
FedDF 85.97±2.45 89.10±1.85 91.37±1.10 88.81
FedET 75.27±3.85 81.13±3.21 83.19±4.58 79.86
TAKFL 87.37±1.31 90.11±1.56 92.48±1.12 89.99
TAKFL+Reg 87.66±1.83 90.30±2.05 92.61±1.72 90.19

Experimental Setup. For the evaluation of NLP tasks, we utilize four datasets: MNLI [50], SST-872

2 [43], MARC [22], and AG-news [58]. The corresponding unlabeled public datasets are SNLI [2]873

for MNLI, Sentiment140 [14] for SST-2, Yelp [59] for Amazon, and DBPedia [57] for AG-News.874

The training data is distributed among the device prototypes in a ratio of 1:3:6 for small (S), medium875

(M), and large (L) categories, respectively, with each portion further subdivided among its clients876

using a Dirichlet distribution (Dir(0.5)). The client configurations and their sampling rates are set877

as follows: 8, 4, and 2 clients for S, M, and L categories, respectively, with sampling rates of 0.3,878

0.5, and 1.0. The architectures employed for each prototype size are BERT [45] -Tiny, -Small, and879

-Mini, respectively, each initialized from pre-trained parameters and tested over 20 communication880

rounds. Additional details regarding hyper-parameters and datasets are presented in Appendix F.2881

and Table 16.882

Performance on NLP Task. Table 6 presents the results on four different datasets: MNLI, SST-2,883

MARC, and AG-News. Similar to the CV task, TAKFL has consistently improved performance884

across all device prototypes of varying sizes, achieving state-of-the-art results. On MNLI, it has en-885

hanced average performance across all prototypes by 3%, on SST-2 by∼2%, on MARC by 3%, and886

on AG-News by∼1.50%. As observed in the CV task, the suboptimality of existing KD-based meth-887

ods is also evident here. Notably, FedET exhibits very poor performance compared vanilla FedAvg,888

failing to achieve satisfactory results on all datasets except for the MARC dataset. Particularly, the889

performance of the L prototype has consistently decreased across all datasets compared to vanilla890

FedAvg. This behavior can be attributed to FedET’s reliance on neural network confidence scores891

for uncertainty estimates in its uncertainty-weighted distillation. However, neural networks, espe-892

cially pretrained language models (PLMs), are often poorly calibrated and prone to overconfidence,893

which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].894

D.4 Scalability Evaluation895

This section complements the experimental results in the main paper Section 7.3.896

Experimental Setup. To evaluate the effectiveness and scalability of our method across a broad897

spectrum of device prototypes, ranging from very small to very large sizes, we conduct experi-898

ments involving 3 to 7 different prototypes. Our objective is to assess how effectively our method899

adapts from a uniform array of small-size prototypes (3 device prototypes) to a diverse mix that900
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includes prototypes ranging from extremely small (XXS) to extremely large (XXL) (7 device proto-901

types). These experiments involve training image classification models from scratch on the CINIC-902

10 dataset, using CIFAR-100 as the unlabeled public dataset. We randomly distribute the dataset903

among prototypes with dataset ratios set to 1:2:3:4:5:6:7 from XXS to XXL. Each dataset portion904

is further distributed among clients using a Dirichlet distribution (Dir(0.5)). The number of clients905

ranges from 35 to 5 from XXS to XXL, respectively. Client sample rates are set at 0.1, 0.1, 0.15,906

0.15, 0.2, 0.3, and 0.6 from XXS to XXL. We use a series of ResNet architectures—ResNet10-XXS,907

ResNet10-XS, ResNet10-S, ResNet10-M, ResNet10, ResNet18, and ResNet50—scaled appropri-908

ately for each prototype. The local training epochs are set at 2, 2, 2, 5, 10, 10, and 20 from XXS to909

XXL to account for resource constraints, with fewer epochs assigned to smaller devices. We employ910

the Adam optimizer with a learning rate of 1e-3 and a weight decay of 5e-5 for local training. For911

XL and XXL, a step learning rate scheduler reduces the learning rate by a factor of 0.1 at half epoch.912

Server-side distillation employs a fixed batch size of 128, using the Adam optimizer with learning913

rate of 1e-3 and weight decay of 5e-5. The softmax temperature is set at 3 for ensemble distillation914

and 20 for self-regularization. The number of communication rounds is fixed at 30. These exper-915

iments are conducted over 3 trials with different random seeds, and the average performance with916

standard deviation is reported. The entire device prototypes configurations are given in Table 15.917

The detailed results are presented in Tables 7, 8, and 9.918

Table 7: Scalability Evaluation. Detailed performance results for 7 device prototypes case.

Baseline XXS XS S M L XL XXL Average
FedAvg 23.17±1.26 30.66±0.14 32.81±0.21 31.77±0.21 37.69±0.08 41.78±0.05 50.52±0.01 35.49
FedDF 27.98±0.66 37.47±0.33 40.61±0.01 40.26±0.18 43.83±0.22 45.58±0.18 52.18±0.12 41.13
FedET 26.75±0.98 36.99±0.31 40.51±0.19 41.60±0.16 46.12±0.31 48.39±0.11 52.71±0.09 41.87
TAKFL 27.30±0.08 36.93±0.16 43.31±0.42 40.88±0.01 48.52±0.15 50.95±0.04 54.27±0.43 43.17
TAKFL+Reg 29.28±0.16 37.10±0.45 43.96±1.65 41.83±0.73 48.77±0.37 51.43±0.46 54.63±0.84 43.86

Table 8: Scalability Evaluation. Detailed performance results for 5 device prototypes case.

Baseline XXS XS S M XL Average
FedAvg 24.19±1.03 21.04±0.76 33.62±0.88 38.91±0.74 46.93±0.05 32.94
FedDF 28.31±0.61 34.66±0.00 39.91±0.07 38.24±0.36 46.81±0.11 37.59
FedET 26.88±0.95 34.11±0.27 41.15±0.29 40.81±0.87 48.14±0.06 38.22
TAKFL 27.91±0.12 37.09±0.11 40.46±0.34 41.06±0.02 49.02±0.35 39.11
TAKFL+Reg 28.24±0.46 37.30±1.10 40.76±0.94 43.09±0.27 50.86±0.22 40.05

Table 9: Scalability Evaluation. Detailed performance results for 3 device prototypes case.

Baseline XXS S M Average
FedAvg 24.19±1.03 33.62±0.88 38.91±0.74 32.24
FedDF 27.85±0.10 37.83±0.12 37.74±0.41 34.47
FedET 26.04±0.67 36.87±0.68 37.66±0.09 33.52
TAKFL 26.62±0.16 37.32±0.40 38.13±0.58 34.02
TAKFL+Reg 27.90±0.98 37.63±0.87 38.20±0.91 34.58

E Ablation Studies919

E.1 Understanding Merging Coefficient920

In this section, we conduct an ablation study to further understand how TAKFL customizes knowl-921

edge integration and understand how the merging coefficients λi are achieving this. This experiment922

aims to further understand the trade-offs between customized knowledge integration approach from923

the one-size-fits-all strategy employed in vanilla ensemble distillation and prior works.924

Experimental Setup. Our experimentation focuses on two device prototypes: XXS and XXL, se-925

lected from the scalability evalulation detailed in Section 7.3, Appendix D.4, and Table 15. We926

employ the image classification task on the CINIC-10 [9] dataset, starting from scratch. Each proto-927

type receives a randomly selected, non-overlapping subset of the training dataset—3.57% for XXS928

and 25% for XXL—distributed among their clients in a non-i.i.d. manner using Dir(0.5). Both pro-929

totypes have three clients each. The architectures used are ResNet10-XXS for the XXS prototype930

and ResNet-50 for the XXL prototype. To focus solely on the evaulation of the server-side distil-931

lation process and its evolution with varying λ, we pre-train each prototype using standard FedAvg932
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for 10 communication rounds, with a sample rate of 1.0. Local training involves 20 epochs for XXS933

and 20 epochs for XXL using an Adam optimizer with a learning rate of 1e-3 and weight decay of934

5e-5. The XXL prototype employs a step learning rate scheduler that reduces the rate by a factor935

of 0.1 at local epoch 10. For server-side distillation, we utilize a batch size of 128 and an Adam936

optimizer with a learning rate of 1e-5 and weight decay of 5e-5. CIFAR-100 [24] serves as the un-937

labeled public dataset. We save the final updated client and server models from both prototypes for938

further experimentation, focusing on the impact of merging coefficients without self-regularization939

in TAKFL. The merging coefficient λ is varied linearly from 0 to 1 in increments of 0.05. For940

simplicity, the XXS prototype is referred to as the small (S) prototype and XXL as the large (L)941

prototype.942

Discussion. Figure 6 illustrates the significant impact of customized knowledge integration on the943

performance of both small and large device prototypes compared to the one-size-fits-all approach944

typical of vanilla ensemble distillation in the prior works, at different distillation epochs. Here,945

TAKFL adeptly manages customization for both small and large prototypes by controlling the merg-946

ing coefficient λ. The merged model for both the small and large student prototypes is obtained using947

the formula θmerged = θavg +
(
(1 − λ)τS + λτL

)
. Notably, the performance is benchmarked at948

λ ≈ 0.5 in all cases, reflecting similar results to vanilla ensemble distillation (FedDF), where no949

customization in knowledge transfer occurs. This baseline performance is critical for understanding950

the effects of further customization.951

In small distillation epochs (Idistill < 10), minimal benefit is observed from customized knowledge952

integration, as both small and large prototypes achieve optimal performance at the non-customized953

λ ≈ 0.5. However, as the distillation process progresses beyond 10 epochs, the influence of λ be-954

comes increasingly pronounced. For λ > 0.5, the knowledge from the large prototype’s ensembles955

predominates, enhancing their impact, while for λ < 0.5, integration is more influenced by the956

small prototype’s ensembles. This pattern suggests that increased distillation epochs enable more957

effective distillation of each prototype’s unique knowledge for extreme cases of extremely small and958

large prototypes, thereby making the customization benefits evident. In scenarios with small distilla-959

tion epochs, the absence of significant unique knowledge results in optimal performance at λ ≈ 0.5.960

Conversely, as the number of distillation epochs rises (Idistill ≥ 20), the one-size-fits-all strategy961

proves suboptimal, underscoring the importance of tailored knowledge integration strategies. Opti-962

mal performance increasingly occurs at λ > 0.5, indicating effective leveraging of each prototype’s963

strengths to maximize overall performance. These findings confirm the necessity for customized964

knowledge integration in environments with significant prototype size variations and support our965

theoretical insights as detailed in Remark 1 and 2.966

E.2 Impact of Public Dataset967

In this section, we explore the influence of the public dataset on the performance of TAKFL and968

existing KD-based methods when the public dataset used for server-side distillation is less simi-969

lar to the private dataset, which is the actual learning objective. For this analysis we employ the970

same experimental setup previously outlined in Section 7.2 and Appendix D.1, using the CIFAR-10971

homo-family architecture. To measure dataset similarity, we compute cosine similarity between the972

averaged features of datasets, extracted using an off-the-shelf pre-trained CLIP model [40] (CLIP973

ViT-B/32) available from the official GitHub repository.2974

Discussion. Table 10 presents our results, highlighting a significant observation: the performance975

of existing methods drastically deteriorates as the similarity between the public dataset and private976

datasets decreases. In contrast, TAKFL exhibits robustness, suffering much less performance degra-977

dation under the same conditions. This demonstrates TAKFL’s practical utility in real-world sce-978

narios where the server typically lacks knowledge of the private datasets to select a closely aligned979

public dataset for distillation. Notably, FedET underperforms significantly when using a less similar980

public dataset, performing worse than vanilla FedAvg in both low and high data heterogeneity sce-981

narios. A similar pattern was observed with FedET in the NLP tasks discussed in Section 7.2 and982

Appendix D.3. This issue is likely due to FedET’s dependence on the overconfident and poorly cal-983

ibrated confidence scores from neural networks [15, 53] for uncertainty estimates in its uncertainty-984

weighted distillation approach.985

2https://github.com/OpenAI/CLIP
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Figure 6: Understanding the Impact of Merging Coefficients. This figure showcases server-side
knowledge distillation between two device prototypes, XXS and XXL, referred to as small and
large, respectively, utilizing CIFAR-100 as the unlabeled public dataset. Both prototypes were pre-
trained from scratch using standard FedAvg for 10 communication rounds. The CINIC-10 dataset
was distributed between the small and large prototypes in ratios of 3.57% and 25%, respectively,
and further subdivided non-i.i.d. among the clients using Dir(0.5). Each prototype has three clients
with a sample rate of 1.0. The small prototype utilizes a ResNet10-XXS architecture, while the large
prototype employs a ResNet-50.

Table 10: Impact of Public Dataset on performance results. Same experimental setting described
in Section 7.2 and Appendix D.1 on CIFAR-10 homo-family setting is used for this experiment. The
numbers in parentheses represent the similarity scores between private and public datasets, obtained
using a pre-trained CLIP ViT-B/32 model.

Public Dataset Baseline Low Data Heterogeneity (Dir(0.3)) High Data Heterogeneity (Dir(0.1))
S M L Average S M L Average

— FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93

FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.62

CIFAR-100 (0.99)

TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

FedDF 49.37±1.58 49.41±4.21 55.06±6.71 51.28 31.41±6.61 30.73±7.77 39.82±5.16 33.99
FedET 33.95±0.92 37.26±1.64 39.77±3.44 36.99 24.12±1.84 24.58±2.13 28.91±1.09 25.87
TAKFL 55.20±0.07 56.36±0.40 60.71±0.22 57.42 40.08±0.19 40.26±0.04 43.56±1.10 41.30

TinyImagenet (0.92)

TAKFL+Reg 56.28±0.09 57.14±0.03 60.90±0.22 58.11 40.88±0.11 41.10±1.15 46.25±5.95 42.74

FedDF 48.99±0.37 50.06±0.43 55.12±4.95 51.39 29.80±0.39 32.28±4.41 44.0±4.60 35.36
FedET 28.56±3.00 28.80±1.00 37.20±2.78 31.52 15.28±1.75 19.00±3.43 23.29±5.04 19.19
TAKFL 45.65±2.72 54.53±1.72 58.13±0.13 52.77 31.02±0.68 36.76±1.58 48.33±0.53 38.70

Celeb-A (0.77)

TAKFL+Reg 46.93±0.67 56.67±1.26 60.13±1.38 54.58 30.88±3.51 35.95±5.40 52.68±1.90 39.84
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F Hyper-parameters and Implementation986

In this section we bring the details of the hyper-parameters we used and our implementation. We987

implement our entire code in PyTorch [38] and release it anonymously at https://anonymous.988

4open.science/r/TAKFL-DD28/README.md. We use two NVIDIA RTX 3090 gpus to conduct989

the entire experimentation in this paper.990

F.1 Computer Vision (CV) Task991

For comprehensive evaluation of our method, we consider federated learning image classification992

training from scratch.993

F.1.1 Datasets994

Datasets. We experiment with several image classification datasets: CIFAR-10, CIFAR-100,995

CINIC-10, TinyImageNet, STL-10. The details of each dataset is the following:996

• CIFAR-10 [24]: CIFAR-10 consists of 60,000 images of size 32×32 RGB across 10997

classes, with each class containing 6,000 images.998

• CIFAR-100 [24]: CIFAR-100 comprises 60,000 images of size 32×32 RGB distributed999

across 100 classes, with 500 images per class.1000

• CINIC-10 [9]: CINIC-10 has 270,000 images of size 32×32 RGB across 10 classes, each1001

class containing 27,000 images.1002

• TinyImageNet [25]: TinyImageNet contains 100,000 images of size 64×64 RGB across1003

200 classes.1004

• STL-10 [7]: STL-10 has 100,000 unlabeled images and 13,000 labeled images of size1005

96×96 RGB across 10 classes.1006

The ImageNet-100 as the unlabeled public dataset is constructed by randomly selecting 100 classes1007

from the ImageNet [10] dataset.1008

F.1.2 Architectures1009

Experiments in Section 7.2 and Appendix D.1. The architecture that we use are two distinct1010

architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from1011

the same family, and the “hetero-family” setting, where architectures do not necessarily belong to1012

the same family. For the homo-family scenario, we employ ResNet-8 for S, ResNet-14 for M, and1013

ResNet-18 for L. For the hetero-family scenario, we use ViT-S for S, ResNet-14 for M, and VGG-161014

for L. All models are initialized from random initialization.1015

For the ResNet architecture configuration, we utilize the standard ‘BasicBlock’ as the building block.1016

This consists of a convolutional block, followed by four residual block stages, an adaptive average1017

pooling layer, and a classifier layer. The models within this family differ in terms of the number1018

of repetitions of the residual block and the number of filters in each stage. The configurations for1019

different capacities are detailed below:1020

• ResNet-18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [2, 2, 2, 2]1021

times.1022

• ResNet-14 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 2, 2, 1]1023

times.1024

• ResNet-8 is configured with [64, 128, 256] filters, corresponding to the first three stages, and1025

repeats the ‘BasicBlock’ [1, 1, 1] times.1026

For VGG-16 [42], we use the standard architecture which includes convolutional layers followed by1027

max-pooling layers. The configuration of filters for each layer is as follows:1028

VGG-16: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, 256, ‘M’, 512, 512, 512, ‘M’, 512, 512, 512,1029

‘M’]1030
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The final classification head consists of two linear layers with a hidden size of 512, followed by a1031

ReLU activation, and a final linear classifier layer.1032

For ViT-S, we adopt the standard Vision Transformer [12] architecture implementation from1033

Github.3 We configure ViT-S with 6 attention blocks, each with 16 heads and a hidden dimen-1034

sion of 64. The final MLP dimension is set to 256. In our experiments with ViT-S, we set the patch1035

size to 4, and the input image size is 32×32.1036

Experiment in Appendix D.2. The pre-trained MobileNetV3-Large [19], MobileViTV2 [34], and1037

ResNet34 [49] were instantiated using the TIMM library.41038

Scalability Experiments in Section 7.3. The architectures in these experiments are inspired by [20].1039

The details of architectures are as following:1040

• ResNet10-XXS is configured with [8, 8, 16, 16] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1041

times.1042

• ResNet10-XS is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1043

times.1044

• ResNet10-S is configured with [16, 32, 64, 128] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1045

times.1046

• ResNet10-M is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1047

times.1048

• ResNet10 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1049

times.1050

• ResNet18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1051

times.1052

• ResNet50 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [3,4,6,3]1053

times.1054

F.1.3 FL configuration and Hyper-parameters1055

Base Hyper-parameters. The following hyperparameter values apply to all CV experiments unless1056

stated otherwise. We set the diversity regularizer coefficient of FedET to 0.1 for our entire experi-1057

mentation per the original paper [6]. We use the Adam optimizer with a learning rate of 1e-5, weight1058

decay value of 5e-5, and a batch size of 128 for distillation. The softmax distillation temperature is1059

set to 3, the distillation epoch to 1, and the self-regularizer softmax temperature to 20 for both CV1060

and NLP experiments. Table 12 details the hyper-parameters.1061

Experiments in Section 7.2 and Appendix D.1. For tables 1 and 4, there are 100 clients with1062

the S device prototype, 20 clients with the M device prototype, and 4 clients with the L device1063

prototype. For each round, 10, 4, and 2 clients from each S, M, and L prototype are randomly1064

sampled respectively for participation. 10% of the data goes to the S prototype, 30% to M, and 60%1065

to L. The data is distributed to each client among each prototype in a Dirichlet distribution. Table1066

13 details the FL configuration.1067

Experiments in Appendix D.2 and Appendix E.2. For tables 5 and 10, there are 4, 3, and 2 clients1068

for S, M, and L device prototypes, respectively. Each round, every client participates in FL. 20% of1069

the data is distributed to prototype S, 30% to prototype M, and 50% to prototype L. Table 14 details1070

the FL configuration.1071

Scalability Experiments in Section 7.3 and D.4. For tables 7, 8, and 9, there are 35, 30, 25, 20,1072

15, 10, and 5 clients for the prototypes XXS, XS, S, M, L, XL, and XXL, respectively. The sample1073

rate is set to 0.1, 0.1, 0.15, 0.15, 0.2, 0.3, and 0.6 from XXS to XXL. The data is distributed for each1074

prototype in the ratio 1:2:3:4:5:6:7 from XXS to XXL. Table 15 details the hyper-parameters and1075

configuration.1076

Validation Set. For TAKFL, the validation set used for the heuristic method (see F.3) is 5% of the1077

training dataset. The validation set and the private dataset does not overlap.1078

3https://github.com/lucidrains/vit-pytorch
4https://github.com/huggingface/pytorch-image-models
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F.2 Natural Language Processing (NLP) Task1079

For the NLP task, we fine-tune federated learning text classification task using pretrained models.1080

F.2.1 Datasets.1081

All NLP datasets were provided by Hugging Face. 51082

• MNLI [50]: MNLI contains 433K sentence pairs, each sentence pair labeled as one of1083

‘entailment,’ ‘neutral,’ and ‘contradiction.’1084

• SNLI [2]: SNLI is similar to MNLI, with 570K sentence pairs each labeled one of 3 labels.1085

• SST2 [43]: SST2 consists of 67K phrases, each labeled as sentiment ’positive’ or ’nega-1086

tive.’1087

• Sentiment140 [14]: Sentiment140 is a dataset of 1.6M Twitter messages each labeled with1088

one of 2 sentiment values.1089

• MARC [22]: MARC (Multilingual Amazon Reviews Corpus) is a dataset with online re-1090

views in multiple languages from the Amazon delivery service website. Each review has a1091

label which is one of 1-5 stars. We only use the English reviews from this dataset, which1092

results in 260,000 English reviews total.1093

• Yelp [59]: The Yelp reviews dataset contains 700K reviews each labeled 1-5 stars from the1094

Yelp service which publishes public reviews of businesses.1095

• AG News [58]: AG News contains 127,600 news article titles. Each article is one of four1096

classifications of news articles.1097

• DBpedia [57]: The DBpedia dataset consists of 630K DBpedia article summaries each1098

labeled one of 14 categorizations.1099

F.2.2 Architectures1100

Experiments in Section 7.2 and Appendix D.3. We use three variations of the BERT architec-1101

ture: BERT-Tiny, BERT-Mini, and BERT-Small from [45]. The weights were pre-trained on the1102

BookCorpus dataset and extracted text from Wikipedia. Further details regarding each model are1103

described extensively on Github.6 The tokenizer used for these transformer models are the same1104

ones provided by the authors of [45].1105

• BERT-Tiny contains 2 transformer layers and an embedding size of 128.1106

• BERT-Mini contains 4 transformer layers and an embedding size of 256.1107

• BERT-Small contains 4 transformer layers and and embedding size of 512.1108

F.2.3 FL configuration and hyper-parameters1109

Base Hyper-parameters. For distillation, we use the Adam optimizer with a learning rate of 3e-5,1110

no weight decay, and batch size of 32. The distillation epoch is set to 1, the ensemble distillation1111

softmax temperature to 3, and the self-regularizer softmax temperature to 20 for all NLP experi-1112

ments. Table 16 details the hyper-parameters.1113

Experiments in Section 7.2 and Appendix D.3. For tables 2 and 6, we limit the private dataset to1114

100,000 samples, randomly sampled from the original dataset i.i.d. The public dataset is limited to1115

30,000 examples sampled i.i.d as well. There are 8, 4, and 2 clients for the S, M, and L prototypes.1116

The private data is split across each prototype in the following proportions: 0.1, 0.3, 0.6. Table 171117

details the FL configuration.1118

Validation Set. The validation dataset used for TAKFL is 5,000 samples taken from the original1119

training dataset that does not overlap with the 100,000 private dataset.1120

5https://github.com/huggingface/datasets
6https://github.com/google-research/bert
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F.3 Hyper-parameters of TAKFL1121

Merging Coefficients. We conducted extensive experiments with different merging coefficients on1122

the main 3-device prototype setting of small (S), medium (M), and large (L) discussed in Section 7.21123

and Appendix D.1. We empirically observed that the small (S) prototype typically achieves the best1124

performance using a uniformly increasing merging coefficient, where the larger the prototype, the1125

larger the merging coefficient, i.e., λS ≤ λM ≤ λL. As we move towards larger prototypes,1126

they benefit more from increasingly skewed merging coefficients towards the larger ones. In the1127

extreme case of the large (L) prototype, highly skewed merging coefficients generally led to better1128

performance, i.e., λS ≪ λM ≪ λL. This pattern is intuitive as small prototypes can benefit1129

from everyone while gaining more from the larger, more informative prototypes. However, larger1130

prototypes benefit less from smaller ones, as they typically offer less information, especially in1131

high data heterogeneity cases. Notably, in high data heterogeneity cases, more skewed merging1132

coefficients seemed to be more advantageous as the smaller prototypes (S and M) possess lower1133

quality knowledge.1134

Based on these observations, we designed a simple and cost-effective heuristic method that ran-1135

domly instantiates merging coefficients following this intuition. Our heuristic method, presented1136

in 1, leverages these observations by generating candidate merging coefficients that incorporate1137

both uniformly increasing and different degrees of skewed merging coefficients. This dual approach1138

enables us to explore a wide range of merging strategies and identify the most effective configura-1139

tions for different prototypes. The optimal merging coefficient candidate is determined using the1140

performance on the held-out validation set.1141

1 import numpy as np
2 def heuristic(num_devices=3, n_candidates=10):
3 candidates = [[1/num_devices for _ in range(num_devices)]]
4 for exponent in [1, 5, 10]:
5 for i in range(n_candidates):
6 candidate = np.random.beta(a=1, b=100, size=num_devices)
7 candidate = candidate ** exponent
8 candidate = np.sort(candidate)
9 candidate = candidate / np.sum(candidate)
10 candidates.append(candidate)
11 return candidates

Listing 1: Implementation of the heuristic method for merging coefficients in Python. The exponent
term controls the degree of skewness or peaking in the merging coefficients.

1142

Furthermore, we experiment with manually determining the merging coefficients and fixating them1143

throughout the federation. We achieved similar results with this approach compared to adaptively1144

finding the coefficients using the heuristic method and a small held-out validation set. We present the1145

merging coefficient candidates that performed reasonably well during our experiments in Table 11.1146

Table 11: Details of the experimentally determined merging coefficients for the 3-device prototype
setting discussed in Section 7.2 and Appendix D.1. Coefficients are ordered as [λS , λM , λL].

Merging Coefficient Candidate Small Prototype Medium Prototype Large Prototype
1 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.1, 0.2, 0.7]
2 [0.3, 0.3, 0.4] [0.05, 0.15, 0.8] [0.01, 0.09, 0.99]
3 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.05, 0.2, 0.75]
4 [0.05, 0.1, 0.85] [0.01, 0.19, 0.8] [0.01, 0.09, 0.90]
5 [0.1, 0.15, 0.75] [0.05, 0.15, 0.8] [0.01, 0.09, 0.90]
6 [0.05, 0.1, 0.85] [0.05, 0.05, 0.9] [0.001, 0.009, 0.99]
7 [0.05, 0.15, 0.80] [0.05, 0.2, 0.75] [0.001, 0.009, 0.99]
8 [0.05, 0.15, 0.80] [0.05, 0.1, 0.85] [0.001, 0.009, 0.99]
9 [0.3, 0.35, 0.35] [0.2, 0.3, 0.5] [0.1, 0.2, 0.7]

Self-Regularization Coefficient. Extensive experiments were conducted on the self-regulation co-1147

efficients for different device prototypes and settings. Although no consistent pattern emerged, we1148

experimentally determined that optimal performance for the small prototype was achieved with self-1149
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regulation coefficients γS ∈ 0.1, 0.01, 0.001. For the medium prototype, the coefficients were γM ∈1150

0.5, 0.1, 0.01, 0.001, 0.0001, and for the large prototype, γL ∈ 1.0, 0.8, 0.5, 0.1, 0.01, 0.001, 0.00011151

yielded the best results.1152

Table 12: Details of hyper-parameters for CV task in Section 7.2, Appendix D.1, and Appendix E.2.
Local/Server Hyperparameter Small Prototype Medium Prototype Large Prototype

Local Training

Training epochs 20 80 100
Batch Size 64 64 64
Optimizer Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3
Weight Decay 5e-5 5e-5 5e-5

LR scheduler None None StepLR(step size = 10,
gamma = 0.1)

Server KD Training

Optimizer Adam Adam Adam
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 5e-5 5e-5 5e-5
Batch Size 128 128 128
Training Epochs 1 1 1
Ensemble Distillation Softmax Temperature 3 3 3
Self-Regularizer Softmax Temperature 20 20 20

Table 13: Details of Architecture parameters and FL configuration for CV task in Section 7.2 and
Appendix D.1.

Architecture Setting Device Prototype CIFAR-10 CIFAR-100
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Homo-Family
Prototype S ResNet8 1.23M 1.25M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L ResNet18 11.17M 11.22M 0.6 4 0.5

Hetero-Family
Prototype S ViT-S 1.78M 1.79M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L VGG16 15.25M 15.30M 0.6 4 0.5

Table 14: Details of Architecture parameters and FL configuration for CV task experiment using
pre-trained models in Appendix D.2.

Device Prototype STL-10/CINIC-10 TinyImageNet
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Prototype S mobilenetv3-large-100 4.21M 4.45M 0.2 4 1.0
Prototype M mobilevitv2-175 13.36M 13.53M 0.3 3 1.0
Prototype L ResNet34 21.28M 21.38M 0.5 2 1.0

Table 15: Details of Architecture parameters for Scalability Section 7.3, and Appendix D.4.
Device Prototype CINIC-10

Architecture Parameters Dataset Portion Clients Sample Rate Local Epochs
Prototype XXS ResNet10-XXS 11K 0.0357 35 0.1 2
Prototype XS ResNet10-XS 78K 0.0714 30 0.1 2
Prototype S ResNet10-S 309K 0.1071 25 0.15 2
Prototype M ResNet10-M 1.2M 0.1428 20 0.15 5
Prototype L ResNet10 4.9M 0.1785 15 0.2 10
Prototype XL ResNet18 11M 0.2142 10 0.3 10
Prototype XXL ResNet50 24M 0.25 5 0.6 20
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Table 16: Details of hyper-parameters for NLP task experiments in Section 7.2 and Appendix D.3.
Local/Server Hyperparameter Prototype S Prototype M Prototype L

Local Training

training epochs 1 1 1
batch size 32 32 32
optimizer Adam Adam Adam
Learning rate 3e-5 3e-5 3e-5
Weight decay 0 0 0
lr scheduler None None None

Server KD Training

optimizer Adam Adam Adam
learning rate 3e-5 3e-5 3e-5
weight decay 3e-5 3e-5 3e-5
batch size 32 32 32
training epochs 1 1 1
Ensemble distillation softmax temperature 3 3 3
Self-regularizer softmax temperature 20 20 20

Table 17: Details of Architecture parameters and FL configuration for NLP task experiment using
pre-trained models in Section 7.2 and Appendix D.3.

Device Prototype Architecture Parameters Clients Dataset Portion Sample Rate
Prototype S BERT-Tiny 4.39M 8 0.1 0.4
Prototype M BERT-Mini 11.17M 4 0.3 0.5
Prototype L BERT-Small 28.77M 2 0.6 1.0

21



NeurIPS Paper Checklist1153

1. Claims1154

Question: Do the main claims made in the abstract and introduction accurately reflect the1155

paper’s contributions and scope?1156

Answer: [Yes]1157

Justification:1158

Guidelines:1159

• The answer NA means that the abstract and introduction do not include the claims1160

made in the paper.1161

• The abstract and/or introduction should clearly state the claims made, including the1162

contributions made in the paper and important assumptions and limitations. A No or1163

NA answer to this question will not be perceived well by the reviewers.1164

• The claims made should match theoretical and experimental results, and reflect how1165

much the results can be expected to generalize to other settings.1166

• It is fine to include aspirational goals as motivation as long as it is clear that these1167

goals are not attained by the paper.1168

2. Limitations1169

Question: Does the paper discuss the limitations of the work performed by the authors?1170

Answer: [Yes]1171

Justification: The limitation of the work is discussed in the main paper Section 8.1172

Guidelines:1173

• The answer NA means that the paper has no limitation while the answer No means1174

that the paper has limitations, but those are not discussed in the paper.1175

• The authors are encouraged to create a separate ”Limitations” section in their paper.1176

• The paper should point out any strong assumptions and how robust the results are to1177

violations of these assumptions (e.g., independence assumptions, noiseless settings,1178

model well-specification, asymptotic approximations only holding locally). The au-1179

thors should reflect on how these assumptions might be violated in practice and what1180

the implications would be.1181

• The authors should reflect on the scope of the claims made, e.g., if the approach was1182

only tested on a few datasets or with a few runs. In general, empirical results often1183

depend on implicit assumptions, which should be articulated.1184

• The authors should reflect on the factors that influence the performance of the ap-1185

proach. For example, a facial recognition algorithm may perform poorly when image1186

resolution is low or images are taken in low lighting. Or a speech-to-text system might1187

not be used reliably to provide closed captions for online lectures because it fails to1188

handle technical jargon.1189

• The authors should discuss the computational efficiency of the proposed algorithms1190

and how they scale with dataset size.1191

• If applicable, the authors should discuss possible limitations of their approach to ad-1192

dress problems of privacy and fairness.1193

• While the authors might fear that complete honesty about limitations might be used by1194

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1195

limitations that aren’t acknowledged in the paper. The authors should use their best1196

judgment and recognize that individual actions in favor of transparency play an impor-1197

tant role in developing norms that preserve the integrity of the community. Reviewers1198

will be specifically instructed to not penalize honesty concerning limitations.1199

3. Theory Assumptions and Proofs1200

Question: For each theoretical result, does the paper provide the full set of assumptions and1201

a complete (and correct) proof?1202

Answer: [Yes]1203
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Justification: The informal statements are in the main paper Section 6, and the full formal1204

statements with assumptions and proofs can be found in the Appendix C.1205

Guidelines:1206

• The answer NA means that the paper does not include theoretical results.1207

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1208

referenced.1209

• All assumptions should be clearly stated or referenced in the statement of any theo-1210

rems.1211

• The proofs can either appear in the main paper or the supplemental material, but if1212

they appear in the supplemental material, the authors are encouraged to provide a1213

short proof sketch to provide intuition.1214

• Inversely, any informal proof provided in the core of the paper should be comple-1215

mented by formal proofs provided in appendix or supplemental material.1216

• Theorems and Lemmas that the proof relies upon should be properly referenced.1217

4. Experimental Result Reproducibility1218

Question: Does the paper fully disclose all the information needed to reproduce the main1219

experimental results of the paper to the extent that it affects the main claims and/or conclu-1220

sions of the paper (regardless of whether the code and data are provided or not)?1221

Answer: [Yes]1222

Justification: The detailed information can be found in Appendix D, and F.1223

Guidelines:1224

• The answer NA means that the paper does not include experiments.1225

• If the paper includes experiments, a No answer to this question will not be perceived1226

well by the reviewers: Making the paper reproducible is important, regardless of1227

whether the code and data are provided or not.1228

• If the contribution is a dataset and/or model, the authors should describe the steps1229

taken to make their results reproducible or verifiable.1230

• Depending on the contribution, reproducibility can be accomplished in various ways.1231

For example, if the contribution is a novel architecture, describing the architecture1232

fully might suffice, or if the contribution is a specific model and empirical evaluation,1233

it may be necessary to either make it possible for others to replicate the model with1234

the same dataset, or provide access to the model. In general. releasing code and data1235

is often one good way to accomplish this, but reproducibility can also be provided via1236

detailed instructions for how to replicate the results, access to a hosted model (e.g., in1237

the case of a large language model), releasing of a model checkpoint, or other means1238

that are appropriate to the research performed.1239

• While NeurIPS does not require releasing code, the conference does require all sub-1240

missions to provide some reasonable avenue for reproducibility, which may depend1241

on the nature of the contribution. For example1242

(a) If the contribution is primarily a new algorithm, the paper should make it clear1243

how to reproduce that algorithm.1244

(b) If the contribution is primarily a new model architecture, the paper should describe1245

the architecture clearly and fully.1246

(c) If the contribution is a new model (e.g., a large language model), then there should1247

either be a way to access this model for reproducing the results or a way to re-1248

produce the model (e.g., with an open-source dataset or instructions for how to1249

construct the dataset).1250

(d) We recognize that reproducibility may be tricky in some cases, in which case au-1251

thors are welcome to describe the particular way they provide for reproducibility.1252

In the case of closed-source models, it may be that access to the model is limited in1253

some way (e.g., to registered users), but it should be possible for other researchers1254

to have some path to reproducing or verifying the results.1255

5. Open access to data and code1256
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1257

tions to faithfully reproduce the main experimental results, as described in supplemental1258

material?1259

Answer: [Yes]1260

Justification: The information can be found in Appendix F1261

Guidelines:1262

• The answer NA means that paper does not include experiments requiring code.1263

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1264

public/guides/CodeSubmissionPolicy) for more details.1265

• While we encourage the release of code and data, we understand that this might not1266

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1267

including code, unless this is central to the contribution (e.g., for a new open-source1268

benchmark).1269

• The instructions should contain the exact command and environment needed to run to1270

reproduce the results. See the NeurIPS code and data submission guidelines (https:1271

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1272

• The authors should provide instructions on data access and preparation, including how1273

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1274

• The authors should provide scripts to reproduce all experimental results for the new1275

proposed method and baselines. If only a subset of experiments are reproducible, they1276

should state which ones are omitted from the script and why.1277

• At submission time, to preserve anonymity, the authors should release anonymized1278

versions (if applicable).1279

• Providing as much information as possible in supplemental material (appended to the1280

paper) is recommended, but including URLs to data and code is permitted.1281

6. Experimental Setting/Details1282

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1283

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1284

results?1285

Answer: [Yes]1286

Justification: The information can be found in Appendix D and F.1287

Guidelines:1288

• The answer NA means that the paper does not include experiments.1289

• The experimental setting should be presented in the core of the paper to a level of1290

detail that is necessary to appreciate the results and make sense of them.1291

• The full details can be provided either with the code, in appendix, or as supplemental1292

material.1293

7. Experiment Statistical Significance1294

Question: Does the paper report error bars suitably and correctly defined or other appropri-1295

ate information about the statistical significance of the experiments?1296

Answer: [Yes]1297

Justification: We conduct the main experiments in the main paper Section 7 over 3 inde-1298

pendent trials with different random seeds and average results with the standard deviation1299

is reported in Tables 1, 2, 4, 6, 15, and 10.1300
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