
Appendix546

The supplementary materials are organized as follows:547

• Appendix A: Provides more details on related works.548

• Appendix B: Presents the full algorithm description of TAKFL.549

• Appendix C: Presents formal theoretical statements, assumptions, and proofs supporting550

our method.551

• Appendix D: Presents detailed experimental results including some additional experiments.552

• Appendix E: Presents the ablation studies experiments.553

• Appendix F: Presents hyper-parameters and implementation details.554

A More Detailed Related Works555

(a) Partial Model Training (b) Heterogeneous Device Prototypes

Figure 4: Overview of Two Different Device Heterogeneous FL Settings. (a) In the partial model
training setting, the objective is to train a single global model where heterogeneous devices train
a specific sub-model based on their computational resources. This approach necessitates device
support for varying neural network architectures, which is impractical as devices typically have spe-
cialized architectures designed to match their hardware, software configurations, and underlying
machine learning tasks. (b) In the heterogeneous device prototypes setting, device prototypes par-
ticipate in FL to enhance the performance of their global model by transferring knowledge across
prototypes. This setting is more feasible as it accommodates diverse device prototypes with their
own specific configurations, including neural network architecture and dataset. However, establish-
ing effective knowledge transfer between differently sized prototypes (like IoTs and workstations)
and diverse configurations is challenging. In this paper, we address this issue.

Prior works on device heterogeneous FL have considered two distinct approaches with different ob-556

jectives and settings. The first group of studies focuses on accommodating devices with varying557

compute resources, aiming to train a single global model [11, 3, 56, 52, 54]. Various partial model558

training techniques have been proposed for this setting, where devices are tasked with training a sub-559

model of a global model according to their compute resources. These include dropout-based [3],560

static [11, 18], and rolling-based sub-model extraction techniques [1]. Federated Dropout builds561

upon the concept of dropout [44] to extract smaller sub-models. Static sub-model extraction tech-562

niques like in HeteroFL [11] and FjORD [18] consistently extract designated portions of the global563

model, whereas FedRolex [1] introduces a more flexible rolling method for sub-model extraction.564

However, these approaches assume that devices can support various sub-model architectures for565

training, which does not fully reflect the real-world scenario. In practice, there exist a diverse spec-566

trum of device prototypes such as IoT devices and smartphones each have unique and unhashable567

neural network architectures tailored to their specific hardware and software configurations and un-568

derlying machine learning tasks. Consequently, these device prototypes may not support training569

various neural network architectures, highlighting a significant limitation in accommodating the full570

spectrum of device heterogeneity in this setting.571

The second array of studies tackles a more practical scenario where device prototypes with heteroge-572

neous model architectures participate in FL to enhance their global model performance through mu-573

tual knowledge sharing. In this context, knowledge distillation techniques are employed to transfer574

knowledge among device prototypes [30, 6, 41]. Here, locally updated client models from various575

1

device prototypes, collectively referred to as ensembles, serve as teachers to distill their knowl-576

edge into each server’s student model using an unlabeled public dataset. For instance, FedDF [30]577

utilizes vanilla averaging of all ensemble logits as the distillation target for all server student mod-578

els. In contrast, FedET [6] employs an uncertainty-weighted average of ensembles’ logits as the579

distillation target for all server student models, complemented by a diversity regularization tech-580

nique. However, methods like FedET rely on the neural networks’ confidence scores for uncertainty581

estimates, overlooking the fact that neural networks are often poorly calibrated and prone to over-582

confidence, which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].583

These existing works typically focus on settings where device prototypes have similar capabilities,584

i.e. similar model and dataset sizes, thus neglecting the challenges presented in more diverse set-585

tings where device prototypes vary significantly in terms of model and dataset size. This oversight586

limits the effectiveness of these methods in truly diverse and heterogeneous environments. In this pa-587

per, we introduce TAKFL, which is designed to address the limitations of existing methods in these588

underexplored diverse device heterogeneous settings.589

Figure 1 illustrates the distinctions between these two different settings studied in the literature. For590

more information, we refer the reader to recent surveys [35, 26, 39, 4].591

2

B Full Algorithm Description of TAKFL592

The full algorithm description of TAKFL is presented in Algorithm 1.593

Algorithm 1 TAKFL Algorithm

Require: number of communication rounds (R), public unlabeled dataset Dpublic, server training
iterations I , heterogeneous device prototypes (i 2M) with their associated clients (Ci) and local
datasets ({Di

k}k2Ci), model architecture (f i), local training iterations (Ilocal), local learning rate
(⌘local), server distillation iterations (Idistill), and server distillation learning rate (⌘distill).

1: Server Executes:
2: Randomly initialize all device prototype’s server model {✓i

0}i2M
3: for each round r = 0, 1, . . . , R� 1 do
4: Ci

r (randomly select clients from each device prototype) 8i 2M
5: for each client k 2 Ci

r, 8i 2M in parallel do
6: b✓i

k ClientUpdate(k;✓i
r)

7: end for
8: ✓i

avg =
P

k2Ci
r

|Di
k|P

k2Cir
|Di

k|
b✓i
k

9: for each device prototype’s server student i = 1, 2, . . . ,M in parallel do
10: for each device prototype’s teacher ensembles j = 1, 2, . . . ,M in parallel do
11: ✓ ✓i

avg
12: for each server distillation iteration t = 0, 1, 2, . . . , Idistill do
13: x sample a mini-batch of data from public dataset Dpublic

14: ✓t+1
 ✓t

� ⌘distill ·rL
Ti
S defined in Eq. 6.

15: end for
16: ⌧j ✓Idistill � ✓i

avg
17: end for
18: ✓i

r+1 ✓i
avg +

PM
j=1 �j⌧j

19: end for
20: ✓i

r+1 ✓i

21: end for

22: function ClientUpdate(k,✓i
r)

23: ✓ ✓i
r

24: for each local update iteration t = 0, 1, . . . , Ilocal � 1 do
25: {x, y} sample a mini-batch of data from local dataset Di

k
26: ✓t+1

 ✓t
� ⌘local ·r`(f i(x;✓t), y)

27: end for
28: b✓i

k ✓Ilocal

29: end function

3

C Theoretical Results594

C.1 Proofs of the Main Propositions595

First we present the formal assumptions associated with our theoretical derivations.596

Assumption 1. Local federated averaging is performed with perfect test accuracy, i.e.,597

argmin
✓j

MX

j=1

NjX

k=1

E(x,y)⇠Dj
k

⇥
`(f j(x;✓j), y)

⇤
= argmin

✓j

E(x,y)⇠Dj

⇥
`(f j(x;✓), y

⇤
(9)

That is, the training error on the datasets {Dj
k} for the computed ✓

j
avg is the same as the test error on598

the population distribution D
j . Moreover assume that we can write Ti =

(
NiP
k=1

f
i(·, ✓̂i

k)|k 2 Ci

)
=599

{f
i(·, ✓iavg)}. Finally, we assume that the same population distribution

P
j !jD

j is the same that600

the clients perform their testing on as the server performs distillation on.601

These assumptions are made for mathematical practicality while at the same time not starkly unrea-602

sonable. The local FL the device prototypes perform is generically prone to imprecision, especially603

as the clients’ data varies, but this discrepancy is bounded [16]. Similarly the difference in the aver-604

age of logits and the logit of averages has a bounded difference norm [51]. Thus, violations of the605

Assumption add additional perturbations to quantities derived in the Theoretical analysis without606

having structural/qualitative effects, and thus would only present clutter in the presentation.607

Notations. Now we present the notation defining the specific quantities we refer to in the derivations608

below. The set of important quantities is given in Table 3. Note that the formal definitions of the609

first two quantities are,610

⇥j := argmin
✓

E(x,y)⇠Dj

⇥
`(f j(x;✓), y

⇤
, ⇥j,k := argmin

✓
E(x,y)⇠Di

⇥
`(f j(x;✓), y

⇤

Table 3: Notation and Definitions
Notation Definition

⇥j Parameters in j’s device model that minimize the loss on its population distribution
⇥j,k Parameters in j’s device model that minimize the loss on i’th population distribution

Q
j = dim(✓j) The total capacity of device prototype j

Q
j = {ejk}k=1,...,Qj Eigenbasis for the model of device prototype j

W
j = dim(⇥j) Dimension of the solution submanifold ⇥j

W
j,k = dim(⇥j,k) Dimension of the solution submanifold ⇥j,k

W
j = {ejk}k=1,...,W j Eigenbasis the solution submanifold ⇥j

W
j,k = {ej,kl }l=1,...,W j,k Eigenbasis the solution submanifold ⇥j,k

We shall make use of the “Choose” combinatorial operator, defined to be Ch(n, p) = n!
p!(n�p)! . The611

standard O(·) notation indicates ak = O(bk) to mean there exists K and C such that for k � K,612

ak  Cbk.613

A recent finding that inspired the methodology in this work is the discovery of the weight disentan-614

glement phenomenon underlying task arithmetic [37]. Indeed the task arithmetic property provides615

the ideal circumstance for federated knowledge transfer as we shall see below. Formally, adapting616

their definition to our notation:617

(Task Arithmetic Property) holds for a set of vectors {⌧j} if for all j it holds that,618

f
j

0

@x;✓j
avg +

X

i 6=j

�i⌧i

1

A =

⇢
f
j(x;✓j

avg + �i⌧i) x 2 D
i

f
j(x;✓j

avg) x 2 D
j
\ [i 6=jD

i (10)

Let us define an important property of task arithmetic that we shall use in the sequel.619

4

(Weight disentanglement).[37] A parametric function f : X ⇥⇥! Y is weight disentangled with620

respect to a set of task vectors T = {⌧j}j2T and the corresponding supports DT := {Dj}j2T if621

f(x;✓0 +
TX

i2T

↵i⌧i) =
X

i2T

gj(x;↵i⌧i) + g0(x),

where gi(x;↵i⌧i) = 0 for x 62 Di and i 2 T, and g0(x) = 0 for x 2
S

i2T Di.622

We now present the formal statements as well as the proofs of the main propositions.623

Proposition 1. (Information Loss in VED). Consider the VED procedure in the form of solv-624

ing (3). Consider two device prototypes with a device capacity and solution dimension of Q
1
, Q

2625

and W
1
,W

2
, respectively, and with associated eigenbases Q

i
,W

i
. Let the solution set of VED626

with prototype i as student be ⇥̂i
V ED with dim(⇥̂i

V ED) = W
vi with eigenbasis W

vi . In addition,627

denote W
s,t
, s, t 2 {1, 2} the dimension of the solution set for the student model trained on the628

data from the teacher device’s ensembles. We assume that self-distillation is executed appropriately,629

e.g., W
1,1 = W

1
and W

2,2 = W
2
.630

1. Case 1: Assume that Q
1 = Q

2
and W

1 = W
2 = W

1,2 = W
2,1

. Then it holds that, in631

expectation,632

dim
⇣
⇥̂1

V ED \
⇥
Q1 \W1⇤⌘ = O

✓
(Q1 �W

1)(W 1)!(Q1 �W
1,2)!

Q1!(W 1)!(Q1 �W 1)! +Q1!W 1,2!(Q1 �W 1,2)!

◆

This corresponds to the expected capacity of prototype 1 that is taken up for fitting logits that are not in the633

span of W1
, that is, that do not fit the data corresponding to prototype 1.634

2. Case 2: Assume that Q
1
> Q

2
and W

1 = W
1,2

> W
2
. Then the same quantity as for Case 1 holds.635

Moreover,636

dim
⇣
⇥̂V ED \

⇥
Q1 \ (W1 [W1,2⇤⌘ = O

✓
(Q1 �W

1)(W 1!)(W 1,2 �W
2)!

Q1!W 1!(Q1 �W 1)! +Q1!W 2!(W 1,2 �W 2)!

◆

This corresponds to capacity of client 1 that has been allocated but fits, in the model of prototype 1, neither637

the data of prototype 1, nor of the data of prototype 2.638

Proof. Formally,639

⇥̂V ED := argmin
✓2Q1

LED = argmin
✓

KL
 X

i=1,2

�

✓
f
i(x,✓i

avg)

◆
, � (S(x))

�

Since by assumption ✓i
avg solves the training problem on the data associated with device prototype640

i, the logit is accurate, and thus there is a map O(i, j) : Ti ! T
j
i ✓W

i,j . The self distillation, that641

is, Sj defines a bijective map from W
j to W

j and thus does not affect the capacity allocation.642

Case 1: In this case, generically (that is, measure zero on some non-atomic sampling on a dis-643

tribution of operators) O(i, j) is bijective. Now let us compute the expectation of the number of644

eigenvectors of, e.g. W1,2 that are in the complement of the span of W1. Assuming, for simplic-645

ity, independence, this would correspond to counting the possible choices within the capacity of646

Q
1
\W

1 over the range of possible choices of filling the capacity of Q1 with vectors in W
1 together647

with choices of filling it with vectors in W
1,2:648

Q1�W 1X

i=1

i
Ch(Q1

�W
1
, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

For, e.g., Q1 = 4 and W
1 = W

1,2 = 2 this is 1
3 .649

To derive a scaling rate we can write:650

P
i i

(Q1�W1)!

i!(Q1�W1�i)!

Q1!

(W1)!(Q1�W1)!
+ Q1!

W1,2!(Q1�W1,2)!

= O

⇣
(Q1�W 1)(W 1)!(Q1�W 1,2)!

Q1!(W 1)!(Q1�W 1)!+Q1!W 1,2!(Q1�W 1,2)!

⌘

Case 2: In this case, it must be that, at best almost surely, O(2, 1) is injective, but not surjective.651

This means that distilling from 2 to 1 does not fill the capacity of W1,2, and is thus a fundamentally652

5

wasteful operation, that is |T j
i | = W

2
< W

1,2. Now let us compute the expectation of the number653

of eigenvectors of, e.g. W1,2 that are in the complement of the span of W1. Since W
1,2 are being654

structurally allocated for fitting, the combinatorial expression is the same:655

Q1�W 1X

i=1

i
Ch(Q1

�W
1
, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

Thus for, e.g., Q1 = 4 and W
1 = W

1,2 = 2 this is, again, 1
3 . The scaling in this case is656

O

✓
(Q1
�W

1)(W 1!)(Q1
�W

1,2)!

Q1!W 1!(Q1 �W 1)! +Q1!W 2!(Q1 �W 2)!

◆

However, we observe that there are vectors in the range of W
1,2

\ O(2, 1)(W2) that have been657

allocated by the VED but lie in neither W1 nor in W
1,2, that is, are garbage. We can compute those658

as the expected number of eigenvectors arising from allocating W
1,2

\ O(2, 1)(W2) that intersect659

with Q
1
\ W

1 (that is, the spare capacity not used for fitting data D
1). This is, using similar660

principles:661

W 1,2�W 1X

i=1

i
Ch(Q1

�W
1
, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2 �W 2)

This is for, e.g., Q1 = 4, W 1,2 = 2 and W
2 = 1, this would be 3

10662

The scaling here is663

O

✓
(Q1
�W

1)(W 1!)(W 1,2
�W

2)!

Q1!W 1!(Q1 �W 1)! +Q1!W 2!(W 1,2 �W 2)!

◆

⌅664

Proposition 2. (Improve knowledge transfer with task arithmetic). Consider the TAKFL procedure665

as in the form of computing (8). Consider two device prototypes with a device capacity and solution666

dimension of Q
1
, Q

2
and W

1
,W

2
, respectively, and with associated eigenbases Q

i
,W

i
. Let the667

solution set of TAKFL with prototype i as student be ⇥̂i
TA with dim(⇥̂i

TA) = W
v

with eigenbasis668

W
v
. In addition, denote W

s,t
, s, t 2 {1, 2} dimension of the solution set for the student model669

trained on the data from the teacher device’s ensembles. . The following statements hold:670

In the case that that Q
1
� Q

2
and W

1
� W

2
, it holds that the TAKFL preserves that the671

eigenbasis used to model the data D
1
’s accuracy for device prototype 1, that is for student 1672

dim
�
Wv \

⇥
Q1 \W1⇤� = 0

Case 1: Assume that Q
1 = Q

2
and W

1 = W
2
. Then it holds that,673

dim
�
Wv \

⇥
Q1 \ (W1 [W1,2⇤� = 0

Moreover, it holds that,674

⇥̂TA 2 Span(W1 \W1,2)

Thus, with equal capacity, no information is lost in Task Arithmetic aided knowledge ensemble distillation675

and capacity is efficiently used to model the data from both prototype 1 and prototype 2.676

Case 2: Assume that Q
1
> Q

2
and W

1
> W

2
. Then it again holds that,677

dim
�
Wv \

⇥
Q1 \ (W1 [W1,2⇤� = 0

However, while ⇥̂TA 2 Span(W1), it holds that dim
�
Wv \W1,2

�
= W

2
< W

1,2
.678

Proof. We can see immediately from the weight disentanglement property of Task Arithmetic that,679

f
1(x;✓1

avg + ↵1⌧1 + ↵2⌧2) = g
1,1(x;↵1⌧1) + g

1,2(x;↵2, ⌧2) + g
1,0(x)

with g
1,1(x;↵1⌧1) for x /2 D

1, g1,2(x;↵2⌧2) for x /2 D
2 and g

1,0(x) = 0 for x 2 D
1
[D

2. From680

this, we can immediately conclude the first statement of the Proposition as well as the expression681

dim
�
W

v
\
⇥
Q

1
\ (W1

[W
1,2
⇤�

= 0

6

θ1avg

λ1,1τ1,1 + λ1,2τ1.2

θ1,2avgVEDΘ1

Θ1,2

θ2avg

θ1,2avg

VED

λ1,1τ1,1 + λ2,1τ2,1

Θ2

Θ2,1

θ1avg

θ1,3avgθ1,2avg

Θ1

Θ1,2

Θ1,3

Figure 5: Illustration of Geometric Intuition. Each panel presents a different case example. The
left and center panels present the geometric intuition of KD for vanilla ensemble distillation (VED)
and TAKFL in the case where two different large device prototypes performing knowledge transfer.
The planes represent the solution subspaces. The right panel presents a circumstance by which two
small device prototypes (2, and 3) serve as teacher for transferring knowledge to a larger device
prototype 1.

and also, in the case of W 1 = W
1,2 = W

2 implies682

⇥̂TA 2 Span(W1
\W

1,2)

For the last statement we observe again as in the second Case in the Proposition describing VED,683

dim
�
O(2, 1)(W2)

�
< W

1,2 from which we can conclude that, generically684

dim
��

v : v 2 O(2, 1)(W2) ✓W
v
, E(x,y)⇠D2 l(f1(x; v), y) > 0

 �
= W

1,2
�W

2

proving the final statement. ⌅685

We observe that a key mechanism of the proof is the dimension of the target space of the teaching686

operator O(i, j). As an informative model, we can consider coefficients �j of task vectors as re-687

stricting the rank, relative to other teachers. For instance, in the previous Proposition, if W 1,2 = 2688

and W
2 = 1, then �2 = 1/2, so as to enforce one vector of W1,2 is a target for the map Õ(2, 1),689

would be appropriately sensible.690

C.2 Geometric Intuition691

In this section we aim to provide geometric intuition for the mechanism of VED and Task Arithmetic692

KD on three different cases. Figure 5 presents the geometry illustration for three different cases. We693

discuss each case in the following.694

Case I: KD between two large prototypes with different data distributions. Consider Figure 5695

left panel. This panel corresponds to a setting where two large device prototypes with similar total696

capacity, i.e. Q
1 = Q

2 = 3 perform knowledge transfer. We consider the solution dimensions of697

both prototypes to be the same, i.e. W
1 = W

2 = 2. These would correspond to planes in the698

ambient space. Therefore, one plane corresponds to the solution subspace of the prototype 1 trained699

on its own data, i.e. ⇥1 subspace in the panel, and the other corresponds to the (theoretical) solution700

subspace of this prototype trained on prototype 2’s data, i.e. ⇥(1,2) in the panel. In this case, since701

the data distributions of the prototypes are fairly disparate, this has resulted into near orthogonal702

subspaces corresponding to these solutions. As we can see from the panel, VED will lead to point703

which is far away from either of the planes corresponding to optimal solution subspaces, and far704

from the optimal set of parameters, which is their intersection, suggesting a loss of knowledge. By705

contrast, the TAKFL approach, by customizing the merging coefficients and putting each to half, i.e.706

�1,1�1,2 = 0.5, can traverse in the tangent space of zero loss surface and get into the intersection707

subspace which is exactly the optimal solution (✓⇤
merged = ✓1

avg + �1,1⌧1,1 + �1,2⌧1,2).708

Case II: KD between two large prototypes with similar data distributions. Consider Figure 5709

center panel. Similar to Case I, this panel corresponds to a setting where two large device prototypes710

with similar total capacity, i.e. Q
1 = Q

2 = 3 performing knowledge transfer. We consider the711

solution dimensions of both prototypes to be the same, i.e. W 1 = W
2 = 2. These would correspond712

7

to planes in the ambient space. Therefore, one plane corresponds to the solution subspace of the713

prototype 1 trained on its own data, i.e. ⇥1 subspace in the panel, and the other corresponds to the714

(theoretical) solution subspace of this prototype trained on prototype 2’s data, i.e. ⇥(1,2) in the panel.715

In this case, since the data distributions of the prototypes are fairly close, this has resulted into non-716

orthogonal solution subspaces. As we can see from the panel, while VED could still lead to some717

information loss, by and large we expect straightforward KD. Our task arithmetic (TA) approach,718

again by customizing the merging coefficients �1,1�1,2 = 0.5, can traverse in the tangent space of719

zero loss surface on each plane and get into the intersection subspace, corresponding to the most720

efficient allocation of device prototype capacity for fitting simultaneously the logits corresponding721

to accurate modeling of device prototype 1 as well as device prototype 2’s data distribution.722

Case III: KD between two small prototypes and one large prototype. Now consider the right723

panel in Figure 5. This panel corresponds to a setting where two small prototypes serve as teachers724

and one large prototype is the student. The ✓1
avg plane corresponds to the solution subspace of the725

large prototype 1 on its own data, D1. The line ✓1,2
avg line corresponds to the subspace of solutions in726

prototype 1’s parameter space projected into the capacity of the information transferred from device727

prototype 2. Finally, the line labelled ✓1,3
avg corresponds to the subspace of solutions in prototype 1’s728

parameter space projected into the capacity of the information transferred from device prototype 3.729

Here, we can see from the relative angle of the lines with respect to the plane that the distribution730

D
1 is closer to the distribution D

2 than to D
3. Comparing this case to the previous cases, ✓1,3

avg731

is like case I and ✓1,2
avg is like case II. We can apply the same conclusions here as well regarding732

the performance of vanilla ensemble distillation and our adaptive task arithmetic approach. We733

can see from the geometric visualization that knowledge distillation towards ✓1,3
avg has more margin734

of error for prototype 1. Therefore, with the TAKFL approach large prototype 1 can strategically735

select which prototype to learn more from, and since ✓1,2
avg has closer data distribution to prototype736

1, TAKFL will prioritizes this by putting a larger merging coefficient, i.e �1,2 > �1,3. By contrast,737

VED lacks this customization and results in sub-optimal knowledge distillation.738

The geometric intuition discussed here is consistent with our detailed experimental analysis in D.1.1.739

C.3 Analytical Properties of Learning Dynamics740

Here we provide additional insights from the literature as to the nature and properties of learning741

as it takes place on overparametrized models. Specifically, we comment on literature in the area742

of Stochastic Differential Equation (SDE) models for SGD training dynamics, and its correspon-743

dence to the results above. Overparametrization has been conjectured to be a significant factor in744

contributing to the (unexpected, by classical bias-variance tradeoffs) generalization ability of deep745

neural networks, from a number of perspectives [13].746

Consider the diffusion model of SGD training for overparametrized NNs provided in [29]. Their747

analysis relies on the following two assumptions. For our purposes L is shorthand for a client748

group’s loss, L(✓) =
P

k2Cj

E(x,y)⇠Dj
k

⇥
`(f j(x;✓), y)

⇤
for some j, which will be identified from the749

context.750

Assumption 2. L : RQ
! R is C3 and the solution set � is a W -dimensional C2-submanifold of751

RD for 0 W  D and rank(r2
L(✓)) = Q�W752

Assumption 3. Assume that U is an open neighborhood of � satisfying that gradient flow starting753

in U converges to some point in �754

From these, [29] derives Theorem 4.6. This Theorem decomposes the random process of the pa-755

rameter weights driven by SGD after it has reached the solution manifold, e.g., the diffusive random756

walk of ✓1avg in Figure 5 along its respective solution manifold.757

Theorem 1. Given L, � and ✓µ(0) = ✓(0) 2 U as by Assumptions 2 and 3 the SDE modeling758

the optimization of F by SGD, that is, defining �(X) to be the gradient flow applied to the state759

random variable X , then for T as long as P[Y (t) 2 U, 80  t  T] = 1, ✓⌘(bT/⌘2c converges in760

distribution to the stochastic process Y (T) as ⌘ ! 0, with Y (t) given as,761

dY (t) = ⌃1/2
k (Y)dW (t)� 1

2r
2
L(Y)†@2(rL)(Y)[⌃k(Y)]dt

�
1
2@�(Y)

�
2@2(rL)(Y)

⇥
r

2
L(Y)†⌃?,k(Y)

⇤
+ @

2(rL)(Y)
⇥
L
�1
r2L(⌃?(Y))

⇤�
dt

(11)

8

where ⌃ ⌘ ��
T

and ⌃k, ⌃k, ⌃k are given as,762

⌃k = @�⌃@�, ⌃? = (ID � @�)⌃(ID � @�),
⌃k,? = @��(ID � @�) (12)

This theorem indicates that the asymptotic flow of SGD on the client training can be decomposed763

into a covariance-driven random walk in the tangent space, drift to preserve the flow into the tangent764

plane, the tangent-normal portion of the noise covariance and noise in the normal direction.765

This analytical expression provides the probabilistic foundations for the more higher level theoretical766

results above. In particular, local gradient dynamics, as employed by individual device prototypes767

j using FedAvg on its local clients, yields a flow for the stochastic process defined by the weights.768

At this point of learning, the weights are traversing the solution set, with noise predominantly in the769

tangent directions. Thus knowledge distillation which preserves this noise structure is going to be770

more effective as far as preserving accuracy across data.771

D Detailed Experimental Results772

In this section we present a more detailed version of experimental results presented in the main paper773

Section 7. Additional experimental results are also presented here.774

D.1 Main Experimental Results on Computer Vision (CV) Task775

The experiments in this section complements the main experimental results in the main paper776

Section 7.2.777

Experimental Setup. For the evaluation on CV task, we employ CIFAR-10 and CIFAR-100 [24]778

datasets. For CIFAR-10, we use CIFAR-100 as the unlabeled public dataset, while ImageNet-100,779

a subset of ImageNet [10] with 100 classes (see Appendix F.1.1), is used for CIFAR-100. We780

distribute the training dataset among the device prototypes in a ratio of 1:3:6 for S, M, and L,781

respectively. Each device prototype’s data portion is further distributed among its clients using a782

Dirichlet distribution. We apply two levels of data heterogeneity for a comprehensive evaluation:783

low heterogeneity, i.e. Dir(0.3), and high heterogeneity, i.e. Dir(0.1). Additionally, we configure the784

number of clients and their sampling rates as follows: 100 clients for S, 20 for M, and 4 for L, with785

sampling rates set at 0.1, 0.2, and 0.5 respectively. To comprehensively evaluate, we use two distinct786

architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from787

the same family—employing ResNet8, ResNet14, and ResNet18 [17] for S, M, and L, respectively;788

and the “hetero-family” setting, which diverse architectures are used—ViT-S [12] for S, ResNet14789

for M, and VGG-16 [42] for L. All models are initialized from scratch, and the communication790

round is set at 60 rounds. Further details regarding hyper-parameters can be found in Table 12.791

Overview of Performance Results. Table 4 presents the performance of TAKFL across diverse792

architecture settings on the CIFAR-10 and CIFAR-100 datasets. TAKFL consistently improves all793

device prototypes of different sizes in various cases by a significant margin compared to the base-794

lines, achieving SOTA performance. Notably, in the homo-family architecture setting with Dir(0.3)795

on CIFAR-10, TAKFL improves average performance across all prototypes by 8%, and by 4% on796

CIFAR-100. In the hetero-family settings with Dir(0.1) on CIFAR-10 and Dir(0.3) on CIFAR-100,797

TAKFL enhances performance by ⇠3% and 1%, respectively. Furthermore, we observe that our798

self-regularization technique has successfully mitigated issues associated with the noisy and unsu-799

pervised ensemble distillation process, thereby enhancing performance. Generally, the performance800

gains from self-regularization are more pronounced in low data heterogeneity cases, where proto-801

types’ models perform better and possess higher quality self-knowledge. Thus, self-regularization802

proves more effective as it preserves this higher quality self-knowledge.803

D.1.1 Consistency Analysis: Experimental and Theoretical Correlations804

In this part, we elaborate on our key experimental observations and their alignment with our theo-805

retical findings.806

Insight 1: From Table 4, it is evident that prior KD-based methods show inconsistent performance807

across various device prototypes, particularly for the large (L) prototype. For instance, in the CIFAR-808

10 homo-family setting with Dir(0.3), while small (S) and medium (M) prototypes see performance809

9

Table 4: Performance Results for CV task on CIFAR-10 and CIFAR-100. Training data is
distributed among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using
Dirichlet distribution. Public datasets are CIFAR-100 for CIFAR-10 and ImageNet-100 for CIFAR-
100. Client configurations include 100, 20, and 4 clients for S, M, and L, with sampling rates of
0.1, 0.2, and 0.5. In homo-family settings, architectures are ResNet8, ResNet14, and ResNet18; in
hetero-family settings, they are ViT-S, ResNet14, and VGG-16. All models are trained from scratch
for 60 rounds. See Appendix F.1 for more details.

Dataset Baseline
Homo-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.61
TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

CIFAR-100

FedAvg 13.22±0.14 21.39±1.11 29.47±0.86 21.36 11.86±0.08 14.63±0.65 26.25±1.64 17.58
FedDF 19.54±0.20 24.32±0.45 29.29±1.45 24.38 16.09±0.32 19.80±0.17 26.59±0.25 20.83
FedET 19.67±0.35 25.27±0.66 31.10±1.53 25.35 11.18±1.68 18.22±0.35 26.40±0.65 18.60
TAKFL 24.48±0.42 27.60±0.25 29.84±0.94 27.31 22.90±0.18 23.63±0.72 26.98±0.13 24.50
TAKFL+Reg 27.18±0.27 29.14±0.20 31.15±0.97 29.16 22.88±0.37 23.92±0.57 28.01±0.34 24.94

Dataset Baseline
Hetero-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 27.53±0.83 47.30±3.17 55.10±8.60 43.31 20.93±1.54 25.62±6.04 36.80±5.47 27.78
FedDF 34.15±0.87 54.06±1.06 69.07±4.99 52.43 24.20±0.74 34.07±3.08 39.81±5.45 32.69
FedET 33.24±1.27 58.86±0.94 65.56±3.49 52.55 24.37±1.26 37.77±4.71 43.64±3.36 35.26
TAKFL 33.29±0.15 57.64±0.19 68.44±0.66 53.12 24.92±1.32 38.07±3.19 48.01±3.99 37.00
TAKFL+Reg 33.34±3.36 59.01±3.12 70.22±4.40 54.19 25.10±1.87 38.81±5.36 50.26±6.42 38.06

CIFAR-100

FedAvg 8.51±0.37 22.11±0.58 37.91±2.60 22.84 7.01±0.47 14.94±0.96 28.51±1.46 16.82
FedDF 10.46±0.17 23.46±0.65 36.81±0.82 23.58 7.76±0.40 18.92±0.39 29.81±1.09 18.83
FedET 11.16±0.18 25.40±0.30 37.38±0.60 24.65 8.20±0.54 20.66±0.50 28.95±1.79 19.27
TAKFL 10.29±0.11 27.14±0.89 39.15±0.88 25.53 7.88±0.68 21.41±0.37 31.31±0.66 20.20
TAKFL+Reg 11.25±0.37 27.86±0.86 38.68±0.45 25.93 8.45±0.20 22.16±0.87 31.95±1.13 20.85

gains, the L prototype experiences up to a ⇠10% performance decline compared to vanilla FedAvg,810

which lacks server-side knowledge distillation. This trend is consistent across other settings, such as811

CIFAR-10 Dir(0.1) homo-family and CIFAR-100 Dir(0.3) homo-family. These outcomes underline812

the dilution problem inherent in existing methods, where the valuable insights from larger, more ca-813

pable device prototypes are overshadowed by less informative outputs from smaller devices, thereby814

degrading the performance of L prototypes. These empirical findings are supported by our theoret-815

ical insights as discussed in Remark 1. Specifically, Proposition 1 illustrates that vanilla ensemble816

distillation (VED) leads to knowledge dilution and inaccuracies due to misaligned device capacity817

allocations. Moreover, this issue becomes more significant when the smaller device prototype serve818

as teacher.819

Insight 2: From Table 4, the suboptimality of existing KD-based methods is evident from the sig-820

nificant performance improvements of our method, especially for S and M prototypes across various821

settings. This underscores the ineffectiveness of the one-size-fits-all approach these methods em-822

ploy, where a single averaged logits distillation target is used for all device sizes, proving to be sub-823

optimal. Our experimental observations regarding the shortcomings of vanilla ensemble distillation824

methods align with our theoretical findings, as substantiated in Remark 1 and 2. It becomes evident825

that an efficient knowledge distillation process must allocate capacity in a manner that appropriately826

corresponds to the information value of the teacher ensemble prototypes.827

Insight 3: Our experiments, detailed in Table 4, demonstrate TAKFL’s adept handling of knowl-828

edge from various device prototypes under different data heterogeneity conditions. We observed829

consistent performance gains for small (S) and medium (M) prototypes across both low and high830

data heterogeneity, compared to vanilla FedAvg. However, in high heterogeneity settings, large (L)831

prototypes show less improvement, prompting the question: What can smaller device prototypes832

offer to larger ones?833

In low heterogeneity scenarios, large prototypes significantly benefit from the collective knowledge,834

showing enhanced performance. Conversely, in conditions of extreme heterogeneity, where smaller835

models contribute less effectively, the performance improvements for larger devices are notably re-836

duced. This pattern highlights TAKFL’s ability to intelligently manage and utilize the available837

knowledge, selectively distilling information based on the intrinsic capacity and contributions of838

10

Table 5: Performance Results for CV task on TinyImageNet, STL-10, and CINIC-10 using
pre-trained models.

Private Public Baseline S M L Average

TinyImageNet STL-10

FedAvg 8.97 13.03 15.12 12.37
FedMH 15.08 17.10 17.83 16.67
FedET 10.60 16.39 17.62 14.87
TAKFL 16.10 17.60 19.03 17.58
TAKFL+Reg 16.55 17.98 19.74 18.09

STL-10 CIFAR-100

FedAvg 26.01 34.47 42.88 34.45
FedMH 28.64 34.55 39.25 34.15
FedET 29.87 33.00 38.26 33.71
TAKFL 29.57 37.57 42.53 36.56
TAKFL+Reg 30.78 37.89 43.38 37.35

CINIC-10 CIFAR-100

FedAvg 44.87 55.49 51.33 50.56
FedMH 45.52 55.75 53.48 51.58
FedET 46.31 57.43 53.01 52.25
TAKFL 48.21 57.81 52.74 52.92
TAKFL+Reg 47.66 57.54 53.25 52.82

each prototype, and integrating only the most valuable knowledge from smaller devices when bene-839

ficial.840

By contrast, our analysis of existing KD-based methods shows their failure to effectively discern and841

utilize the most informative knowledge across prototypes. These methods often overload the capac-842

ity of larger prototypes with suboptimal or irrelevant information, particularly in high heterogeneity843

environments, leading to not just stagnation but an accumulation of inefficiencies. These experi-844

mental observations align with our theoretical insights, as outlined in Remark 2, which emphasizes845

the crucial combinatorial constraint of capacity and diverse information. This further confirms the846

superiority of TAKFL’s adaptive approach to knowledge distillation in diverse federated learning847

environments.848

D.2 Additional Experimental Results on CV Task849

Experimental Setup. For additional evaluation of the CV task, we conducted experiments on Tiny-850

ImageNet [25], STL-10 [7], and CINIC-10 [9] datasets using pre-trained models. For TinyIma-851

geNet [25], we utilized STL-10 [7] as the unlabeled public dataset. STL-10 [7] and CINIC-10 [9]852

both employ CIFAR-100 [24] as their respective public datasets. We distributed the training datasets853

among the device prototypes in a 2:3:5 ratio for small (S), medium (M), and large (L) prototypes,854

respectively. The data portion for each prototype was further subdivided among its clients using855

a Dirichlet distribution: Dir(1.0) for TinyImageNet and Dir(0.3) for both STL-10 and CINIC-10.856

Client configurations were set with 4, 3, and 2 clients for S, M, and L, respectively, all with a857

sampling rate of 1.0. The architectures employed were MobileNetV3-Large [19] for S, Mobile-858

ViTV2 [34] for M, and ResNet-34 for L, sourced from the TIMM library.1 The local training was859

conducted over 10 epochs using an Adam [23] optimizer with a learning rate of 1e-3 and weight de-860

cay of 1e-5. For server-side distillation, the epoch count was 10 for TinyImageNet and 1 for STL-10861

and CINIC-10, with a batch size of 128, employing an Adam optimizer with a learning rate of 1e-5862

and weight decay of 1e-5. For TinyImageNet, public dataset images from STL-10 were resized to863

64⇥64, while for STL-10, images were resized to 32⇥32. No data augmentation was used. The864

communication rounds is fixed to 40. These experiments were conducted by only 1 trial. Table 14865

details the configurations.866

Performance Results. Table 5 presents the results. The superiority of TAKFL’s performance across867

these challenging datasets using pre-trained models is evident here as well.868

D.3 Additional Experimental Results on Natural Language Processing (NLP) Task869

The experiments in this section complements the main experimental results in the main paper870

Section 7.2.871

1
https://github.com/huggingface/pytorch-image-models

11

https://github.com/huggingface/pytorch-image-models

Table 6: Performance Results for NLP Task on 4 Datasets.. Training data is distributed among
S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dir(0.5). Client
configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0, respec-
tively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small for S, M, and L, initialized from
pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more
details.

Private Public Baseline S M L Average

MNLI SNLI

FedAvg 36.15±0.46 54.47±2.48 57.51±2.79 49.37
FedDF 54.21±0.15 60.44±1.91 66.71±1.09 60.45
FedET 48.03±6.32 50.33±7.87 53.80±6.18 50.72
TAKFL 57.43±0.21 63.58±0.31 68.74±0.12 63.25
TAKFL+Reg 57.61±0.89 63.91±1.05 68.96±1.10 63.49

SST2 Sent140

FedAvg 54.98±1.81 74.71±8.22 86.69±0.06 72.13
FedDF 74.41±2.62 80.71±1.63 84.35±1.66 79.82
FedET 66.63±9.14 65.89±16.35 70.05±15.83 67.52
TAKFL 74.73±0.55 82.17±0.31 86.93±0.42 81.28
TAKFL+Reg 74.88±0.43 82.40±0.83 87.33±0.63 81.54

MARC Yelp

FedAvg 33.76±1.13 49.08±1.28 59.26±1.43 47.36
FedDF 53.01±1.24 55.37±0.87 56.81±0.99 55.06
FedET 52.63±2.29 54.28±2.31 56.11±2.61 54.34
TAKFL 55.70±2.08 58.64±1.75 59.39±1.16 57.91
TAKFL+Reg 55.96±1.66 59.18±1.13 59.61±1.89 58.25

AG-News DBPedia

FedAvg 83.64±3.51 83.47±2.35 91.48±2.22 86.20
FedDF 85.97±2.45 89.10±1.85 91.37±1.10 88.81
FedET 75.27±3.85 81.13±3.21 83.19±4.58 79.86
TAKFL 87.37±1.31 90.11±1.56 92.48±1.12 89.99
TAKFL+Reg 87.66±1.83 90.30±2.05 92.61±1.72 90.19

Experimental Setup. For the evaluation of NLP tasks, we utilize four datasets: MNLI [50], SST-872

2 [43], MARC [22], and AG-news [58]. The corresponding unlabeled public datasets are SNLI [2]873

for MNLI, Sentiment140 [14] for SST-2, Yelp [59] for Amazon, and DBPedia [57] for AG-News.874

The training data is distributed among the device prototypes in a ratio of 1:3:6 for small (S), medium875

(M), and large (L) categories, respectively, with each portion further subdivided among its clients876

using a Dirichlet distribution (Dir(0.5)). The client configurations and their sampling rates are set877

as follows: 8, 4, and 2 clients for S, M, and L categories, respectively, with sampling rates of 0.3,878

0.5, and 1.0. The architectures employed for each prototype size are BERT [45] -Tiny, -Small, and879

-Mini, respectively, each initialized from pre-trained parameters and tested over 20 communication880

rounds. Additional details regarding hyper-parameters and datasets are presented in Appendix F.2881

and Table 16.882

Performance on NLP Task. Table 6 presents the results on four different datasets: MNLI, SST-2,883

MARC, and AG-News. Similar to the CV task, TAKFL has consistently improved performance884

across all device prototypes of varying sizes, achieving state-of-the-art results. On MNLI, it has en-885

hanced average performance across all prototypes by 3%, on SST-2 by⇠2%, on MARC by 3%, and886

on AG-News by⇠1.50%. As observed in the CV task, the suboptimality of existing KD-based meth-887

ods is also evident here. Notably, FedET exhibits very poor performance compared vanilla FedAvg,888

failing to achieve satisfactory results on all datasets except for the MARC dataset. Particularly, the889

performance of the L prototype has consistently decreased across all datasets compared to vanilla890

FedAvg. This behavior can be attributed to FedET’s reliance on neural network confidence scores891

for uncertainty estimates in its uncertainty-weighted distillation. However, neural networks, espe-892

cially pretrained language models (PLMs), are often poorly calibrated and prone to overconfidence,893

which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].894

D.4 Scalability Evaluation895

This section complements the experimental results in the main paper Section 7.3.896

Experimental Setup. To evaluate the effectiveness and scalability of our method across a broad897

spectrum of device prototypes, ranging from very small to very large sizes, we conduct experi-898

ments involving 3 to 7 different prototypes. Our objective is to assess how effectively our method899

adapts from a uniform array of small-size prototypes (3 device prototypes) to a diverse mix that900

12

includes prototypes ranging from extremely small (XXS) to extremely large (XXL) (7 device proto-901

types). These experiments involve training image classification models from scratch on the CINIC-902

10 dataset, using CIFAR-100 as the unlabeled public dataset. We randomly distribute the dataset903

among prototypes with dataset ratios set to 1:2:3:4:5:6:7 from XXS to XXL. Each dataset portion904

is further distributed among clients using a Dirichlet distribution (Dir(0.5)). The number of clients905

ranges from 35 to 5 from XXS to XXL, respectively. Client sample rates are set at 0.1, 0.1, 0.15,906

0.15, 0.2, 0.3, and 0.6 from XXS to XXL. We use a series of ResNet architectures—ResNet10-XXS,907

ResNet10-XS, ResNet10-S, ResNet10-M, ResNet10, ResNet18, and ResNet50—scaled appropri-908

ately for each prototype. The local training epochs are set at 2, 2, 2, 5, 10, 10, and 20 from XXS to909

XXL to account for resource constraints, with fewer epochs assigned to smaller devices. We employ910

the Adam optimizer with a learning rate of 1e-3 and a weight decay of 5e-5 for local training. For911

XL and XXL, a step learning rate scheduler reduces the learning rate by a factor of 0.1 at half epoch.912

Server-side distillation employs a fixed batch size of 128, using the Adam optimizer with learning913

rate of 1e-3 and weight decay of 5e-5. The softmax temperature is set at 3 for ensemble distillation914

and 20 for self-regularization. The number of communication rounds is fixed at 30. These exper-915

iments are conducted over 3 trials with different random seeds, and the average performance with916

standard deviation is reported. The entire device prototypes configurations are given in Table 15.917

The detailed results are presented in Tables 7, 8, and 9.918

Table 7: Scalability Evaluation. Detailed performance results for 7 device prototypes case.

Baseline XXS XS S M L XL XXL Average
FedAvg 23.17±1.26 30.66±0.14 32.81±0.21 31.77±0.21 37.69±0.08 41.78±0.05 50.52±0.01 35.49
FedDF 27.98±0.66 37.47±0.33 40.61±0.01 40.26±0.18 43.83±0.22 45.58±0.18 52.18±0.12 41.13
FedET 26.75±0.98 36.99±0.31 40.51±0.19 41.60±0.16 46.12±0.31 48.39±0.11 52.71±0.09 41.87
TAKFL 27.30±0.08 36.93±0.16 43.31±0.42 40.88±0.01 48.52±0.15 50.95±0.04 54.27±0.43 43.17
TAKFL+Reg 29.28±0.16 37.10±0.45 43.96±1.65 41.83±0.73 48.77±0.37 51.43±0.46 54.63±0.84 43.86

Table 8: Scalability Evaluation. Detailed performance results for 5 device prototypes case.

Baseline XXS XS S M XL Average
FedAvg 24.19±1.03 21.04±0.76 33.62±0.88 38.91±0.74 46.93±0.05 32.94
FedDF 28.31±0.61 34.66±0.00 39.91±0.07 38.24±0.36 46.81±0.11 37.59
FedET 26.88±0.95 34.11±0.27 41.15±0.29 40.81±0.87 48.14±0.06 38.22
TAKFL 27.91±0.12 37.09±0.11 40.46±0.34 41.06±0.02 49.02±0.35 39.11
TAKFL+Reg 28.24±0.46 37.30±1.10 40.76±0.94 43.09±0.27 50.86±0.22 40.05

Table 9: Scalability Evaluation. Detailed performance results for 3 device prototypes case.

Baseline XXS S M Average
FedAvg 24.19±1.03 33.62±0.88 38.91±0.74 32.24
FedDF 27.85±0.10 37.83±0.12 37.74±0.41 34.47
FedET 26.04±0.67 36.87±0.68 37.66±0.09 33.52
TAKFL 26.62±0.16 37.32±0.40 38.13±0.58 34.02
TAKFL+Reg 27.90±0.98 37.63±0.87 38.20±0.91 34.58

E Ablation Studies919

E.1 Understanding Merging Coefficient920

In this section, we conduct an ablation study to further understand how TAKFL customizes knowl-921

edge integration and understand how the merging coefficients �i are achieving this. This experiment922

aims to further understand the trade-offs between customized knowledge integration approach from923

the one-size-fits-all strategy employed in vanilla ensemble distillation and prior works.924

Experimental Setup. Our experimentation focuses on two device prototypes: XXS and XXL, se-925

lected from the scalability evalulation detailed in Section 7.3, Appendix D.4, and Table 15. We926

employ the image classification task on the CINIC-10 [9] dataset, starting from scratch. Each proto-927

type receives a randomly selected, non-overlapping subset of the training dataset—3.57% for XXS928

and 25% for XXL—distributed among their clients in a non-i.i.d. manner using Dir(0.5). Both pro-929

totypes have three clients each. The architectures used are ResNet10-XXS for the XXS prototype930

and ResNet-50 for the XXL prototype. To focus solely on the evaulation of the server-side distil-931

lation process and its evolution with varying �, we pre-train each prototype using standard FedAvg932

13

for 10 communication rounds, with a sample rate of 1.0. Local training involves 20 epochs for XXS933

and 20 epochs for XXL using an Adam optimizer with a learning rate of 1e-3 and weight decay of934

5e-5. The XXL prototype employs a step learning rate scheduler that reduces the rate by a factor935

of 0.1 at local epoch 10. For server-side distillation, we utilize a batch size of 128 and an Adam936

optimizer with a learning rate of 1e-5 and weight decay of 5e-5. CIFAR-100 [24] serves as the un-937

labeled public dataset. We save the final updated client and server models from both prototypes for938

further experimentation, focusing on the impact of merging coefficients without self-regularization939

in TAKFL. The merging coefficient � is varied linearly from 0 to 1 in increments of 0.05. For940

simplicity, the XXS prototype is referred to as the small (S) prototype and XXL as the large (L)941

prototype.942

Discussion. Figure 6 illustrates the significant impact of customized knowledge integration on the943

performance of both small and large device prototypes compared to the one-size-fits-all approach944

typical of vanilla ensemble distillation in the prior works, at different distillation epochs. Here,945

TAKFL adeptly manages customization for both small and large prototypes by controlling the merg-946

ing coefficient �. The merged model for both the small and large student prototypes is obtained using947

the formula ✓merged = ✓avg +
�
(1 � �)⌧S + �⌧L

�
. Notably, the performance is benchmarked at948

� ⇡ 0.5 in all cases, reflecting similar results to vanilla ensemble distillation (FedDF), where no949

customization in knowledge transfer occurs. This baseline performance is critical for understanding950

the effects of further customization.951

In small distillation epochs (Idistill < 10), minimal benefit is observed from customized knowledge952

integration, as both small and large prototypes achieve optimal performance at the non-customized953

� ⇡ 0.5. However, as the distillation process progresses beyond 10 epochs, the influence of � be-954

comes increasingly pronounced. For � > 0.5, the knowledge from the large prototype’s ensembles955

predominates, enhancing their impact, while for � < 0.5, integration is more influenced by the956

small prototype’s ensembles. This pattern suggests that increased distillation epochs enable more957

effective distillation of each prototype’s unique knowledge for extreme cases of extremely small and958

large prototypes, thereby making the customization benefits evident. In scenarios with small distilla-959

tion epochs, the absence of significant unique knowledge results in optimal performance at � ⇡ 0.5.960

Conversely, as the number of distillation epochs rises (Idistill � 20), the one-size-fits-all strategy961

proves suboptimal, underscoring the importance of tailored knowledge integration strategies. Opti-962

mal performance increasingly occurs at � > 0.5, indicating effective leveraging of each prototype’s963

strengths to maximize overall performance. These findings confirm the necessity for customized964

knowledge integration in environments with significant prototype size variations and support our965

theoretical insights as detailed in Remark 1 and 2.966

E.2 Impact of Public Dataset967

In this section, we explore the influence of the public dataset on the performance of TAKFL and968

existing KD-based methods when the public dataset used for server-side distillation is less simi-969

lar to the private dataset, which is the actual learning objective. For this analysis we employ the970

same experimental setup previously outlined in Section 7.2 and Appendix D.1, using the CIFAR-10971

homo-family architecture. To measure dataset similarity, we compute cosine similarity between the972

averaged features of datasets, extracted using an off-the-shelf pre-trained CLIP model [40] (CLIP973

ViT-B/32) available from the official GitHub repository.2974

Discussion. Table 10 presents our results, highlighting a significant observation: the performance975

of existing methods drastically deteriorates as the similarity between the public dataset and private976

datasets decreases. In contrast, TAKFL exhibits robustness, suffering much less performance degra-977

dation under the same conditions. This demonstrates TAKFL’s practical utility in real-world sce-978

narios where the server typically lacks knowledge of the private datasets to select a closely aligned979

public dataset for distillation. Notably, FedET underperforms significantly when using a less similar980

public dataset, performing worse than vanilla FedAvg in both low and high data heterogeneity sce-981

narios. A similar pattern was observed with FedET in the NLP tasks discussed in Section 7.2 and982

Appendix D.3. This issue is likely due to FedET’s dependence on the overconfident and poorly cal-983

ibrated confidence scores from neural networks [15, 53] for uncertainty estimates in its uncertainty-984

weighted distillation approach.985

2
https://github.com/OpenAI/CLIP

14

https://github.com/OpenAI/CLIP

Figure 6: Understanding the Impact of Merging Coefficients. This figure showcases server-side
knowledge distillation between two device prototypes, XXS and XXL, referred to as small and
large, respectively, utilizing CIFAR-100 as the unlabeled public dataset. Both prototypes were pre-
trained from scratch using standard FedAvg for 10 communication rounds. The CINIC-10 dataset
was distributed between the small and large prototypes in ratios of 3.57% and 25%, respectively,
and further subdivided non-i.i.d. among the clients using Dir(0.5). Each prototype has three clients
with a sample rate of 1.0. The small prototype utilizes a ResNet10-XXS architecture, while the large
prototype employs a ResNet-50.

Table 10: Impact of Public Dataset on performance results. Same experimental setting described
in Section 7.2 and Appendix D.1 on CIFAR-10 homo-family setting is used for this experiment. The
numbers in parentheses represent the similarity scores between private and public datasets, obtained
using a pre-trained CLIP ViT-B/32 model.

Public Dataset Baseline Low Data Heterogeneity (Dir(0.3)) High Data Heterogeneity (Dir(0.1))
S M L Average S M L Average

— FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.62

CIFAR-100 (0.99)

TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62
FedDF 49.37±1.58 49.41±4.21 55.06±6.71 51.28 31.41±6.61 30.73±7.77 39.82±5.16 33.99
FedET 33.95±0.92 37.26±1.64 39.77±3.44 36.99 24.12±1.84 24.58±2.13 28.91±1.09 25.87
TAKFL 55.20±0.07 56.36±0.40 60.71±0.22 57.42 40.08±0.19 40.26±0.04 43.56±1.10 41.30

TinyImagenet (0.92)

TAKFL+Reg 56.28±0.09 57.14±0.03 60.90±0.22 58.11 40.88±0.11 41.10±1.15 46.25±5.95 42.74
FedDF 48.99±0.37 50.06±0.43 55.12±4.95 51.39 29.80±0.39 32.28±4.41 44.0±4.60 35.36
FedET 28.56±3.00 28.80±1.00 37.20±2.78 31.52 15.28±1.75 19.00±3.43 23.29±5.04 19.19
TAKFL 45.65±2.72 54.53±1.72 58.13±0.13 52.77 31.02±0.68 36.76±1.58 48.33±0.53 38.70

Celeb-A (0.77)

TAKFL+Reg 46.93±0.67 56.67±1.26 60.13±1.38 54.58 30.88±3.51 35.95±5.40 52.68±1.90 39.84

15

F Hyper-parameters and Implementation986

In this section we bring the details of the hyper-parameters we used and our implementation. We987

implement our entire code in PyTorch [38] and release it anonymously at https://anonymous.988

4open.science/r/TAKFL-DD28/README.md. We use two NVIDIA RTX 3090 gpus to conduct989

the entire experimentation in this paper.990

F.1 Computer Vision (CV) Task991

For comprehensive evaluation of our method, we consider federated learning image classification992

training from scratch.993

F.1.1 Datasets994

Datasets. We experiment with several image classification datasets: CIFAR-10, CIFAR-100,995

CINIC-10, TinyImageNet, STL-10. The details of each dataset is the following:996

• CIFAR-10 [24]: CIFAR-10 consists of 60,000 images of size 32⇥32 RGB across 10997

classes, with each class containing 6,000 images.998

• CIFAR-100 [24]: CIFAR-100 comprises 60,000 images of size 32⇥32 RGB distributed999

across 100 classes, with 500 images per class.1000

• CINIC-10 [9]: CINIC-10 has 270,000 images of size 32⇥32 RGB across 10 classes, each1001

class containing 27,000 images.1002

• TinyImageNet [25]: TinyImageNet contains 100,000 images of size 64⇥64 RGB across1003

200 classes.1004

• STL-10 [7]: STL-10 has 100,000 unlabeled images and 13,000 labeled images of size1005

96⇥96 RGB across 10 classes.1006

The ImageNet-100 as the unlabeled public dataset is constructed by randomly selecting 100 classes1007

from the ImageNet [10] dataset.1008

F.1.2 Architectures1009

Experiments in Section 7.2 and Appendix D.1. The architecture that we use are two distinct1010

architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from1011

the same family, and the “hetero-family” setting, where architectures do not necessarily belong to1012

the same family. For the homo-family scenario, we employ ResNet-8 for S, ResNet-14 for M, and1013

ResNet-18 for L. For the hetero-family scenario, we use ViT-S for S, ResNet-14 for M, and VGG-161014

for L. All models are initialized from random initialization.1015

For the ResNet architecture configuration, we utilize the standard ‘BasicBlock’ as the building block.1016

This consists of a convolutional block, followed by four residual block stages, an adaptive average1017

pooling layer, and a classifier layer. The models within this family differ in terms of the number1018

of repetitions of the residual block and the number of filters in each stage. The configurations for1019

different capacities are detailed below:1020

• ResNet-18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [2, 2, 2, 2]1021

times.1022

• ResNet-14 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 2, 2, 1]1023

times.1024

• ResNet-8 is configured with [64, 128, 256] filters, corresponding to the first three stages, and1025

repeats the ‘BasicBlock’ [1, 1, 1] times.1026

For VGG-16 [42], we use the standard architecture which includes convolutional layers followed by1027

max-pooling layers. The configuration of filters for each layer is as follows:1028

VGG-16: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, 256, ‘M’, 512, 512, 512, ‘M’, 512, 512, 512,1029

‘M’]1030

16

https://anonymous.4open.science/r/TAKFL-DD28/README.md
https://anonymous.4open.science/r/TAKFL-DD28/README.md
https://anonymous.4open.science/r/TAKFL-DD28/README.md

The final classification head consists of two linear layers with a hidden size of 512, followed by a1031

ReLU activation, and a final linear classifier layer.1032

For ViT-S, we adopt the standard Vision Transformer [12] architecture implementation from1033

Github.3 We configure ViT-S with 6 attention blocks, each with 16 heads and a hidden dimen-1034

sion of 64. The final MLP dimension is set to 256. In our experiments with ViT-S, we set the patch1035

size to 4, and the input image size is 32⇥32.1036

Experiment in Appendix D.2. The pre-trained MobileNetV3-Large [19], MobileViTV2 [34], and1037

ResNet34 [49] were instantiated using the TIMM library.41038

Scalability Experiments in Section 7.3. The architectures in these experiments are inspired by [20].1039

The details of architectures are as following:1040

• ResNet10-XXS is configured with [8, 8, 16, 16] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1041

times.1042

• ResNet10-XS is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1043

times.1044

• ResNet10-S is configured with [16, 32, 64, 128] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1045

times.1046

• ResNet10-M is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1047

times.1048

• ResNet10 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1049

times.1050

• ResNet18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]1051

times.1052

• ResNet50 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [3,4,6,3]1053

times.1054

F.1.3 FL configuration and Hyper-parameters1055

Base Hyper-parameters. The following hyperparameter values apply to all CV experiments unless1056

stated otherwise. We set the diversity regularizer coefficient of FedET to 0.1 for our entire experi-1057

mentation per the original paper [6]. We use the Adam optimizer with a learning rate of 1e-5, weight1058

decay value of 5e-5, and a batch size of 128 for distillation. The softmax distillation temperature is1059

set to 3, the distillation epoch to 1, and the self-regularizer softmax temperature to 20 for both CV1060

and NLP experiments. Table 12 details the hyper-parameters.1061

Experiments in Section 7.2 and Appendix D.1. For tables 1 and 4, there are 100 clients with1062

the S device prototype, 20 clients with the M device prototype, and 4 clients with the L device1063

prototype. For each round, 10, 4, and 2 clients from each S, M, and L prototype are randomly1064

sampled respectively for participation. 10% of the data goes to the S prototype, 30% to M, and 60%1065

to L. The data is distributed to each client among each prototype in a Dirichlet distribution. Table1066

13 details the FL configuration.1067

Experiments in Appendix D.2 and Appendix E.2. For tables 5 and 10, there are 4, 3, and 2 clients1068

for S, M, and L device prototypes, respectively. Each round, every client participates in FL. 20% of1069

the data is distributed to prototype S, 30% to prototype M, and 50% to prototype L. Table 14 details1070

the FL configuration.1071

Scalability Experiments in Section 7.3 and D.4. For tables 7, 8, and 9, there are 35, 30, 25, 20,1072

15, 10, and 5 clients for the prototypes XXS, XS, S, M, L, XL, and XXL, respectively. The sample1073

rate is set to 0.1, 0.1, 0.15, 0.15, 0.2, 0.3, and 0.6 from XXS to XXL. The data is distributed for each1074

prototype in the ratio 1:2:3:4:5:6:7 from XXS to XXL. Table 15 details the hyper-parameters and1075

configuration.1076

Validation Set. For TAKFL, the validation set used for the heuristic method (see F.3) is 5% of the1077

training dataset. The validation set and the private dataset does not overlap.1078

3
https://github.com/lucidrains/vit-pytorch

4
https://github.com/huggingface/pytorch-image-models

17

https://github.com/lucidrains/vit-pytorch
https://github.com/huggingface/pytorch-image-models

F.2 Natural Language Processing (NLP) Task1079

For the NLP task, we fine-tune federated learning text classification task using pretrained models.1080

F.2.1 Datasets.1081

All NLP datasets were provided by Hugging Face. 51082

• MNLI [50]: MNLI contains 433K sentence pairs, each sentence pair labeled as one of1083

‘entailment,’ ‘neutral,’ and ‘contradiction.’1084

• SNLI [2]: SNLI is similar to MNLI, with 570K sentence pairs each labeled one of 3 labels.1085

• SST2 [43]: SST2 consists of 67K phrases, each labeled as sentiment ’positive’ or ’nega-1086

tive.’1087

• Sentiment140 [14]: Sentiment140 is a dataset of 1.6M Twitter messages each labeled with1088

one of 2 sentiment values.1089

• MARC [22]: MARC (Multilingual Amazon Reviews Corpus) is a dataset with online re-1090

views in multiple languages from the Amazon delivery service website. Each review has a1091

label which is one of 1-5 stars. We only use the English reviews from this dataset, which1092

results in 260,000 English reviews total.1093

• Yelp [59]: The Yelp reviews dataset contains 700K reviews each labeled 1-5 stars from the1094

Yelp service which publishes public reviews of businesses.1095

• AG News [58]: AG News contains 127,600 news article titles. Each article is one of four1096

classifications of news articles.1097

• DBpedia [57]: The DBpedia dataset consists of 630K DBpedia article summaries each1098

labeled one of 14 categorizations.1099

F.2.2 Architectures1100

Experiments in Section 7.2 and Appendix D.3. We use three variations of the BERT architec-1101

ture: BERT-Tiny, BERT-Mini, and BERT-Small from [45]. The weights were pre-trained on the1102

BookCorpus dataset and extracted text from Wikipedia. Further details regarding each model are1103

described extensively on Github.6 The tokenizer used for these transformer models are the same1104

ones provided by the authors of [45].1105

• BERT-Tiny contains 2 transformer layers and an embedding size of 128.1106

• BERT-Mini contains 4 transformer layers and an embedding size of 256.1107

• BERT-Small contains 4 transformer layers and and embedding size of 512.1108

F.2.3 FL configuration and hyper-parameters1109

Base Hyper-parameters. For distillation, we use the Adam optimizer with a learning rate of 3e-5,1110

no weight decay, and batch size of 32. The distillation epoch is set to 1, the ensemble distillation1111

softmax temperature to 3, and the self-regularizer softmax temperature to 20 for all NLP experi-1112

ments. Table 16 details the hyper-parameters.1113

Experiments in Section 7.2 and Appendix D.3. For tables 2 and 6, we limit the private dataset to1114

100,000 samples, randomly sampled from the original dataset i.i.d. The public dataset is limited to1115

30,000 examples sampled i.i.d as well. There are 8, 4, and 2 clients for the S, M, and L prototypes.1116

The private data is split across each prototype in the following proportions: 0.1, 0.3, 0.6. Table 171117

details the FL configuration.1118

Validation Set. The validation dataset used for TAKFL is 5,000 samples taken from the original1119

training dataset that does not overlap with the 100,000 private dataset.1120

5
https://github.com/huggingface/datasets

6
https://github.com/google-research/bert

18

https://github.com/huggingface/datasets
https://github.com/google-research/bert

F.3 Hyper-parameters of TAKFL1121

Merging Coefficients. We conducted extensive experiments with different merging coefficients on1122

the main 3-device prototype setting of small (S), medium (M), and large (L) discussed in Section 7.21123

and Appendix D.1. We empirically observed that the small (S) prototype typically achieves the best1124

performance using a uniformly increasing merging coefficient, where the larger the prototype, the1125

larger the merging coefficient, i.e., �S  �M  �L. As we move towards larger prototypes,1126

they benefit more from increasingly skewed merging coefficients towards the larger ones. In the1127

extreme case of the large (L) prototype, highly skewed merging coefficients generally led to better1128

performance, i.e., �S ⌧ �M ⌧ �L. This pattern is intuitive as small prototypes can benefit1129

from everyone while gaining more from the larger, more informative prototypes. However, larger1130

prototypes benefit less from smaller ones, as they typically offer less information, especially in1131

high data heterogeneity cases. Notably, in high data heterogeneity cases, more skewed merging1132

coefficients seemed to be more advantageous as the smaller prototypes (S and M) possess lower1133

quality knowledge.1134

Based on these observations, we designed a simple and cost-effective heuristic method that ran-1135

domly instantiates merging coefficients following this intuition. Our heuristic method, presented1136

in 1, leverages these observations by generating candidate merging coefficients that incorporate1137

both uniformly increasing and different degrees of skewed merging coefficients. This dual approach1138

enables us to explore a wide range of merging strategies and identify the most effective configura-1139

tions for different prototypes. The optimal merging coefficient candidate is determined using the1140

performance on the held-out validation set.1141

1 import numpy as np

2 def heuristic(num_devices=3, n_candidates=10):

3 candidates = [[1/num_devices for _ in range(num_devices)]]

4 for exponent in [1, 5, 10]:

5 for i in range(n_candidates):

6 candidate = np.random.beta(a=1, b=100, size=num_devices)

7 candidate = candidate ** exponent

8 candidate = np.sort(candidate)

9 candidate = candidate / np.sum(candidate)

10 candidates.append(candidate)

11 return candidates

Listing 1: Implementation of the heuristic method for merging coefficients in Python. The exponent
term controls the degree of skewness or peaking in the merging coefficients.

1142

Furthermore, we experiment with manually determining the merging coefficients and fixating them1143

throughout the federation. We achieved similar results with this approach compared to adaptively1144

finding the coefficients using the heuristic method and a small held-out validation set. We present the1145

merging coefficient candidates that performed reasonably well during our experiments in Table 11.1146

Table 11: Details of the experimentally determined merging coefficients for the 3-device prototype
setting discussed in Section 7.2 and Appendix D.1. Coefficients are ordered as [�S , �M , �L].

Merging Coefficient Candidate Small Prototype Medium Prototype Large Prototype
1 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.1, 0.2, 0.7]
2 [0.3, 0.3, 0.4] [0.05, 0.15, 0.8] [0.01, 0.09, 0.99]
3 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.05, 0.2, 0.75]
4 [0.05, 0.1, 0.85] [0.01, 0.19, 0.8] [0.01, 0.09, 0.90]
5 [0.1, 0.15, 0.75] [0.05, 0.15, 0.8] [0.01, 0.09, 0.90]
6 [0.05, 0.1, 0.85] [0.05, 0.05, 0.9] [0.001, 0.009, 0.99]
7 [0.05, 0.15, 0.80] [0.05, 0.2, 0.75] [0.001, 0.009, 0.99]
8 [0.05, 0.15, 0.80] [0.05, 0.1, 0.85] [0.001, 0.009, 0.99]
9 [0.3, 0.35, 0.35] [0.2, 0.3, 0.5] [0.1, 0.2, 0.7]

Self-Regularization Coefficient. Extensive experiments were conducted on the self-regulation co-1147

efficients for different device prototypes and settings. Although no consistent pattern emerged, we1148

experimentally determined that optimal performance for the small prototype was achieved with self-1149

19

regulation coefficients �S 2 0.1, 0.01, 0.001. For the medium prototype, the coefficients were �M 21150

0.5, 0.1, 0.01, 0.001, 0.0001, and for the large prototype, �L 2 1.0, 0.8, 0.5, 0.1, 0.01, 0.001, 0.00011151

yielded the best results.1152

Table 12: Details of hyper-parameters for CV task in Section 7.2, Appendix D.1, and Appendix E.2.
Local/Server Hyperparameter Small Prototype Medium Prototype Large Prototype

Local Training

Training epochs 20 80 100
Batch Size 64 64 64
Optimizer Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3
Weight Decay 5e-5 5e-5 5e-5

LR scheduler None None StepLR(step size = 10,

gamma = 0.1)

Server KD Training

Optimizer Adam Adam Adam
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 5e-5 5e-5 5e-5
Batch Size 128 128 128
Training Epochs 1 1 1
Ensemble Distillation Softmax Temperature 3 3 3
Self-Regularizer Softmax Temperature 20 20 20

Table 13: Details of Architecture parameters and FL configuration for CV task in Section 7.2 and
Appendix D.1.

Architecture Setting Device Prototype CIFAR-10 CIFAR-100
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Homo-Family
Prototype S ResNet8 1.23M 1.25M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L ResNet18 11.17M 11.22M 0.6 4 0.5

Hetero-Family
Prototype S ViT-S 1.78M 1.79M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L VGG16 15.25M 15.30M 0.6 4 0.5

Table 14: Details of Architecture parameters and FL configuration for CV task experiment using
pre-trained models in Appendix D.2.

Device Prototype STL-10/CINIC-10 TinyImageNet
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Prototype S mobilenetv3-large-100 4.21M 4.45M 0.2 4 1.0
Prototype M mobilevitv2-175 13.36M 13.53M 0.3 3 1.0
Prototype L ResNet34 21.28M 21.38M 0.5 2 1.0

Table 15: Details of Architecture parameters for Scalability Section 7.3, and Appendix D.4.
Device Prototype CINIC-10

Architecture Parameters Dataset Portion Clients Sample Rate Local Epochs
Prototype XXS ResNet10-XXS 11K 0.0357 35 0.1 2
Prototype XS ResNet10-XS 78K 0.0714 30 0.1 2
Prototype S ResNet10-S 309K 0.1071 25 0.15 2
Prototype M ResNet10-M 1.2M 0.1428 20 0.15 5
Prototype L ResNet10 4.9M 0.1785 15 0.2 10
Prototype XL ResNet18 11M 0.2142 10 0.3 10
Prototype XXL ResNet50 24M 0.25 5 0.6 20

20

Table 16: Details of hyper-parameters for NLP task experiments in Section 7.2 and Appendix D.3.
Local/Server Hyperparameter Prototype S Prototype M Prototype L

Local Training

training epochs 1 1 1
batch size 32 32 32
optimizer Adam Adam Adam
Learning rate 3e-5 3e-5 3e-5
Weight decay 0 0 0
lr scheduler None None None

Server KD Training

optimizer Adam Adam Adam
learning rate 3e-5 3e-5 3e-5
weight decay 3e-5 3e-5 3e-5
batch size 32 32 32
training epochs 1 1 1
Ensemble distillation softmax temperature 3 3 3
Self-regularizer softmax temperature 20 20 20

Table 17: Details of Architecture parameters and FL configuration for NLP task experiment using
pre-trained models in Section 7.2 and Appendix D.3.

Device Prototype Architecture Parameters Clients Dataset Portion Sample Rate
Prototype S BERT-Tiny 4.39M 8 0.1 0.4
Prototype M BERT-Mini 11.17M 4 0.3 0.5
Prototype L BERT-Small 28.77M 2 0.6 1.0

21

	Introduction
	Related Works
	Problem Statement: FL with Heterogeneous Device Prototypes
	Background: Federated Ensemble Distillation
	Task Arithmetic Knowledge Transfer and Integration
	Knowledge Transfer from Individual Device Prototype
	Task Arithmetic Knowledge Integration

	Theoretical Results
	Experiments
	Main Experimental Setup
	Main Experimental Results
	Scalability Evaluation

	Conclusion and Discussion
	More Detailed Related Works
	Full Algorithm Description of TAKFL
	Theoretical Results
	Proofs of the Main Propositions
	Geometric Intuition
	Analytical Properties of Learning Dynamics

	Detailed Experimental Results
	Main Experimental Results on Computer Vision (CV) Task
	Consistency Analysis: Experimental and Theoretical Correlations

	Additional Experimental Results on CV Task
	Additional Experimental Results on Natural Language Processing (NLP) Task
	Scalability Evaluation

	Ablation Studies
	Understanding Merging Coefficient
	Impact of Public Dataset

	Hyper-parameters and Implementation
	Computer Vision (CV) Task
	Datasets
	Architectures
	FL configuration and Hyper-parameters

	Natural Language Processing (NLP) Task
	Datasets.
	Architectures
	FL configuration and hyper-parameters

	Hyper-parameters of TAKFL

