
Under review as a conference paper at ICLR 2024

APPENDIX

A STOCHASTIC DIFFERENTIAL EQUATION (SDE)

In (Song et al., 2021c), three types of SDE diffusion processes are presented. Depending on the type,
f(x, t) and g(t) are defined as follows:

f(x, t) =

8
<

:

0, if VE-SDE,
�

1
2�(t)x, if VP-SDE,
�

1
2�(t)x, if sub-VP-SDE,

(8)

g(t) =

8
>><

>>:

q
d[�2(t)]

dt , if VE-SDE,p
�(t), if VP-SDE,q
�(t)(1� e

�2
R t
0 �(s) ds), if sub-VP-SDE,

(9)

where �2(t) and �(t) are functions w.r.t. time t. Full derivatives of VE, VP and sub-VP SDE are
presented in (Song et al., 2021c, Appendix. B).

B EFFECTIVENESS OF THE STRAIGHT-PATH INTERPOLATION

Between xT and x0, our straight-path interpolation provides a much simpler path than that of the
SDE path because it follows the linear equation in Eq. equation 6. Also, because of the nature of the
linear interpolation, its training is robust, even when i(u +�u) is missing, if i(u) and i(u + 2�u)
are considered. This is not guaranteed if a path from xT to x0 is non-linear. As a result, SPI-GAN
using the straight-path interpolation shows better performance.

One can also derive the following ordinary differential equation (ODE) from the straight-path inter-
polation definition in Eq. equation 6 after taking the derivative w.r.t. u:

di(u)

du
= x0 � xT , (10)

where one can get i(u+ h) = i(u) + h
di(u)
du

= (u+ h)x0 + (1� u� h)xT with the Euler method.
In comparison with the SDE in Eqs. equation 8 and equation 9, the ODE provides a much simpler
process.

C EFFECTIVENESS OF NEURAL ORDINARY DIFFERENTIAL
EQUATIONS-BASED MAPPING NETWORK

Homeomorphic Non-Homeomorphic

Figure 9: In a homeomorphic map-
ping, the relative positions of the
red and blue particles cannot be
switched after the mapping.

As we mentioned in the related work section, NODEs are able
to model continuous dynamics of hidden vectors over time us-
ing the following method:

h(u) = h(0) +

Z
u

0
f(h(t), t;✓f)dt, (11)

where the neural network f(h(t), t;✓f) learns dh(t)
dt

. To de-
rive h(u), we solve the integral problem, and in this pro-
cess, there is one well-known characteristic of NODEs. Let
 t : Rdim(h(0))

! Rdim(h(u)) be a mapping from 0 to u

generated by an ODE after solving the integral problem. It
is widely known that t becomes a homeomorphic mapping:
�t is continuous and bijective and ��1

t
is also continuous for

all t 2 [0, T], where T is the last time point of the time do-
main (Dupont et al., 2019; Massaroli et al., 2020). From this
characteristic, the following proposition can be derived: the topology of the input space of �t is

13

Under review as a conference paper at ICLR 2024

Figure 10: Comparing î(u) according to the mapping network type. Given a fixed z, î(u) generated
by varying the latent vector from h(0) to h(1) Left: our NODE-based mapping network. Right: the
StyleGAN2’s original mapping network which is quickly trained to overlook u

preserved in its output space, and therefore, hidden trajectories crossing each other cannot be rep-
resented by NODEs — one can consider that topology as relative positions among particles. There-
fore, our NODE-based mapping network can learn the hidden dynamics of h(u) for all u 2 (0, 1]
while maintaining the topology of h(u) at t = 0 (e.g., Fig. 9).

Figure 10 shows one advantage of the homeomorphic mapping of SPI-GAN. SPI-GAN with a
NODE-based mapping network, shows an appropriate denoising process when î(0) is generated us-
ing h(0) to h(1), given a fixed z. In contrast, StyleGAN2’s mapping network (non-homeomorphic)
do not show a denoising process. In other words, NODE-based SPI-GAN with the homeomorphic
characteristic can learn the denoising process, but SPI-GAN with the non-homeomorphic mapping
network are collapsed into clean images only. We think that this is because i) the time information
u is concatenated with the input to the StyleGAN2’s original non-homeomorphic mapping network,
but ii) it is trained to overlook u. This justifies our design choice to explicitly model the hidden
dynamics with the homeomorphic NODE.

D SPI-GAN DETAILS

In this section, we refer to the detailed model architecture, object function, and training algorithm
of our proposed SPI-GAN.

D.1 MODEL ARCHITECTURE

The network architectures of StyleGAN2 are modified to implement our proposed straight-path
interpolation after adding the NODE-based mapping network and customizing some parts.

Mapping network. Our mapping network consists of two parts. First, the network architecture
to define the function o is in Table 6. Second, the NODE-based network has the following ODE
function r in Table 7.

Table 6: The architecture of the network o.
LAYER DESIGN INPUT SIZE OUTPUT SIZE

1 LEAKYRELU(LINEAR) C ⇥H ⇥W dim(h)

Table 7: The architecture of the network r.
LAYER DESIGN INPUT SIZE OUTPUT SIZE

1 LEAKYRELU(LINEAR) dim(h) dim(h)

Generator. We follow the original StyleGAN2 architecture. However, we use the latent vector
h(u) instead of the intermediate latent code w of StyleGAN2.

Discriminator. The network architecture of the discriminator is also based on StyleGAN2 (Karras
et al., 2020b) — StyleGAN2 has two versions for the discriminator, i.e., Original and Residual.
However, our discriminator receives time u as a conditional input. To this end, we use the positional
embedding of the time value as in (Ho et al., 2020). The hyperparameters for the discriminator are
in Table 8.

14

Under review as a conference paper at ICLR 2024

D.2 OBJECT FUNCTION

We train our model using the Adam optimizer for training both the generator and the discriminator.
We use the exponential moving average (EMA) when training the generator, which achieves high
performance in (Ho et al., 2020; Song et al., 2021c; Karras et al., 2020a). The hyperparameters for
the optimizer are in Table 8. The adversarial training object of our model is as follows:

min
�

Ei(u)⇠qi(u)

⇥
� log(D�(i(u), u))

+ Ez⇠N (0,�2I)

⇥
� log(1�D�(G✓(M (z)), u))

⇤⇤
,

max
✓,

Ei(t)⇠qi(u)

⇥
Ez⇠N (0,�2I)

⇥
log(D�(G✓(M (z)), u))

⇤⇤
,

(12)

where, qi(u) is the interpolated image distribution, D� is denoted as the discriminator, G✓ is denoted
as the generator, and M is denoted as the mapping network of our model. We also use the R1

regularization and the path length regularization (Karras et al., 2020b). �R1 (resp. �path) means the
coefficient of the R1 regularization term (resp. the coefficient of the path length regularization term).
Each regularizer term is as follows:

R1(�) =�R1Eq(i(u))

⇥
kri(t)(D�(i(u)|u)) k

2
⇤
, (13)

Path length =�pathEh(u),i(u)

�
kJ

T

h(u)i(u) k2 � a
�
, (14)

where Jh(u) = @G✓(h(u))/@h(u) is the Jacobian matrix. The constant a is set dynamically during
optimization to find an appropriate global scale. The path length regularization helps with the map-
ping from latent vectors to images. The lazy regularization makes training stable by computing the
regularization terms (R1, path length) less frequently than the main loss function. In SPI-GAN, the
regularization term for the generator and the discriminator is calculated once every 4 iterations and
once every 16 iterations, respectively. The hyperparameters for the regularizers are in Table 8.

D.3 TRAINING ALGORITHM

There is a training algorithm. The two main differences with the sampling algorithm are i) we sam-
ple a set of noisy vectors {zl}N

l=1 whereas we use {xl

T
}
N

l=1 in the training algorithm, and ii) for
sampling, we need only {hl(1)}N

l=1.

Algorithm 2 How to train SPI-GAN
Input: Training data Dtrain, Maximum iteration numbers max iter

1: Initialize discriminator �, mapping net. , generator ✓
2: iter 0
3: while iter < max iter do

4: Create a mini-batch of real images {xl

0}
N

l=1, where xl

0 means l-th real image
5: Calculate a mini-batch of noisy images {xl

T
}
N

l=1 with the forward SDE path
6: Sample u, where u 2 (0, 1]
7: Calculate {hl(u)}N

l=1 with the mapping network which processes {xl

T
}
N

l=1

8: Generate fake images {̂il(u)}N
l=1 with the generator

9: if iter mod 2 ⌘ 0 then

10: Calculate {il(u)}N
l=1 with Eq. 6

11: Update � via adversarial training
12: else

13: Update and ✓ via adversarial training
14: end if

15: iter iter + 1
16: end while

17: return �, , ✓

E EXPERIMENTAL DETAILS

In this section, we describe the detailed experimental environments of SPI-GAN. We build our
experiments on top of (Kang et al., 2022)

15

Under review as a conference paper at ICLR 2024

E.1 EXPERIMENTAL ENVIRONMENTS

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.9.7,
PYTORCH 1.10.0, CUDA 11.1, NVIDIA Driver 417.22, i9 CPU, NVIDIA RTX A5000, and
NVIDIA RTX A6000.

E.2 TARGET DIFFUSION MODEL

Our model uses a forward SDE to transform an image (x0) into a noise vector (xT). When generating
a noise vector, we use the forward equation of VP-SDE for its high efficacy/effectiveness. The �(t)
function of VP-SDE is as follows:

�(t) = �min + t(�max � �min), (15)

where �max = 20, �min = 0.1, and t
0 := t

T
which is normalized from t 2 {0, 1, . . . , T} to [0, 1].

Under these conditions, (Song et al., 2021c, Appendix B) proves that the noise vector at t0 = 1 (xT)
follows a unit Gaussian distribution.

E.3 DATA AUGMENTATION

Our model uses the adaptive discriminator augmentation (ADA) (Karras et al., 2020a), which has
shown good performance in StyleGAN2.2 The ADA applies image augmentation adaptively to train-
ing the discriminator. We can determine the maximum degree of the data augmentation, which is
known as an ADA target, and the number of the ADA learning can be determined through the ADA
interval. We also apply mixing regularization (�mixing) to encourage the styles to localize. Mixing
regularization determines how many percent of the generated images are generated from two noisy
images during training (a.k.a, style mixing). There are hyperparameters for the data augmentation
in Table 8.

E.4 HYPERPARAMETERS

We list all the key hyperparameters in our experiments for each dataset. Our supplementary material
accompanies some trained checkpoints and one can easily reproduce.

Table 8: Hyperparameters set for SPI-GAN.

CIFAR-10 CelebA-HQ-256 LSUN-Church-256

Augmentation
ADA target 0.6 0.6 0.6
ADA interval 4 4 4
�mixing (%) 0 90 90

Architecture Mapping network 1 7 7
Discriminator Original Residual Residual

Optimizer

Learning rate for generator 0.0025 0.0025 0.0025
Learning rate for discriminator 0.0025 0.0025 0.0025
EMA 0.999 0.999 0.999
ODE Solver 4th order Runge–Kutta

Regularization

Lazy generator 4 4 4
Lazy discriminator 16 16 16
�R1 0.01 10 10
�path 0 2 2

E.5 TRAINING TIME

The training time for each 1024 CIFAR-10 images is around 32.0s for SPI-GAN and around 45.6s
for Diffusion-GAN using four NVIDIA A5000 GPUs.

E.6 ADDITIONAL ABLATION STUDIES

We report additional ablation studies to show the superiority of our model. First, the result of SPI-
GAN without a mapping network is reported in Table 9. To generate a noise image î(u) without

2https://github.com/NVlabs/stylegan2 (Nvidia Source Code License)

16

https://github.com/NVlabs/stylegan2

Under review as a conference paper at ICLR 2024

a mapping network, u is given as a conditional input to the generator. Second, give time point u
as a conditional input to the SPI-GAN generator. The result is in Table 10. SPI-GAN shows better
performance than both ablation studies.

Table 9: Ablation study for mapping network
MODEL FID

SPI-GAN (W/O MAPPING NETWORK) 5.72
SPI-GAN 3.01

Table 10: Ablation study for condition u

LAYER DESIGN
SPI-GAN (CONDITION u TO GENERATOR) 3.03

SPI-GAN 3.01

F VISUALIZATION

We introduce interpolation and several high-resolution generated samples.

F.1 INTERPOLATION

Figure 11: Generation by interpolating h(1) = (1� a)h(1)0 + ah(1)00, where 0  a  1.

F.2 CIFAR-10

Figure 12: Qualitative results on CIFAR-10.

17

Under review as a conference paper at ICLR 2024

F.3 QUALITATIVE RESULTS ON HIGH RESOLUTION DATASETS

Figure 13: CelebA-HQ-256 Figure 14: LSUN-Church-256

F.4 COMPARISON OF GENERATED DIFFUSION PROCESSES AND REAL DIFFUSION PROCESSES

Figure 15: Comparing î(u) and i(u). Left: Given a fixed z, î(u) is generated from SPI-GAN by
varying the latent vector from h(0) to h(1). Right: Diffusion process of original images

18

