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This Appendix is organized as follows:

• Appendix A contains our detailed model architectures;

• Appendix B contains additional implementation details;

• Appendix C contains additional results;

• Appendix D contains additional study on text-to-image pretraining;

• Appendix E contains additional related works;

• Appendix F contains details for the human evaluation setup;

A Detailed Model Architecture

In ControlNet (Zhang and Agrawala, 2023) and Uni-ControlNet (Zhao et al., 2023), the weights of Stable
Diffusion (SD) (Rombach et al., 2022) are fixed and the input conditions are fed into zero-convolutions and
added back into the main Stable Diffusion backbone. Specifically, for Uni-ControlNet, they uses a multi-scale
condition injection strategy that extracts features at different resolutions and uses them for condition injection
referring to the implementation of Feature Denormalization (FDN):

FDN (Z, c) = norm (Z) · (1 + Φ (zero (hr (c))))
+ Φ (zero (hr (c))) , (1)

where Z denotes noise features, c denotes the input conditional features, Φ denotes learnable convolutional
layers, and zero denotes zero convolutional layer. The zero convolutional layer contains weights initialized to
zero. This ensures that during the initial stages of training, the model relies more on the knowledge from
the backbone part, gradually adjusting these weights as training progresses. The use of such layers aids in
preserving the architecture’s original behavior while introducing structure-conditioned inputs. We use the
similar model architecture while we perform efficient training proposed in the main paper. We show the
model architecture in Figure 1.

B Additional Implementation Details

In this section, we provide further details about the implementation aspects of our approach.

B.1 Additional Details of Structural Input Conditions Extraction

• Edge Maps: For generating edge maps, we utilized two distinct techniques:

– Canny Edge Detector (Canny, 1986) - A widely used method for edge detection in images.
– HED Boundary Extractor (Xie and Tu, 2015) - Holistically-Nested Edge Detection, an advanced

technique for identifying object boundaries.
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Figure 1: Detailed model architecture in FlexEControl. The Stable Diffusion part is fixed and others are
trainable.

– MLSD (Gu et al., 2022) - A method particularly designed for detecting multi-scale line segments
in images.

• Sketch Maps: We adopted a sketch extraction technique detailed in Simo-Serra et al. (2016) to
convert images into their sketch representations.

• Pose Information: OpenPose (Cao et al., 2017) was employed to extract human pose information
from images, which provides detailed body joint and keypoint information.

• Depth Maps: For depth estimation, we integrated Midas (Ranftl et al., 2020), a robust method for
predicting depth information from single images.

• Segmentation Maps: Segmentation of images was performed using the method outlined in Xiao
et al. (2018), which focuses on accurately segmenting various objects within an image.

Each of these conditions plays a crucial role in guiding the text-to-image generation process, helping
FlexEControl to generate images that are not only visually appealing but also semantically aligned with the
given text prompts and structural conditions.

B.2 Additional Details of Evaluation Metrics

mIoU (Rezatofighi et al., 2019): Mean Intersection over Union, a metric that quantifies the degree of
overlap between predicted and actual segmentation maps.

SSIM (Wang et al., 2004): Structural Similarity, a metric evaluating the structural similarity in generated
outputs, applied to Canny edges, HED edges, MLSD edges, and sketches.

mAP: Mean Average Precision, utilized for pose maps, measuring the precision of localization across
multiple instances.

MSE: Mean Squared Error, employed for depth maps, MSE quantifies the pixel-wise variance, providing an
assessment of image fidelity.
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Figure 2: Results from FlexEControl on controllable text-to video generation (single condition).

FID (Heusel et al., 2017): Fréchet Inception Distance, which serves as a metric to quantify the realism
and diversity of the generated images. A lower FID value indicates higher quality and diversity of the output
images.

CLIP Score (Hessel et al., 2021; Radford et al., 2021): Employing CLIP Score, we gauge the semantic
similarity between the generated images and the input text prompts.

C Additional Results

C.1 Additional Qualitative Results on Video Generation

FlexEControl can be further extended to accommodate video generation. In training the controllable video
generation model with multiple input conditions, a straightforward strategy is employed to mask out conditions
during the training process. In each iteration, a random sample, denoted as Ns, is drawn from [1, N ] to
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Figure 3: FlexEControl on using multiple conditions for video generation.

determine the number of frames that will incorporate the conditions. Subsequently, Ns unique values are
drawn from the set 1, 2, ..., N , and the conditions are retained for the corresponding frames.

In this section, we showcase the extensibility of FlexEControl in controllable video generation. The results
are presented in Figure 2 and Figure 3, where results for providing one condition and multiple conditions are
demonstrated.

D Training a Small U-Net Backbone

In this section, we discuss further methods to refine the training of a lightweight Stable Diffusion backbone
within FlexEControl, aiming to further curtail the number of trainable parameters and minimize memory
usage end-to-end. The resulting pre-trained Stable Diffusion backbone, which we denote as FlexEControl-
pretraining, offers a more lightweight alternative to the original model while retaining versatility for application
in a variety of tasks.

Building upon the strategies delineated in the main paper, we architect a streamlined U-Net structure utilizing
low-rank decomposition. This design is complemented by the implementation of knowledge distillation
techniques throughout the training process to cultivate an efficient text-to-image generative model. Our
training regimen unfolds in two distinct phases: Initially, we focus on establishing a lightweight T2I diffusion
model founded on a conventional U-Net framework, with knowledge distillation enhancing this foundational
stage. Subsequently, we move to fine-tuning introduced in the main paper, enabling the model to adeptly
manage controlled T2I generation tasks. This bifurcated approach yields significant resource savings both in
fine-tuning and in the overall model parameter count, setting a new benchmark for efficiency in generative
modeling.

D.1 Background on Low-rank Training

Background on Training in Low-dimensional Space Let θD =
[
θ0

D . . . θm
D

]
be a set of m D-

dimensional parameters that parameterize the U-Net within the Stable Diffusion. Instead of optimizing
the noise prediction loss in the original parameter space

(
θD

)
, we are motivated to train the model in the

lower-dimensional space
(
θd

)
(Aghajanyan et al., 2020). Our overall pipeline is trying to train the controllable

text-to-image diffusion model in such a lower-dimension space to improve the overall efficiency.

An overview of our proposed two-stage pipeline is shown in Figure 6. We first train the U-Net of a text-to-
image model with a low-rank schema. Specifically, we employ matrix factorization techniques that decompose
high-dimensional matrices into smaller matrices, capturing essential features with reduced computational
overhead. This process is augmented through knowledge distillation, visually represented in green on Figure 6.
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Figure 4: Overview of the Stage-1 training: Training a low-rank U-Net using knowledge distillation from a
teacher model (green) to the student model (blue). This process involves initializing the student U-Net with
a decomposition into low-rank matrices and minimizing the loss between the predicted noise representations
from the student and teacher.
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Figure 5: The overview pipeline of our method. Our method improves the efficiency of controllable text-to-
image generation from two aspects. At pretraining stage, we propose an efficient pretraining method for the
standard text-to-image generation via knowledge distillation. For the finetuning stage introduced in the main
paper, we propose to resort to low-rank and Kronecker decomposition to reduce the tunable parameter space.

We then conduct efficient fine-tuning using the methods (shown in the yellow part on Figure 6) with the
methods introduced in the main paper, where we employ low-rank decomposition and Kronecker decomposition
to streamline the parameter space.

Low-rank Text-to-image Diffusion Model To establish a foundational understanding of our model,
it’s crucial to first comprehend the role of U-Nets in the diffusion process. In diffusion models, there exists
an input language prompt y that is processed by a encoder τθ. This encoder projects y to an intermediate
representation τθ(y) ∈ RM×dτ , where M is denotes the token length, and dτ denotes the dimension of the
embedding space . This representation is subsequently mapped to the intermediate layers of the U-Net
through a cross-attention layer given by

Attention(Q, K, V ) = softmax
(

QKT

√
d

)
V, (2)

with Q = WQφi (zt) , K = WKτθ(y), V = WV τθ(y). In this context, φi (zt) ∈ RN×dϵ is an intermediate
representation of the U-Net. The terms WV ∈ Rd×dϵ , WQ ∈ Rd×dτ , WK ∈ Rd×dτ represent learnable
projection matrices.
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Shifting focus to the diffusion process, during the t-timestep, we can represent:

K = WKτθ(y) = ABτθ(y), (3)
V = WV τθ(y) = ABτθ(y), (4)

where A and B are decomposed low-rank matrices from the cross-attnetion matrices, dτ and dϵ denote the
dimension for the text encoder and noise space respectively. Conventionally, the diffusion model is trained via
minimizing Lθ =

∥∥ϵ − ϵθ

∥∥2
2, where ϵ is the groundtruth noise and ϵθ is the predicted noise from the model.

Central to our strategy is a knowledge distillation process. This involves guiding a novice or ‘Student’ diffusion
model using feature maps that draw upon the wisdom of a more seasoned ‘Teacher’ model. A pivotal insight
from our study lies in the mathematical congruence between the low-rank training processes across both
training phases, unveiling the symmetries in low-rank training trajectories across both phases.

To fully exploit the prior knowledge from the pretrained teacher model while exploiting less data and training
a lightweight diffusion model, we propose a new two-stage training schema. The first one is the initialization
strategy to inherit the knowledge from the teacher model. Another is the knowledge distillation strategy.
The overall pipeline is shown in Figure 4.

D.2 Initialization

Directly initializing the student U-Net is not feasible due to the inconsistent matrix dimension across the
Student and teacher U-Net. We circumvent this by decomposing U-Net into two low-rank matrices, namely
A and B for the reconstruction. We adopt an additional transformation to adapt the teacher’s U-Net weights
to the Student, which leverages the Singular Value Decomposition (SVD) built upon the teacher U-Net. The
initialization process can be expressed as:

1. Compute the SVD of the teacher U-Net: Starting with the teacher U-Net parameterized by θ0, we
compute its SVD as θ0 = UΣV T .

2. Extract Low-Rank Components: to achieve a low-rank approximation, we extract the first k columns
of U , the first k rows and columns of Σ, and the first k rows of V T . This results in matrices Uk, Σk,
and V T

k as follows:

Uk = first k columns of U, (5)
Σk = first k rows & columns of Σ, (6)

V T
k = first k rows of V T (7)

3. We then initialize the student U-Net with UkΣk and V T
k that encapsulate essential information from

the teacher U-Net but in a lower-rank format.

We observe in practice that such initialization effectively retains the prior knowledge inherited from Teacher
U-Net while enabling the student U-Net to be represented in a compact form thus computationally more
efficient for later training.

D.3 Loss Function

We propose to train our Student U-Net with knowledge distillation (Meng et al., 2023) to mimic the behavior
of a teacher U-Net. This involves minimizing the loss between the student’s predicted noise representations
and those of the teacher. To be specific, our training objective can be expressed as:

Lθ = w (λt)
∥∥ϵ̃ − ϵ̂θ

∥∥2
2, (8)

where ϵ̃ denotes the predicted noise in the latent space of Stable Diffusion from the teacher model, ϵ̂θ is
the corresponding predicted noise from the student model, parameterized by θ, and w (λt) is a weighting
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Table 1: Comparing U-Net models: Original, decomposed, with and without Knowledge Distillation. FlexEControl-
Pretraining showcases a promising balance between performance and efficiency. Note that compared with Stable
Diffusion, FlexEControl-Pretraining is only trained on 5 million data. FlexEControl-Pretraining beats Decomposed
U-Net w/o Distillation interms of FID and CLIP Score, suggesting the effectiveness of our distillation strategy in
training the decomposed U-Net.

Methods FID↓ CLIP Score↑ # Parameters ↓

Stable Diffusion 27.7 0.824 1290M
Standard U-Net w/o Distill. 66.7 0.670 1290M
Decomposed U-Net w/o Distill. 84.3 0.610 790M
FlexEControl-Pretraining 45.0 0.768 790M

Table 2: Performance and resource metrics comparison of FlexEControl with the baseline Uni-ControlNet.
The FlexEControl approach with distillation shows a significant reduction in resource consumption while
providing competitive image quality and outperforming in controllability metrics, especially in segmentation
maps. The ∆ column shows the improvement of FlexEControl (w/o distillation) compared with no distillation.

Metrics Uni-ControlNet FlexEControl ∆
w/o Distill. w/ Distill.

Efficiency Memory Cost ↓ 20GB 11GB 11GB 0
# Params. ↓ 1271M 536M 536M 0

Image Quality FID ↓ 27.7 84.0 43.7 - 40.3
CLIP Score ↑ 0.82 0.61 0.77 +0.16

Controllability
Sketch Maps (CLIP Score)↑ 0.49 0.40 0.46 +0.06

Edge Maps (NMSE ) ↓ 0.60 0.54 0.57 +0.03
Segmentation Maps (IoU) ↑ 0.70 0.40 0.74 +0.34

function that may vary with the time step t. Such an objective encourages the model to minimize the squared
Euclidean distance between the teacher and Student’s predictions thus providing informative guidance to
the Student. We also tried combining the loss with the text-to-image Diffusion loss but using our training
objective works better.

D.4 Experimental Settings

In the pretraining stage, we used the standard training scheme of Stable Diffusion (Rombach et al., 2022)
with the classifier-free guidance (Ho and Salimans, 2022). We employed the Stable Diffusion 2.1 1 model
in conjunction with xFormers (Lefaudeux et al., 2022) and FlashAttention (Dao et al., 2022) using the
implementation available in HuggingFace Diffusers 2.

D.5 Results

Table 1 illustrates the comparison between different variations of our method in the pretraining stage,
including original U-Net, decomposed low-rank U-Net, and their respective performance with and without
knowledge distillation. It is observed that the decomposed low-rank U-Net models demonstrate efficiency
gains, with a reduction in the total number of parameters to 790M, although at the cost of some fidelity in
metrics such as FID and CLIP Score. Employing distillation helps to mitigate some of these performance
reductions.

1https://huggingface.co/stabilityai/stable-diffusion-2-1
2https://huggingface.co/docs/diffusers/index

7

https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/docs/diffusers/index
https://huggingface.co/docs/diffusers/index


Under review as submission to TMLR

Figure 6: Screenshot for human evaluation tasks on the Amazon Mechanical Turk crowdsource evaluation
platform.

Table 2 illustrates the comparison between FlexEControl including pretraining and the baseline training
end-to-end. It is observed that the decomposed low-rank U-Net models demonstrate efficiency gains, with a
reduction in the total number of parameters to 536M, although at the cost of some fidelity in metrics such as
FID and CLIP Score. Employing distillation helps to mitigate some of these performance reductions.

These collective results affirm our method’s capability to not only enhance efficiency but also improve or
maintain performance across various aspects of text-to-image generation.

E Additional Related Works

Knowledge Distillation for Vision-and-Language Models Knowledge distillation (Gou et al., 2021),
as detailed in prior research, offers a promising approach for enhancing the performance of a more streamlined
“student” model by transferring knowledge from a more complex “teacher” model (Hinton et al., 2015; Sanh
et al., 2019; Hu et al.; Gu et al., 2021; Li et al., 2021). The crux of this methodology lies in aligning the
predictions of the student model with those of the teacher model. While a significant portion of existing
knowledge distillation techniques leans towards employing pretrained teacher models (Tolstikhin et al., 2021),
there has been a growing interest in online distillation methodologies (Wang and Jordan, 2021). In online
distillation (Guo et al., 2020), multiple models are trained simultaneously, with their ensemble serving as the
teacher. Our approach is reminiscent of online self-distillation, where a temporal and resolution ensemble
of the student model operates as the teacher. This concept finds parallels in other domains, having been
examined in semi-supervised learning (Peters et al., 2017), label noise learning (Bengio et al., 2010), and quite
recently in contrastive learning (Chen et al., 2020). Our work on distillation for pretrained text-to-image
generative diffusion models distinguishes our method from these preceding works. (Salimans and Ho, 2022;
Meng et al., 2023) propose distillation strategies for diffusion models but they aim at improving inference
speed. Our work instead aims to distill the intricate knowledge of teacher models into the student counterparts,
ensuring both the improvements over training efficiency and quality retention.

F Human Evaluation Interface

We give the human evaluation interface in Figure 6. The human evaluators are mainly asked to finish two
tasks and choose their preference from three perspectives.
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