
Supplementary Material368

MILES: Making Imitation Learning Easy with Self-Supervision369

For videos demonstrating MILES’ performance and code implementation please see our anonymous370

webpage: https://sites.google.com/view/miles-imitation.371

A MILES: Additional Details on the Method372

A.1 Method Pseudocode373

We provide a detailed pseudocode describing MILES, in Algorithms 1- 8.374

A.2 Validity Conditions for Augmentation Trajectories375

As described in section 3.3, after collecting data for an augmentation trajectory, we check for two376

conditions: (i) reachability and (ii) environment disturbance, to determine whether an augmenta-377

tion trajectory is valid and eligible to fuse with the demonstration. Figure A.1 shows examples of378

these two conditions.379

A.2.1 How do we check for the Reachability condition?380

Reachability. To check for reachability, after executing an augmentation trajectory ·k, we verify381

whether the final achieved pose matches the pose of the kth demonstration waypoint using propri-382

oception, as described in section 3.3. Pseudocode describing how we check for reachability is also383

provided in Algorithm 3. It is crucial to check for reachability because an augmentation trajectory384

that does not meet this condition cannot be fused with the demonstration, as it cannot return to385

the demonstration state. If the waypoint w
’

k
is unreachable during data collection, we cannot auto-386

matically determine how to reach w
’

k
from w

·k
M

, without collecting observations that do so during387

self-supervised data collection. Consequently, we cannot automatically determine what actions to388

take to return back to the demonstration from w
·k
M

, as we can with valid augmentation trajectories.389

Figure A.1 (a, left) shows an example where the reachability condition is not met due to environ-390

mental dynamics, such as a key getting ”jammed” and failing to reach the target waypoint due to391

collision and friction in the lock. A similar example where the reachability condition is met is shown392

in Figure A.1 (a, right).393

A.2.2 How do we check for the Environment Disturbance condition?394

Environment Disturbance. To determine whether an environment disturbance occurred, we com-395

pare the RGB image captured at the kth demonstration timestep with the RGB image captured at396

the final timestep of the augmentation trajectory, as described in section 3.3. A detailed pseudocode397

describing how we determine whether an environment disturbance occurred can be found in Algo-398

rithm 5, and a visual example can be seen in Figure A.1 (b). The comparison between the two RGB399

images relies on the similarity of their DINO features [26]. Specifically, we use a pre-trained DINO400

ViT [26] to obtain the DINO features for different patches of each image similarly to [27]. By com-401

puting the cosine similarity between the DINO features of each corresponding image patch in I
’

k
and402

I
·k
M

, we can calculate the average similarity between the two images [27]. If the similarity is below a403

threshold ◊ (to see how we automatically determine ◊ please see section B.2.3), we assume the robot404

has disturbed the environment, and data collection is stopped. Our experiments showed that DINO405

ViT features are necessary because they are robust to lighting changes and noise in the RGB image.406

Other methods we tried, such as template matching or computing the per-pixel Euclidean distance,407

proved brittle and sensitive to lighting variations or noise in the captured images.408

Understanding why checking for an environment disturbance is important is straightforward. Con-409

sider the rectangular object shown in Figure A.1 (b), and assume the task is to learn how to pick410

up that object. If the robot pushes the rectangular object, causing it to fall over during data col-411

lection, the image observed after returning to the demonstration state will no longer match that412

state’s observation from when the demonstration was provided. Consequently, from the point where413

the disturbance occurred onward, we have no way of knowing how to reach any of the remaining414

A1

https://sites.google.com/view/miles-imitation

Valid Augmentation Trajectory

Target Demonstration
State

Environment Disturbance

(b)

Observation at the
Demonstration State

Planned Augmentation
Trajectory

Observation after executing
Augmentation Trajectory

(a)

Reachable
Collision and friction get the
key jammed and not inserted

Unreachable

o�
k Object has fallen

o�k
M

The observation does not match
the demonstration observation

o�k
M

o�
k

Successfully overcomes collisions
and friction to reach the

Demonstration State

Robot Moves to Random
 Initial Pose

Reachability

Invalid Augmentation Trajectory

Figure A.1: Reachability: Two examples of possible augmentation trajectories for a locking task are shown; an invalid
trajectory (left) that fails to reach the target demonstration waypoint due to collisions, friction, and potentially inevitable
systematic controller errors and a valid one (right) that successfully reaches the target waypoint. Environment Disturbance:
As the robot collects an augmentation trajectory, it perturbs the environment such that after returning to the demonstration’s
waypoint the live observation and the demonstrated one no longer match, indicating that data collection should stop.

demonstration states and as a result how to solve the task. This is because we only know how to415

solve a task by learning how to follow the demonstration after returning to it. But if an environment416

disturbance has occurred (e.g., the rectangular object has fallen), following the demonstration’s ac-417

tions no longer leads to task completion. Hence, if data collection continued, all future augmentation418

trajectories would contain invalid observations and actions, as they would demonstrate behavior that419

does not solve the task that the human demonstrated. This is why we stop data collection after420

detecting an environment disturbance.421

A.3 MILES’ Policy422

Training: To train our manipulation policy we leverage the dataset Dnew comprising the fused423

augmentation trajectories with the demonstration as described in section 3.4. MILES’ policy fi424

comprises either (1) an end-to-end network trained with behavioral cloning (BC) or (2) an end-to-425

end network trained with BC combined with demo replay, which is utilized when data collection426

was interrupted due to a detected environment disturbance.427

A.3.1 How is our policy defined when No Environment Disturbance occurred during data428

collection?429

No Environment Disturbance. When no disturbance occurred our dataset Dnew contains augmen-430

tation trajectories that can return to and then follow the demonstration from every state. In that431

case, we leverage Dnew to train an end-to-end behavioral cloning policy fi that comprises a single432

neural network fÂ , parameterized by Â, that receives as input an RGB image captured from the433

wrist camera and force-torque feedback to predict 6-DoF actions: fÂ : RH◊W ◊3 ◊ R6 æ SE(3) as434

well as an additional binary value indicating the gripper action (RH◊W ◊3 refers to the RGB images435

where H: height, W : width and R6 to measured forces and torques). The force-torque feedback436

is captured directly using Franka Emika Panda’s joint force sensors. For our policy to generalize437

spatially, no proprioception input is passed to fÂ and all actions are predicted relative to the EE’s438

frame. fÂ consists of a ResNet-18 backbone [37] for processing RGB images, and a small MLP439

embeds force feedback into a 100-dimensional space. The output of the force MLP and ResNet-18440

are concatenated and fed into an LSTM [38] network for action prediction. The network is trained441

using standard behavior cloning to maximize the likelihood of Dnew.442

A.3.2 How is our policy defined when an Environment Disturbance occurred during data443

collection?444

Environment Disturbance. When self-supervised data collection was stopped due to an environ-445

ment disturbance, our dataset Dnew contains augmentation trajectories that can return the robot to446

any state from the initial demonstration state up to the demonstration state at timestep R, where447

R < N (see section 3.2). In this scenario, if our policy consists only of fÂ , then during task execu-448

tion the robot would be able to solve the task only up to the Rth state, but not complete it. As such,449

we define our policy fi to consist of two components: (1) the first component is a neural network fÂ450

identical to the above scenario, but trained up to the Rth state and (2) the second component corre-451

A2

sponds simply to the sequence of the remaining demonstration actions from the Rth state onwards,452

for which no self-supervised data was collected, i.e., ’remaining = {a
’

n
}N

n=R
.453

A.3.3 How do we deploy MILES’ policy?454

Deployment: Deploying the policy is straightforward and depends on whether data collection was455

interrupted due to an environment disturbance. If uninterrupted, then only the neural network fÂ is456

used to complete the task equivalently to policies trained using reinforcement learning or behavioral457

cloning.458

If data collection was interrupted, first fÂ is deployed to solve the task up to the Rth state in an459

identical way as the scenario of ”no environment disturbance”. After the robot reaches the Rth state460

then ’remaining is executed. We determine whether the closed-loop policy has completed the task461

up to the Rth in a very simple way as described in section A.3.4.462

Pseudocode describing MILES’ policy deployment can be found in Algorithm 8.463

A.3.4 How do we determine when to switch from closed-loop control to demonstration464

replay?465

Switching from closed-loop to demonstration replay is straightforward. As the objects and the robot466

can be at different poses during deployment from the ones during data collection, we cannot just use467

the robot’s proprioception to know when the Rth state has been reached. Hence, we deploy fÂ until468

it predicts continuously the identity transformation, indicating no robot movement. Then, we switch469

to demonstration replay, where we replay the rest of the demonstration ’remaining .470

B More details on the Experimental Setup471

B.1 Pose Estimation472

In practice, as with most methods [4, 14, 15, 18], we naturally provide the demonstrations starting473

near the task-relevant object. As such, we need a way to ensure that MILES can still solve any474

task regardless of how far the robot is from an object. An apparent solution to this is to provide475

the demonstration starting from a pose far away from the object and deploy MILES’ data col-476

lection. While this would work well, it may be inconvenient. As such, inspired by [2, 16, 18]477

we use a simple pose estimator at deployment to estimate the relative pose between the robot478

at the initial state of the demonstration (for which MILES collected data) and the task-relevant479

object. As we do not assume any 3D object models, we use the method deployed in [15] al-480

though any other model-free pose estimator can be used. This allows us to first coarsely esti-481

mate the pose and move near the task-relevant object from any robot starting pose before deploy-482

ing MILES. Uncut videos demonstrating this behavior can be found on our anonymous webpage:483

https://sites.google.com/view/miles-imitation.484

B.2 MILES Data Collection Hyperparameters485

B.2.1 How do we set the data collection range around each demonstration waypoint?486

As discussed in our experiments section 4, we collect data in a range of 4cm and 4 degrees around487

each demonstration waypoint. However, this range is not limiting and can be set to any desirable488

range like any other robot learning method. In our case, we set this range to be the average pose489

estimation error to reach the initial pose of the demonstration relative to the task-relevant object490

using the pose estimation method described in section B.1 which we obtained based on [15].491

B.2.2 How do we determine the number of augmentation trajectories to collect for each492

demonstration waypoint?493

For all of our experiments, we set the number of augmentation trajectories per demonstration way-494

point, Z = 10. In our case, we set this arbitrarily, but as we showed in our method’s data collection495

ablation in section 4.4 different tasks require different numbers of augmentation trajectories. As496

such, we provide two guidelines for setting the value for Z. Firstly, high tolerance tasks, like the497

A3

https://sites.google.com/view/miles-imitation

. Task: Description DCT Task: Description DCT

.
Lock with

key

Insert a key into a lock and rotate 90
degrees to lock it. 24’ Twist

screw

Insert a toy screwdriver into a screw
and twist by 90¶. 22’

.
Insert USB

Insert a USB stick into a USB port
(< 1mm tolerance) 21’. Bread in

toaster
Put a plastic bread inside a toaster. 40’

.
Plug into

socket
Plug a UK plug (3-pin) to a socket. 37’ Open lid Lift the lid of a blue box. 31’

.

Insert

power

cable

Plug the power cable into the power
port of a PC. 28’

Table 3: Task descriptions of the 7 tasks used in our experiments. DCT stands for Data Collection Time and
corresponds to the time spent collecting self-supervised data.

”Open lid” task reported in our experiments usually require a small number of augmentation trajec-498

tories. On the other hand, precise tasks, like the ”USB insertion” task reported in our experiments499

require more augmentation trajectories. Secondly, as the data collection range around each demon-500

stration waypoint increases, the number of augmentation trajectories collected should also increase501

with an approximately linear relationship, i.e., if the range is doubled, then the number of augmenta-502

tion trajectories should be doubled as well. We recommend as a starting point, for a data collection503

range similar to our experimental setting of 4cm and 4 degrees, to collect 10 augmentation trajecto-504

ries for precise, low-tolerance tasks, and 4 augmentation trajectories for high-tolerance tasks.505

B.2.3 How do we determine the Environment Disturbance threshold ◊ ?506

We determined ◊ simply by spawning several random RLBench [39] tasks in CoppeliaSim and507

running MILES. By setting up custom heuristics that determine environment resets in the simulation508

we found that for the DINO model we use, a similarity of ◊ < 0.94 appeared to detect environment509

disturbances across all tasks successfully. Consequently, we used that in our real-world experiments510

too.511

B.3 Task Descriptions512

A detailed description of each task along with their Data Collection Times (DCT) can be found in513

Table 3.514

B.3.1 For which tasks was an Environment Disturbance detected?515

An environment disturbance was detected for the following tasks: Twist screw, Bread in516

Toaster and Open lid. As such for these tasks the policies comprise a closed-loop and a517

demonstration replay component.518

We also note that for the lock with key task, we stopped data-collection ”half-way” through the 90519

degrees twisting rotation for hardware safety. This is because the forces exerted on the robot as520

it was collecting self-supervised data were too high. In this case, we treated this identically to an521

environment disturbance. At deployment, the learned policy completes most of the task closed-loop,522

apart from a small twisting motion done with demo replay, after the closed-loop policy converges to523

predicting the identity transformation as discussed in section A.3.4. This is similar to adding force524

limits to reinforcement learning algorithms and was done to protect our robotic hardware; however,525

doing so is not a requirement.526

B.4 Baselines527

Here, we provide further implementation details on two of the baselines we used in our paper.528

Pose Estimation + Demo Replay. For this baseline, we follow the same problem formulation as529

in [15], but improve upon that baseline in two key ways: (1) the data on which it is trained on is the530

same data collected for MILES, as such it contains only valid trajectories that cover a larger part of531

A4

the task space and (2) instead, of replaying recorded velocities, we also replayed the recorded forces532

which is particularly important for the contact rich tasks.533

Reset-Free FISH [4]. For Reset-Free FISH we use the implementation provided by the authors534

as it can be found in: https://github.com/siddhanthaldar/FISH. We only changed535

the implementation such that the policy always predicts 6-DOF actions instead of constraining the536

output to specific DOFs, as doing so assumes access to prior task knowledge. To learn residual537

actions on top of the demonstration we tested both using demo replay as the base policy, as well as538

VINN [40] but found that demo replay led to better performance.539

B.5 Generalization Performance540

We reported results on generalization in section 4.5 on the ”Markers in Bin” task shown in Figure 3541

(8). The goal of this task was to throw one of the two shown markers (blue, green) in the bin that is542

available at deployment time. MILES was trained on the 5 bins marked as green in Figure 3 (8) and543

the generalization test was done in the two bin shown on the left, marked as red. The data collection544

time for this task was on average 34 minutes for each bin and an environment disturbance was545

detected for each bin. To determine which remaining actions to replay for the previously unseen546

bins, we selected the remaining actions from the bin in the training set whose RGB image in the547

demonstration has the highest similarity in terms of DINO features with the bin during deployment,548

inspired by prior work [17]. Videos exhibiting MILES generalization on the two test case bins can549

be found on our webpage: https://sites.google.com/view/miles-imitation.550

B.6 Multi-stage Tasks551

To evaluate MILES’ ability to solve multi-stage tasks, we tasked MILES with picking up the plastic552

bread shown in Figure 3 (6) (as part of the ”Bread in Toaster” task) and inserting it into the toaster.553

To achieve this we broke the task down into two stages: first, we provided a demonstration showing554

how to pick up the bread and trained MILES. Then, we used the policy already trained on the555

”Bread in Toaster” task to finish the task. To link the two stages together, first the policy to pick556

up the bread is deployed. After, the execution ends, the robot returns to its default position. Then,557

the pose estimation method described in section B.1 is deployed to approach the toaster, and then558

the policy trained with MILES is deployed to insert the bread into the toaster. Videos exhibiting559

MILES’ multi-stage task performance on picking up and inserting the bread into the toaster can be560

found on our webpage: https://sites.google.com/view/miles-imitation.561

B.7 Performance with distractors562

We found that performing standard image augmentation techniques, including changing the bright-563

ness, contrast, noise, cropping random image parts, etc... allowed MILES to be robust to distrac-564

tor objects, as shown in the videos provided on our anonymous webpage: https://sites.565

google.com/view/miles-imitation.566

A5

https://github.com/siddhanthaldar/FISH
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation

C Detailed Pseudocode567

Algorithm 1: MILES Overview (Simplified)
Input: Single Task Demonstration: ’ = {(w’

n
, o

’

n
, a

’

n
)}N

n=1, Number of augmentation trajectories
per demonstration waypoint Z, environment disturbance threshold ◊ (Default: ◊ = 0.94)

1: D = {} // init empty dataset of augmentation trajectories
2: Reachable = True // init variable that tracks reachability
3: Disturbance = True // init variable that tracks environment

disturbances
4: R = 1 // init variable that stores the timestep when

self-supervised data collection stops

5: Move robot to the initial demonstration pose w
’

1
6: for iteration k = 1 to N do
7: j = 1 // init variable that tracks the number of collected

augmentation trajectories per demo waypoint
8: while j Æ Z do
9: ·k ΩSampleTrajectory(w’

k
) (Alg. 2)

10: Reachable ΩCheckReachability(w’

k
) (Alg. 3)

11: if Reachable is False then
12: ReturnToDemoWaypoint(k, ’) (Alg. 4)
13: Break // exit while loop
14: end if
15: I

·k
M

Ω Capture RGB wrist-cam image // M is the Mth (final) timestep
of ·k

16: Disturbance Ω CheckEnvDisturbance(o’

k
, I

·k
M

, ◊) (Alg. 5)
17: if Disturbance is True then
18: R = k // store timestep when data collection stops
19: Break // exit while loop
20: end if
21: D = D fi ·k // add augmentation trajectory to dataset
22: j = j + 1
23: end while
24: if Disturbance is True then
25: Break // exit for loop
26: end if
27: Proceed to the next demonstration state by performing action a

’

k
// follow the

demonstration’s progression
28: end for
29: Dnew ΩFuseAugmentationsWithDemo(D, R, ’)(Alg. 6)
30: fi ΩTrainPolicy(Dnew, R, ’)(Alg. 7)
31: Deploy(fi, R, ’)(Alg. 8)
Output: fi

A6

Algorithm 2: SampleTrajectory

Input: Demonstration waypoint w
’

k

1: ·k = {} // init empty augmentation trajectory
2: Sample initial pose w

·k
1 and move robot (Optional:

record trajectory poses)
3: Move back to w

’

k
// either by tracking the

recorded trajectory poses backward or by
re-planning a new, straight-line trajectory
(equal performance, the former often leads to
faster data collection).

4: m = 1 // observations, actions index

5: while moving to w
’

k
do

6: ·k = ·k fi (w·k
m

, o
·k
m

, a
·k
m

) // add waypoints,
observations and actions to augmentation
trajectory; actions are automatically
inferred as the relative EE poses between
consecutive timesteps; gripper actions are
automatically copied from the demonstration.

7: (o·k
m

comprises wrist cam RGB images + force-torque
readings)

8: end while
Output: Return augmentation trajectory ·k

Algorithm 3: CheckReachability

Input: Demonstration waypoint w
’

k

1: Reachable Ω True // init reachability variable
2: w

·k
M

Ω EE pose // achieved after executing the
augmentation trajectory (comprising M
timesteps); read from proprioception

3: Reachable = (w·k
M

== w
’

k
) // check whether poses

are equal (within the controller’s feasible
precision)

Output: Reachable

Algorithm 4: ReturnToDemoWaypoint
Input: Demonstration timestep k, single demonstration ’

1: Move to initial demonstration waypoint w
’

1 œ ’

// replay demonstration up to the kth timestep
2: for iteration t = 1 to t = k do
3: Perform action a

’

t
œ ’

4: end for

Algorithm 5: CheckEnvDisturbance

Input: Demonstration observation o
’

k
, captured live image I

·k
M

,
similarity threshold ◊

1: Disturbance Ω False // init environment
disturbance variable

2: I
’

k
œ o

’

k
// retrieve RGB image I’

k from the
demonstration’s observations

3: [f1
I

’
k

, f
2
I

’
k

, ...] ΩDINO-ViT(I’

k
) // compute DINO-ViT

features [27, 26] for each image patch fx

I’
k

for

the demo waypoint image
4: [f1

I
·k
M

, f
2
I

·k
M

, ...] ΩDINO-ViT(I·k
M

) // compute DINO-ViT

features [27, 26] for each image patch fx
I

·k
M

from the current live environment image
(captured after executing the augmentation
trajectory).

5: sim =AvgCosineSimilarity([f1
I

’
k

, f
2
I

’
k

, ...], [f1
I

·k
M

, f
2
I

·k
M

, ...])
6: if sim < ◊ then
7: Disturbance Ω True
8: end if

Output: Disturbance

Algorithm 6: FuseAugmentationsWithDemo
Input: Dataset of augmentation trajectories D, final data collection

time step R, single demonstration ’

1: Dnew = {}// init empty dataset to store fused
trajectories

2: for ·k in D do
3: ’segment = {(w’

n
, o

’

n
, a

’

n
)}R

n=k
}¸ ˚˙ ˝

demonstration segment from kth
demo waypoint to Rth

œ ’

4: ·knew := ·k fi ’segment
5: Dnew = Dnew fi ·knew

6: end for
Output: Dnew

Algorithm 7: TrainPolicy
Input: Dataset of augmentation trajectories + demo Dnew, final data

collection timestep R, single demonstration ’

1: Train neural network fÂ on Dnew using standard behavioral
cloning// Discard proprioception waypoints (w·k

m and
w’

n), only observation inputs are used for fÂ

2: if R < length(’) then
3: fi = {fÂ, {a

’

n
}N

n=R
} // policy consists of an

end-to-end neural net + demo replay (if an
environment disturbance stopped data collection
before the last demo waypoint)

4: else
5: fi = {fÂ} // policy consists only of an

end-to-end neural net
6: end if

Output: fi

Algorithm 8: Deploy
Input: Policy fi, final data collection timestep R, single demonstration

’

1: Capture observation o // comprising RGB wrist cam
image + force-torque feedback

2: Action a = fÂ(o)
3: Perform action a

4: while a is not the identity transformation do
5: Capture observation o

6: Action a = fÂ(o)
7: Perform action a

8: end while
// if an environment disturbance stopped data
collection before the last demo waypoint

9: if R < length(’) then
10: Replay remaining demo {a

’

n
}N

n=R

11: end if

A7

.568

References569

[1] A. Brohan et al. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint570

arXiv:2212.06817, 2022.571

[2] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mimicgen: A572

data generation system for scalable robot learning using human demonstrations. In Conference on Robot573

Learning, 2023.574

[3] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to575

no-regret online learning. In International Conference on Artificial Intelligence and Statistics, pages576

627–635, 2011.577

[4] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one minute of578

demonstrations. arXiv preprint arXiv:2303.01497, 2023.579

[5] J. Ho and S. Ermon. Generative adversarial imitation learning. In Conference on Neural Information580

Processing Systems, page 4572–4580, 2016.581

[6] V. Mnih et al. Human-level control through deep reinforcement learning. Nat., 518(7540):529–533, 2015.582

[7] O. X.-E. Collaboration et al. Open X-Embodiment: Robotic learning datasets and RT-X models, 2023.583

[8] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z: Zero-shot584

task generalization with robotic imitation learning. In Conference on Robot Learning, 2021.585

[9] Y. Hu, M. Cui, J. Duan, W. Liu, D. Huang, A. Knoll, and G. Chen. Model predictive optimization for586

imitation learning from demonstrations. Robotics and Autonomous Systems, 163, 2023.587

[10] Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell. Generalized task-parameterized skill learning. In588

2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5667–5474, 2018. doi:589

10.1109/ICRA.2018.8461079.590

[11] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning.591

ArXiv, abs/1709.04905, 2017.592

[12] Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation learning.593

In 2022 International Conference on Robotics and Automation (ICRA), pages 2434–2444, 2022. doi:594

10.1109/ICRA46639.2022.9812450.595

[13] G. Papagiannis and Y. Li. Imitation learning with sinkhorn distances. In European Conference in Machine596

Learning and Knowledge Discovery in Databases 2022, 2022.597

[14] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea, E. Solowjow, and S. Levine. Deep reinforcement598

learning for industrial insertion tasks with visual inputs and natural rewards. In International Conference599

on Intelligent Robots and Systems (IROS), 2020.600

[15] E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In IEEE601

International Conference on Robotics and Automation (ICRA), 2021.602

[16] E. Valassakis et al. Demonstrate once, imitate immediately (dome): Learning visual servoing for one-shot603

imitation learning. 2022.604

[17] N. D. Palo and E. Johns. On the effectiveness of retrieval, alignment, and replay in manipulation. RA-605

Letters, 2024.606

[18] P. Vitiello, K. Dreczkowski, and E. Johns. One-shot imitation learning: A pose estimation perspective. In607

Conference on Robot Learning, 2023.608

[19] B. Wen, W. Lian, K. E. Bekris, and S. Schaal. You only demonstrate once: Category-level manipulation609

from single visual demonstration. ArXiv, abs/2201.12716, 2022.610

[20] M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Goldberg. Dart: Noise injection for robust imitation611

learning. In Conference on Robot Learning, 2017.612

[21] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks: Combating613

covariate shift in model-free imitation learning for fine manipulation. In International Conference on614

Robotics and Automation (ICRA), 2021.615

A8

http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
http://dx.doi.org/10.1109/ICRA46639.2022.9812450

[22] A. Zhou, M. J. Kim, L. Wang, P. Florence, and C. Finn. Nerf in the palm of your hand: Corrective616

augmentation for robotics via novel-view synthesis, 2023.617

[23] M. Jia, D. Wang, G. Su, D. Klee, X. Zhu, R. Walters, and R. Platt. Seil: Simulation-augmented equivariant618

imitation learning. In International Conference on Robotics and Automation (ICRA), pages 1845–1851,619

2023. doi:10.1109/ICRA48891.2023.10161252.620

[24] L. Ke, Y. Zhang, A. Deshpande, S. Srinivasa, and A. Gupta. CCIL: Continuity-based data augmentation621

for corrective imitation learning. In First Workshop on Out-of-Distribution Generalization in Robotics at622

CoRL 2023, 2023.623

[25] G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist, O. Pietquin, and624

R. Dadashi. Get back here: Robust imitation by return-to-distribution planning, 2023.625

[26] M. Caron, H. Touvron, I. Misra, H. J’egou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties626

in self-supervised vision transformers. International Conference on Computer Vision (ICCV), 2021.627

[27] S. Amir et al. Deep vit features as dense visual descriptors. ECCVW What is Motion For?, 2022.628

[28] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor629

policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.630

[29] J. Luo, O. O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerı́k, N. Ye, S. Schaal, and J. Scholz.631

Robust multi-modal policies for industrial assembly via reinforcement learning and demonstrations: A632

large-scale study. ArXiv, abs/2103.11512, 2021.633

[30] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine. Serl:634

A software suite for sample-efficient robotic reinforcement learning. In International Conference on635

Robotics and Automation (ICRA), 2024.636

[31] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine. Of-637

fline meta-reinforcement learning for industrial insertion. In International Conference on Robotics and638

Automation (ICRA), pages 6386–6393, 2022.639

[32] A. Nair, B. Zhu, G. Narayanan, E. Solowjow, and S. Levine. Learning on the job: Self-rewarding offline-640

to-online finetuning for industrial insertion of novel connectors from vision. In International Conference641

on Robotics and Automation (ICRA), pages 7154–7161, 2023.642

[33] K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokokohji. Bench-643

marking protocols for evaluating small parts robotic assembly systems. IEEE Robotics and Automation644

Letters, 5(2):883–889, 2020.645

[34] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with low-cost646

hardware, 2023.647

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.648

Continuous control with deep reinforcement learning. ArXiv, abs/1509.02971, 2015.649

[36] N. Di Palo and E. Johns. Learning multi-stage tasks with one demonstration via self-replay. In Conference650

on Robot Learning (CoRL), 2021.651

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proceedings of652

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16, pages 770–778. IEEE,653

June 2016.654

[38] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997.655

[39] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark & learning656

environment. CoRR, abs/1909.12271, 2019. URL http://arxiv.org/abs/1909.12271.657

[40] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of representa-658

tion learning for visual imitation. CoRR, abs/2112.01511, 2021. URL https://arxiv.org/abs/659

2112.01511.660

A9

http://dx.doi.org/10.1109/ICRA48891.2023.10161252
http://arxiv.org/abs/1909.12271
https://arxiv.org/abs/2112.01511
https://arxiv.org/abs/2112.01511
https://arxiv.org/abs/2112.01511

	Introduction
	Related Work
	MILES: Making Imitation Learning Easy with Self-Supervision
	Preliminaries
	Self-Supervised Data Collection
	Validity Conditions for Augmentation Trajectories
	Policy

	Experiments
	Can MILES solve a range of everyday tasks and how does it perform against baselines that learn from a single demonstration?
	How does MILES perform under different method ablations?
	How important are vision and force modalities to the performance of MILES?
	How does MILES perform under different sizes of self-supervised data?
	Further questions about MILES

	Discussion
	MILES: Additional Details on the Method
	Method Pseudocode
	Validity Conditions for Augmentation Trajectories
	How do we check for the Reachability condition?
	How do we check for the Environment Disturbance condition?

	MILES' Policy
	How is our policy defined when No Environment Disturbance occurred during data collection?
	How is our policy defined when an Environment Disturbance occurred during data collection?
	How do we deploy MILES' policy?
	How do we determine when to switch from closed-loop control to demonstration replay?

	More details on the Experimental Setup
	Pose Estimation
	MILES Data Collection Hyperparameters
	How do we set the data collection range around each demonstration waypoint?
	How do we determine the number of augmentation trajectories to collect for each demonstration waypoint?
	How do we determine the Environment Disturbance threshold ?

	Task Descriptions
	For which tasks was an Environment Disturbance detected?

	Baselines
	Generalization Performance
	Multi-stage Tasks
	Performance with distractors

	Detailed Pseudocode

