368

369

371

372

373

374

375

376
377
378
379

380

381
382
383

385
386

387
388
389
390
391
392
393

394

395
396
397
398
399

401
402

404
405
406
407
408

409
410
411
412
413
414

Supplementary Material
MILES: Making Imitation Learning Easy with Self-Supervision

For videos demonstrating MILES’ performance and code implementation please see our anonymous
webpage: https://sites.google.com/view/miles—imitation.

A MILES: Additional Details on the Method

A.1 Method Pseudocode

We provide a detailed pseudocode describing MILES, in Algorithms 1- 8.

A.2 Validity Conditions for Augmentation Trajectories

As described in section 3.3, after collecting data for an augmentation trajectory, we check for two
conditions: (i) reachability and (ii) environment disturbance, to determine whether an augmenta-
tion trajectory is valid and eligible to fuse with the demonstration. Figure A.1 shows examples of
these two conditions.

A.2.1 How do we check for the Reachability condition?

Reachability. To check for reachability, after executing an augmentation trajectory 73, we verify
whether the final achieved pose matches the pose of the k;;, demonstration waypoint using propri-
oception, as described in section 3.3. Pseudocode describing how we check for reachability is also
provided in Algorithm 3. It is crucial to check for reachability because an augmentation trajectory
that does not meet this condition cannot be fused with the demonstration, as it cannot return to

the demonstration state. If the waypoint w,ﬁ is unreachable during data collection, we cannot auto-

matically determine how to reach w,ﬁ from w}%, without collecting observations that do so during

self-supervised data collection. Consequently, we cannot automatically determine what actions to
take to return back to the demonstration from w}%, as we can with valid augmentation trajectories.
Figure A.1 (a, left) shows an example where the reachability condition is not met due to environ-
mental dynamics, such as a key getting ”jammed” and failing to reach the target waypoint due to
collision and friction in the lock. A similar example where the reachability condition is met is shown
in Figure A.1 (a, right).

A.2.2 How do we check for the Environment Disturbance condition?

Environment Disturbance. To determine whether an environment disturbance occurred, we com-
pare the RGB image captured at the k;;, demonstration timestep with the RGB image captured at
the final timestep of the augmentation trajectory, as described in section 3.3. A detailed pseudocode
describing how we determine whether an environment disturbance occurred can be found in Algo-
rithm 5, and a visual example can be seen in Figure A.1 (b). The comparison between the two RGB
images relies on the similarity of their DINO features [26]. Specifically, we use a pre-trained DINO
ViT [26] to obtain the DINO features for different patches of each image similarly to [27]. By com-

puting the cosine similarity between the DINO features of each corresponding image patch in 1 ,g and
I;%, we can calculate the average similarity between the two images [27]. If the similarity is below a
threshold 6 (to see how we automatically determine 6 please see section B.2.3), we assume the robot
has disturbed the environment, and data collection is stopped. Our experiments showed that DINO
ViT features are necessary because they are robust to lighting changes and noise in the RGB image.
Other methods we tried, such as template matching or computing the per-pixel Euclidean distance,
proved brittle and sensitive to lighting variations or noise in the captured images.

Understanding why checking for an environment disturbance is important is straightforward. Con-
sider the rectangular object shown in Figure A.1 (b), and assume the task is to learn how to pick
up that object. If the robot pushes the rectangular object, causing it to fall over during data col-
lection, the image observed after returning to the demonstration state will no longer match that
state’s observation from when the demonstration was provided. Consequently, from the point where
the disturbance occurred onward, we have no way of knowing how to reach any of the remaining

Al

https://sites.google.com/view/miles-imitation

415
416
417
418
419
420
421

422

423
424
425
426
427

428
429

431
432
433
434
435
436
437
438

440
441
442

443
444

445
446
447
448
449
450
451

Reachability Environment Disturbance

Unreachable Observation at the Planned i ol ion after
State Trajectory Augmentation Trajectory

Collision and friction get the
key jammed and not inserted

/

tate
State Object has fallen

Target

State The observatiol

; does not match

the demonstration observation
— Invalid Augmentation Trajectory Valid Augmentation Trajectory

(2) (b)

Figure A.1: Reachability: Two examples of possible augmentation trajectories for a locking task are shown; an invalid
trajectory (left) that fails to reach the target demonstration waypoint due to collisions, friction, and potentially inevitable
systematic controller errors and a valid one (right) that successfully reaches the target waypoint. Environment Disturbance:
As the robot collects an augmentation trajectory, it perturbs the environment such that after returning to the demonstration’s
waypoint the live observation and the demonstrated one no longer match, indicating that data collection should stop.

demonstration states and as a result how to solve the task. This is because we only know how to
solve a task by learning how to follow the demonstration after returning to it. But if an environment
disturbance has occurred (e.g., the rectangular object has fallen), following the demonstration’s ac-
tions no longer leads to task completion. Hence, if data collection continued, all future augmentation
trajectories would contain invalid observations and actions, as they would demonstrate behavior that
does not solve the task that the human demonstrated. This is why we stop data collection after
detecting an environment disturbance.

A.3 MILES’ Policy

Training: To train our manipulation policy we leverage the dataset D,,.,, comprising the fused
augmentation trajectories with the demonstration as described in section 3.4. MILES’ policy 7
comprises either (1) an end-to-end network trained with behavioral cloning (BC) or (2) an end-to-
end network trained with BC combined with demo replay, which is utilized when data collection
was interrupted due to a detected environment disturbance.

A.3.1 How is our policy defined when No Environment Disturbance occurred during data
collection?

No Environment Disturbance. When no disturbance occurred our dataset D,,,, contains augmen-
tation trajectories that can return to and then follow the demonstration from every state. In that
case, we leverage D)., to train an end-to-end behavioral cloning policy 7 that comprises a single
neural network fy, parameterized by 1), that receives as input an RGB image captured from the
wrist camera and force-torque feedback to predict 6-DoF actions: fy; : RHEXWX3 R6 5 SE(3) as
well as an additional binary value indicating the gripper action (R X" %3 refers to the RGB images
where H: height, W: width and R® to measured forces and torques). The force-torque feedback
is captured directly using Franka Emika Panda’s joint force sensors. For our policy to generalize
spatially, no proprioception input is passed to fy and all actions are predicted relative to the EE’s
frame. fy consists of a ResNet-18 backbone [37] for processing RGB images, and a small MLP
embeds force feedback into a 100-dimensional space. The output of the force MLP and ResNet-18
are concatenated and fed into an LSTM [38] network for action prediction. The network is trained
using standard behavior cloning to maximize the likelihood of D,, e, -

A.3.2 How is our policy defined when an Environment Disturbance occurred during data
collection?

Environment Disturbance. When self-supervised data collection was stopped due to an environ-
ment disturbance, our dataset D,,.,, contains augmentation trajectories that can return the robot to
any state from the initial demonstration state up to the demonstration state at timestep R, where
R < N (see section 3.2). In this scenario, if our policy consists only of f,, then during task execu-
tion the robot would be able to solve the task only up to the Ry, state, but not complete it. As such,
we define our policy 7 to consist of two components: (1) the first component is a neural network fy,
identical to the above scenario, but trained up to the Ry, state and (2) the second component corre-

A2

452
453

454

456
457
458

459
460
461
462

463

464

466
467
468
469
470

471

472

473
474
475
476
477
478
479
480
481
482
483
484

485

487
488
489
490
491

492
493

494

496
497

sponds simply to the sequence of the remaining demonstration actions from the Ry, state onwards,
for which no self-supervised data was collected, i.e., remaining = {a%}nN: R

A.3.3 How do we deploy MILES’ policy?

Deployment: Deploying the policy is straightforward and depends on whether data collection was
interrupted due to an environment disturbance. If uninterrupted, then only the neural network fy, is
used to complete the task equivalently to policies trained using reinforcement learning or behavioral
cloning.

If data collection was interrupted, first f,, is deployed to solve the task up to the Ry, state in an
identical way as the scenario of ’no environment disturbance”. After the robot reaches the R, state
then Cremaining 1 €xecuted. We determine whether the closed-loop policy has completed the task
up to the R,y in a very simple way as described in section A.3.4.

Pseudocode describing MILES’ policy deployment can be found in Algorithm 8.

A.3.4 How do we determine when to switch from closed-loop control to demonstration
replay?

Switching from closed-loop to demonstration replay is straightforward. As the objects and the robot
can be at different poses during deployment from the ones during data collection, we cannot just use
the robot’s proprioception to know when the Ry, state has been reached. Hence, we deploy fy, until
it predicts continuously the identity transformation, indicating no robot movement. Then, we switch
to demonstration replay, where we replay the rest of the demonstration (,emaining-

B More details on the Experimental Setup

B.1 Pose Estimation

In practice, as with most methods [4, 14, 15, 18], we naturally provide the demonstrations starting
near the task-relevant object. As such, we need a way to ensure that MILES can still solve any
task regardless of how far the robot is from an object. An apparent solution to this is to provide
the demonstration starting from a pose far away from the object and deploy MILES’ data col-
lection. While this would work well, it may be inconvenient. As such, inspired by [2, 16, 18]
we use a simple pose estimator at deployment to estimate the relative pose between the robot
at the initial state of the demonstration (for which MILES collected data) and the task-relevant
object. As we do not assume any 3D object models, we use the method deployed in [15] al-
though any other model-free pose estimator can be used. This allows us to first coarsely esti-
mate the pose and move near the task-relevant object from any robot starting pose before deploy-
ing MILES. Uncut videos demonstrating this behavior can be found on our anonymous webpage:
https://sites.google.com/view/miles—imitation.

B.2 MILES Data Collection Hyperparameters

B.2.1 How do we set the data collection range around each demonstration waypoint?

As discussed in our experiments section 4, we collect data in a range of 4cm and 4 degrees around
each demonstration waypoint. However, this range is not limiting and can be set to any desirable
range like any other robot learning method. In our case, we set this range to be the average pose
estimation error to reach the initial pose of the demonstration relative to the task-relevant object
using the pose estimation method described in section B.1 which we obtained based on [15].

B.2.2 How do we determine the number of augmentation trajectories to collect for each
demonstration waypoint?

For all of our experiments, we set the number of augmentation trajectories per demonstration way-
point, Z = 10. In our case, we set this arbitrarily, but as we showed in our method’s data collection
ablation in section 4.4 different tasks require different numbers of augmentation trajectories. As
such, we provide two guidelines for setting the value for Z. Firstly, high tolerance tasks, like the

A3

https://sites.google.com/view/miles-imitation

Task: Description DCT Task: Description

Lock with Insert akey into a lock and rotate 90 24’ Twist Insert a toy screwdriver into a screw
key degrees to lock it. screw and twist by 90°.
Insert USB Insert a USB stick into a USB port 21°. Bread in Put a plastic bread inside a toaster.
(< 1mm tolerance) toaster

Plug into Plug a UK plug (3-pin) to a socket. 37 Open 1lid Lift the lid of a blue box.

socket

Insert Plug the power cable into the power ,

power 28

port of a PC.
cable

DCT

22

40°

498
499
500
501
502
503
504
505

506

507
508
509
510
511

512

513
514

515

516
517
518

519
520
521
522
523
524
525
526

527

528

530
531

Table 3: Task descriptions of the 7 tasks used in our experiments. DCT stands for Data Collection Time and
corresponds to the time spent collecting self-supervised data.

”Open lid” task reported in our experiments usually require a small number of augmentation trajec-
tories. On the other hand, precise tasks, like the USB insertion” task reported in our experiments
require more augmentation trajectories. Secondly, as the data collection range around each demon-
stration waypoint increases, the number of augmentation trajectories collected should also increase
with an approximately linear relationship, i.e., if the range is doubled, then the number of augmenta-
tion trajectories should be doubled as well. We recommend as a starting point, for a data collection
range similar to our experimental setting of 4cm and 4 degrees, to collect 10 augmentation trajecto-
ries for precise, low-tolerance tasks, and 4 augmentation trajectories for high-tolerance tasks.

B.2.3 How do we determine the Environment Disturbance threshold 6 ?

We determined 6 simply by spawning several random RLBench [39] tasks in CoppeliaSim and
running MILES. By setting up custom heuristics that determine environment resets in the simulation
we found that for the DINO model we use, a similarity of § < 0.94 appeared to detect environment
disturbances across all tasks successfully. Consequently, we used that in our real-world experiments
too.

B.3 Task Descriptions

A detailed description of each task along with their Data Collection Times (DCT) can be found in
Table 3.

B.3.1 For which tasks was an Environment Disturbance detected?

An environment disturbance was detected for the following tasks: Twist screw, Bread in
Toaster and Open 1id. As such for these tasks the policies comprise a closed-loop and a
demonstration replay component.

We also note that for the lock with key task, we stopped data-collection "half-way” through the 90
degrees twisting rotation for hardware safety. This is because the forces exerted on the robot as
it was collecting self-supervised data were too high. In this case, we treated this identically to an
environment disturbance. At deployment, the learned policy completes most of the task closed-loop,
apart from a small twisting motion done with demo replay, after the closed-loop policy converges to
predicting the identity transformation as discussed in section A.3.4. This is similar to adding force
limits to reinforcement learning algorithms and was done to protect our robotic hardware; however,
doing so is not a requirement.

B.4 Baselines

Here, we provide further implementation details on two of the baselines we used in our paper.

Pose Estimation + Demo Replay. For this baseline, we follow the same problem formulation as
in [15], but improve upon that baseline in two key ways: (1) the data on which it is trained on is the
same data collected for MILES, as such it contains only valid trajectories that cover a larger part of

A4

532
533

534
535
536
537
538
539

540

541
542
543
544
545
546
547
548
549
550

551

552
553
554
555
556
557
558
559
560

562

563
564
565
566

the task space and (2) instead, of replaying recorded velocities, we also replayed the recorded forces
which is particularly important for the contact rich tasks.

Reset-Free FISH [4]. For Reset-Free FISH we use the implementation provided by the authors
as it can be found in: https://github.com/siddhanthaldar/FISH. We only changed
the implementation such that the policy always predicts 6-DOF actions instead of constraining the
output to specific DOFs, as doing so assumes access to prior task knowledge. To learn residual
actions on top of the demonstration we tested both using demo replay as the base policy, as well as
VINN [40] but found that demo replay led to better performance.

B.5 Generalization Performance

We reported results on generalization in section 4.5 on the "Markers in Bin” task shown in Figure 3
(8). The goal of this task was to throw one of the two shown markers (blue, green) in the bin that is
available at deployment time. MILES was trained on the 5 bins marked as green in Figure 3 (8) and
the generalization test was done in the two bin shown on the left, marked as red. The data collection
time for this task was on average 34 minutes for each bin and an environment disturbance was
detected for each bin. To determine which remaining actions to replay for the previously unseen
bins, we selected the remaining actions from the bin in the training set whose RGB image in the
demonstration has the highest similarity in terms of DINO features with the bin during deployment,
inspired by prior work [17]. Videos exhibiting MILES generalization on the two test case bins can
be found on our webpage: https://sites.google.com/view/miles—imitation.

B.6 Multi-stage Tasks

To evaluate MILES’ ability to solve multi-stage tasks, we tasked MILES with picking up the plastic
bread shown in Figure 3 (6) (as part of the ”Bread in Toaster” task) and inserting it into the toaster.
To achieve this we broke the task down into two stages: first, we provided a demonstration showing
how to pick up the bread and trained MILES. Then, we used the policy already trained on the
”Bread in Toaster” task to finish the task. To link the two stages together, first the policy to pick
up the bread is deployed. After, the execution ends, the robot returns to its default position. Then,
the pose estimation method described in section B.1 is deployed to approach the toaster, and then
the policy trained with MILES is deployed to insert the bread into the toaster. Videos exhibiting
MILES’ multi-stage task performance on picking up and inserting the bread into the toaster can be
found on our webpage: https://sites.google.com/view/miles—imitation.

B.7 Performance with distractors

We found that performing standard image augmentation techniques, including changing the bright-
ness, contrast, noise, cropping random image parts, etc... allowed MILES to be robust to distrac-
tor objects, as shown in the videos provided on our anonymous webpage: https://sites.
google.com/view/miles—imitation.

A5

https://github.com/siddhanthaldar/FISH
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation
https://sites.google.com/view/miles-imitation

567 C

Detailed Pseudocode

Algorithm 1: MILES Overview (Simplified)

Input: Single Task Demonstration: ¢ = {(w§, 05, a,

1:

¢ 05, aS) }_;, Number of augmentation trajectories
per demonstration waypoint Z, environment disturbance threshold 6 (Default: § = 0.94)

D={}// init empty dataset of augmentation trajectories

2: Reachable = True // init variable that tracks reachability

3:

22

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

28:
29:
30:
31:

Disturbance = True // init variable that tracks environment
disturbances

R=1// init variable that stores the timestep when
self-supervised data collection stops

Move robot to the initial demonstration pose w%

for iteration £k = 1 to NV do
j=1// init variable that tracks the number of collected
augmentation trajectories per demo waypoint
while j < Z do
Tk <—SampleTraject0ry(wg) (Alg. 2)
Reachable eCheckReachability(w,ﬁ) (Alg. 3)
if Reachable is False then
ReturnToDemoWaypoint(k, ¢) (Alg. 4)
Break // exit while loop
end if
I} < Capture RGB wrist-cam image // M is the My, (final) timestep
of 7%

Disturbance <+ CheckEnvDisturbance(oi, I3k, 0) (Alg. 5)
if Disturbance is True then
R=Fk// store timestep when data collection stops
Break // exit while loop
end if
D=DUrT, // add augmentation trajectory to dataset
J=J+1
end while
if Disturbance is True then
Break // exit for loop
end if
Proceed to the next demonstration state by performing action ai // follow the
demonstration’s progression
end for
Dhew FuseAugmentationsWithDemo(D, R, ()(Alg. 6)
7w <TrainPolicy(Dyew, R, ()(Alg. 7)
Deploy(r, R, ()(Alg. 8)

Qutput: 7

A6

Algorithm 2: SampleTrajectory

Algorithm 6: FuseAugmentationsWithDemo

Input: Demonstration waypoint w,ﬁ

L1 ={}// init empty augmentation trajectory
2: Sample initial pose w7* and move robot (Optional:
record trajectory poses)

3: hdovebackt01ui // either by tracking the
recorded trajectory poses backward or by
re-planning a new, straight-line trajectory
(equal performance, the former often leads to
faster data collection).

4: m=1// observations, actions index

5: while moving to w,g do

6: T =Tk U(wlk, ok alk) // add waypoints,
observations and actions to augmentation
trajectory; actions are automatically
inferred as the relative EE poses between
consecutive timesteps; gripper actions are

automatically copied from the demonstration.

7: (o]k comprises wrist cam RGB images + force-torque
readings)
8: end while

Output: Return augmentation trajectory 7

Algorithm 3: CheckReachability
¢

Input: Demonstration waypoint w;
I: Reachabk:e—]kue,// init reachability variable
2: wik <~ EEpose // achieved after executing the

augmentatlon trajectory (comprising M
timesteps); read from proprioception

r
3: Reachable = (w}t == wk) // check whether poses
are equal (within the controller’s feasible
precision)

Output: Reachable

Algorithm 4: ReturnToDemoWaypoint

Input: Demonstration timestep k, single demonstration ¢
1: Move to initial demonstration waypoint wf e(
// replay demonstration up to the kn timestep
2: for iterationt = 1tot = k do
3: Perform action atc €¢
4: end for

Algorithm 5: CheckEnvDisturbance

Input: Demonstration observation oi, captured live image I},
similarity threshold 6
1: Disturbance < False // init environment
disturbance variable
2:]£ E(é // retrieve RGB image [g from the
demonstration’s observations

3| }57 I(,..]eDINO -ViT(I{) // compute DINO-ViT
features [27, 26] for each image patch fﬁ for
k
the demo waypoint image
4 [f}m, fines -] <~DINO-ViT(I}}) // compute DINO-ViT
M M
features [27, 26] for each image patch fir
M

from the current live environment image
(captured after executing the augmentation

trajectory) .
. sim =AvgCosineSimilarity([f! it IC’ s [f Tk,f Tk,...]

5
6: if sim < 0 then
7: Disturbance < True
8: end if
Output: Disturbance

Input: Dataset of augmentation trajectories D, final data collection

1:

2:
3:

4:
5:
6:

time step R, single demonstration ¢
Drew =:{}// init empty dataset to store fused
trajectories
for 71, in D do

_ R
Csegment - {(wfm 07417 a%)}n:k} € C
demonstration segment from kg,
demo waypoint to Ry,
Thyew -— Tk U Csegment
Dhew = Dhew U Tknew
end for

Output: D,y

Algorithm 7: TrainPolicy

Input: Dataset of augmentation trajectories + demo D, final data

collection timestep R, single demonstration ¢

1: Train neural network f,, on Dy, using standard behavioral

cloning// Discard proprioception waypoints (w;¥ and

uﬁ), only observation inputs are used for fy

2: if R < length(() then

32 w={fy,{a$}_g} // policy consists of an
end-to-end neural net + demo replay (if an
environment disturbance stopped data collection
before the last demo waypoint)

4: else

5: ﬂ'=={fw} // policy consists only of an
end-to-end neural net

6: end if

Output: 7

Algorithm 8: Deploy

Input: Policy m, final data collection timestep R, single demonstration

1:

e A ol

¢

Capture observation 0 // comprising RGB wrist cam
image + force-torque feedback
Action a = fy(0)
Perform action a
while « is not the identity transformation do
Capture observation o
Action a = fy(0)
Perform action a
end while
// if an environment disturbance stopped data
collection before the last demo waypoint

: if R < length(¢) then

10: Replay remaining demo {a§,}_,
11: end if
A7

568

569

570
571

572
573
574

575
576
577

578

580
581

582

583

584
585

586
587

588
589
590

591
592

593

595

596
597

598
599
600

601
602

603
604

605
606

607
608

609
610

611
612

613
614
615

References

(1]

(2]

[3

—

[4

—

(5]

[6
(71
[8

—_

—_—

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(171

(18]

[19]

(20]

(21]

A. Brohan et al. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817, 2022.

A. Mandlekar, S. Nasiriany, B. Wen, 1. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mimicgen: A
data generation system for scalable robot learning using human demonstrations. In Conference on Robot
Learning, 2023.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In International Conference on Artificial Intelligence and Statistics, pages
627-635, 2011.

S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one minute of
demonstrations. arXiv preprint arXiv:2303.01497, 2023.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Conference on Neural Information
Processing Systems, page 4572-4580, 2016.

V. Mnih et al. Human-level control through deep reinforcement learning. Nat., 518(7540):529-533, 2015.
0. X.-E. Collaboration et al. Open X-Embodiment: Robotic learning datasets and RT-X models, 2023.

E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z: Zero-shot
task generalization with robotic imitation learning. In Conference on Robot Learning, 2021.

Y. Hu, M. Cui, J. Duan, W. Liu, D. Huang, A. Knoll, and G. Chen. Model predictive optimization for
imitation learning from demonstrations. Robotics and Autonomous Systems, 163, 2023.

Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell. Generalized task-parameterized skill learning. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 56675474, 2018. doi:
10.1109/ICRA.2018.8461079.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning.
ArXiv, abs/1709.04905, 2017.

Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation learning.
In 2022 International Conference on Robotics and Automation (ICRA), pages 2434-2444, 2022. doi:
10.1109/ICRA46639.2022.9812450.

G. Papagiannis and Y. Li. Imitation learning with sinkhorn distances. In European Conference in Machine
Learning and Knowledge Discovery in Databases 2022, 2022.

G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea, E. Solowjow, and S. Levine. Deep reinforcement
learning for industrial insertion tasks with visual inputs and natural rewards. In International Conference
on Intelligent Robots and Systems (IROS), 2020.

E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In /EEE
International Conference on Robotics and Automation (ICRA), 2021.

E. Valassakis et al. Demonstrate once, imitate immediately (dome): Learning visual servoing for one-shot
imitation learning. 2022.

N. D. Palo and E. Johns. On the effectiveness of retrieval, alignment, and replay in manipulation. RA-
Letters, 2024.

P. Vitiello, K. Dreczkowski, and E. Johns. One-shot imitation learning: A pose estimation perspective. In
Conference on Robot Learning, 2023.

B. Wen, W. Lian, K. E. Bekris, and S. Schaal. You only demonstrate once: Category-level manipulation
from single visual demonstration. ArXiv, abs/2201.12716, 2022.

M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Goldberg. Dart: Noise injection for robust imitation
learning. In Conference on Robot Learning, 2017.

L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks: Combating
covariate shift in model-free imitation learning for fine manipulation. In International Conference on
Robotics and Automation (ICRA), 2021.

A8

http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
http://dx.doi.org/10.1109/ICRA46639.2022.9812450

616
617

618
619
620

621
622
623

624
625

626
627

628

629
630

631

633

634
635
636

637
638
639

640
641
642

643
644
645

646
647

648
649

650
651

652
653

655

656
657

658
659
660

[22]

(23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

(36]

(37]

(38]

[39]

[40]

A. Zhou, M. J. Kim, L. Wang, P. Florence, and C. Finn. Nerf in the palm of your hand: Corrective
augmentation for robotics via novel-view synthesis, 2023.

M. Jia, D. Wang, G. Su, D. Klee, X. Zhu, R. Walters, and R. Platt. Seil: Simulation-augmented equivariant
imitation learning. In International Conference on Robotics and Automation (ICRA), pages 1845-1851,
2023. doi:10.1109/ICRA48891.2023.10161252.

L. Ke, Y. Zhang, A. Deshpande, S. Srinivasa, and A. Gupta. CCIL: Continuity-based data augmentation
for corrective imitation learning. In First Workshop on Out-of-Distribution Generalization in Robotics at
CoRL 2023, 2023.

G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist, O. Pietquin, and
R. Dadashi. Get back here: Robust imitation by return-to-distribution planning, 2023.

M. Caron, H. Touvron, I. Misra, H. J’egou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties
in self-supervised vision transformers. International Conference on Computer Vision (ICCV), 2021.

S. Amir et al. Deep vit features as dense visual descriptors. ECCVW What is Motion For?, 2022.

C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor
policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

J. Luo, O. O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal, and J. Scholz.
Robust multi-modal policies for industrial assembly via reinforcement learning and demonstrations: A
large-scale study. ArXiv, abs/2103.11512, 2021.

J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine. Serl:
A software suite for sample-efficient robotic reinforcement learning. In International Conference on
Robotics and Automation (ICRA), 2024.

T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine. Of-
fline meta-reinforcement learning for industrial insertion. In International Conference on Robotics and
Automation (ICRA), pages 6386-6393, 2022.

A. Nair, B. Zhu, G. Narayanan, E. Solowjow, and S. Levine. Learning on the job: Self-rewarding offline-
to-online finetuning for industrial insertion of novel connectors from vision. In International Conference
on Robotics and Automation (ICRA), pages 7154-7161, 2023.

K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokokohji. Bench-
marking protocols for evaluating small parts robotic assembly systems. IEEE Robotics and Automation
Letters, 5(2):883-889, 2020.

T.Z.Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with low-cost
hardware, 2023.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. ArXiv, abs/1509.02971, 2015.

N. Di Palo and E. Johns. Learning multi-stage tasks with one demonstration via self-replay. In Conference
on Robot Learning (CoRL), 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 16, pages 770-778. IEEE,
June 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997.

S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark & learning
environment. CoRR, abs/1909.12271, 2019. URL http://arxiv.org/abs/1909.12271.

J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of representa-

tion learning for visual imitation. CoRR, abs/2112.01511, 2021. URL https://arxiv.org/abs/
2112.01511.

A9

http://dx.doi.org/10.1109/ICRA48891.2023.10161252
http://arxiv.org/abs/1909.12271
https://arxiv.org/abs/2112.01511
https://arxiv.org/abs/2112.01511
https://arxiv.org/abs/2112.01511

	Introduction
	Related Work
	MILES: Making Imitation Learning Easy with Self-Supervision
	Preliminaries
	Self-Supervised Data Collection
	Validity Conditions for Augmentation Trajectories
	Policy

	Experiments
	Can MILES solve a range of everyday tasks and how does it perform against baselines that learn from a single demonstration?
	How does MILES perform under different method ablations?
	How important are vision and force modalities to the performance of MILES?
	How does MILES perform under different sizes of self-supervised data?
	Further questions about MILES

	Discussion
	MILES: Additional Details on the Method
	Method Pseudocode
	Validity Conditions for Augmentation Trajectories
	How do we check for the Reachability condition?
	How do we check for the Environment Disturbance condition?

	MILES' Policy
	How is our policy defined when No Environment Disturbance occurred during data collection?
	How is our policy defined when an Environment Disturbance occurred during data collection?
	How do we deploy MILES' policy?
	How do we determine when to switch from closed-loop control to demonstration replay?

	More details on the Experimental Setup
	Pose Estimation
	MILES Data Collection Hyperparameters
	How do we set the data collection range around each demonstration waypoint?
	How do we determine the number of augmentation trajectories to collect for each demonstration waypoint?
	How do we determine the Environment Disturbance threshold ?

	Task Descriptions
	For which tasks was an Environment Disturbance detected?

	Baselines
	Generalization Performance
	Multi-stage Tasks
	Performance with distractors

	Detailed Pseudocode

