
Under review as a conference paper at ICLR 2023

A PROOFS FOR SECTION 4

Theorem 1. If �⇤
is a feature matrix minimizing LMCSM (�), then its column space spans the top

d left singular vectors of the (infinite-dimensional) successor measure matrix with respect to the

inner product (x, y)⌅ = y>⌅x, for all x, y 2 Rn
. Here, ⌅ 2 RX⇥X

is the diagonal matrix whose

entries are given by ⇠.

Proof. We consider the SVD of the successor measure with respect to the weighted inner product
⌅. In matrix form, we write

 = F⌃BT

where F 2 Rn⇥d,⌃ 2 Rd⇥d and B 2 Rn⇥d satisfy

FTF = I, BT⌅B = I,⌃ = diag(�1, ...,�d)

and �i are the singular values of sorted in decreasing order.

argmin
�2Rn⇥d

LMCSM (�) = argmin
�2Rn⇥d

min
wS,a2Rd

E
S⇠⇠

h� X

x2X ,a2A
(�(x)>wS,a � (x, a, S)

�2i

= argmin
�2Rn⇥d

min
W
k(�W �)k2⌅

= argmin
�2Rn⇥d

k⇧?
� k2⌅

where ⇧� is the orthogonal projection onto span(�). The above is equivalent to saying that � must
span the top d singular vectors of .

B IMPLEMENTATION DETAILS

B.1 UNIVERSAL HASH FUNCTIONS

We define the set of multiply-shift universal hash functions (Carter & Wegman, 1979) as:

hi(x) =

0

@a(i)0 +
nX

j=1

a(i)j · xj mod p

1

A mod m,

where x 2 Rn is a flattened vector of the environment’s observation, a(i) 2 Rn is a randomly
initialized vector that that parameterizes the hash function, p is a prime, which in our case is the
Mersenne prime p = 213 � 1, and m allows us to control the activation proportion of the indicator
function. We can now define the indicator function as follows:

fi(x) = 1{hi(x) = 0} .

B.2 QUANTILE REGRESSION

We use quantile regression to tune the proportion of states that trigger our random network indicator
functions. To do so, we use a tunable bias that we update with gradient descent. First, recall that the
random network indicators are computed using a random neural network f : x 7! R. If we naively
apply the SIGN function to the network output, the proportion of states that map to 1 is unlikely to
match the target proportion p. Therefore, we first add a bias term to the output r0 = f(x) + b, and
then tune the bias to minimize the quantile regression loss

LQR(b) = Ex2X r0(x) · ((1� p)� SIGN(r0(x))) (2)

Once the bias has been tuned, the output of the random network indicator is r = SIGN(f(x) + b).

14

Under review as a conference paper at ICLR 2023

B.3 ALGORITHM

Algorithm 1 gives pseudo-code for the method as implemented with a fixed replay memory.

Algorithm 1 Proto-Value Networks

Require: Transition dataset D, Function approximator ̂✓ : X ! Rm⇥|A|, m RNI networks
fi : X ! R, m RNI threshold bias vectors bi, Polyak coefficient ⌧ , reward proportion p

1: for step = 1, . . . do

2: Sample mini-batch of n transitions {(x, a, x0)}ni=1 ⇢ D
3:
4: # Calculate random network indicators

5: r0j(x) fj(x) + bj 8j = 1, . . . ,m
6: rj(x) SIGN(r0j(x))
7:
8: # Calculate PVN loss

9: LPVN(✓) 1
n

Pn
i=1

1
m

Pm
j=1

⇣
rj(xi) + � 1

|A|
P

a02A ̂
(j)
✓ (x0

i, a
0)� ̂(j)

✓�(xi, ai)
⌘2

10:
11: # Calculate quantile regression loss

12: LQR(bj) 1
n

Pn
i=1 r

0
j(x) · ((1� p)� SIGN(r0j(x)))

13:
14: # Perform gradient step

15: Update ✓ ✓ � ⌘1 @
@✓LPVN(✓)

16: Update bj bj � ⌘2 d
dbj

LQR(bj) 8 j = 1, . . . ,m
17:
18: # Polyak average target network parameters

19: ✓� ⌧✓� + (1� ⌧) ✓
20: end for

B.4 HYPERPAREMETERS

In the tables below we report all relevant hyperparameter choices for both our offline pre-training
phase, and online learning phase.

We selected most of our hyperparameters based on best practices from previous work. We chose p
based on the estimated reward proportion from actual Atari games. We tuned our online hyperparam-
eters using 5 tuning games, ASTERIX, BEAM RIDER, PONG, QBERT, and SPACE INVADERS.

Table 1: Offline Hyperparameters

Hyperparameter Value

Number of auxiliary tasks 100
Batch size 256

Number of gradient steps 1,562,500
Discount factor � 0.99

Polyak average coefficient ⌧ 0.99
Reward proportion p 0.01

Quantile regression burn-in steps 62,500
Tasks per module 10

Optimizer Adam
Learning rate 1e-4

Adam �1 0.9
Adam �2 0.999

Adam ✏ 1.5e-4

Table 2: Online Hyperparameters

Hyperparameter Value

Update rule DQN
Num. layers 1 (linear)
Num. agent steps 3.75M
Train ✏ 0.01
Evaluation ✏ 0.001
n step 1
Discount factor � 0.99
Optimizer Adam
Learning rate 6.25e-5
Adam ✏ 1.5e-4
Maximum gradient norm 10
Batch size 32
Minimum replay size 2,000
Maximum replay size 1,000,000
Gradient steps per env step 1

15

Under review as a conference paper at ICLR 2023

C MDS PLOTS

Below are a selection of MDS plots for the methods discussed in the paper for each of the 5 tuning
games. These plots are generated using the representations learned during the pre-training phase, and
one expert trajectory is presented in each plot. Darker points correspond to states at the beginning
of the trajectory, and lighter points correspond to states at the end of the trajectory. These plots
demonstrate that the representations learned by each method are clearly different, and therefore have
different properties.

(a) Asterix

(b) BeamRider

(c) Pong

(d) Qbert

(e) SpaceInvaders

Figure 5: MDS plot for a single trajectory.

16

Under review as a conference paper at ICLR 2023

D PER-GAME RESULTS

Below, we report the per-game results for the methods discussed in the paper. In addition, we include
DQN and the Environment Reward method, which trains an encoder using the environment reward
during the pre-training phase, and then uses the fixed representation to train a linear head in the same
manner as the compared methods. Note that Environment Reward acts as a kind of oracle in our
setting – it is the only method that has access to the environment reward during the pre-training phase.
The results reported here use 1 offline seed and 3 online seeds, and evaluation scores (averaged over
100 evaluation runs) are reported after 3.75M agent steps. DQN’s performance is reported after 50M
agent steps.

Table 3: Per-Game Results on RLU Games

Random Init DQN Env Reward RCs PVN (Hash) PVN (RNI + Opt. Policy) PVN (RNI)

Alien 404 2484 2634 223 804 67 1034
Amidar 44 1208 214 74 96 4 96
Assault 140 1525 792 617 433 1464 1077
Asterix 523 2711 17412 266 17293 413 17067
Atlantis 14270 853640 399021 21981 5302 14485 12318
BankHeist 2 602 431 937 5 6 193
BattleZone 1683 17785 46471 5164 5516 12937 13313
BeamRider 384 5852 11325 3933 1550 12402 7744
Boxing -37 78 99 -5 -3 -47 94
Breakout 7 96 275 207 150 252 8
Carnival 362 4785 4702 977 1144 665 1054
Centipede 3534 2583 1559 1067 2535 2422 3186
ChopperCommand 474 2691 2631 882 649 960 3238
CrazyClimber 4 104569 117285 136788 3861 1 25509
DemonAttack 119 6362 121236 2466 2168 40692 61531
DoubleDunk -18 -7 -15 -20 -14 -15 -20
Enduro 0 629 1391 0 16 2 405
FishingDerby -98 1 37 -99 -95 -96 -77
Freeway 7 26 34 28 18 31 24
Frostbite 28 367 2826 102 204 29 643
Gopher 208 5480 3554 3299 467 105 4384
Gravitar 43 330 1217 26 2 64 97
Hero 23 17325 10148 896 2904 2 1952
IceHockey -13 -6 21 -14 -14 -5 -7
Jamesbond 24 573 1085 198 9 263 398
Kangaroo 199 11486 10826 1671 394 819 2007
Krull 1188 6098 9193 79 827 2561 4551
KungFuMaster 2807 23435 32442 14496 2269 30 16761
MsPacman 836 3402 5460 1255 1018 475 1523
NameThisGame 848 7279 16307 2977 2052 8568 6178
Phoenix 415 4997 18791 12817 5007 5896 8969
Pong -21 17 21 15 -9 19 19
Pooyan 748 3212 1826 1844 1244 1383 1688
Qbert 172 10118 13679 3202 1807 9748 5226
Riverraid 1221 11639 11623 316 2430 319 8348
RoadRunner 2543 36925 49522 332 4609 531 13327
Robotank 2 60 76 18 10 5 4
Seaquest 44 1601 260 75 122 - 951
SpaceInvaders 131 1794 23138 1148 1345 - 908
StarGunner 643 42165 844 719 899 801 9670
TimePilot 2244 3654 13231 3956 4006 1375 1447
UpNDown 1174 8488 25181 12142 7089 11564 9136
VideoPinball 3877 63406 280340 3314 21555 6372 12319
WizardOfWor 465 2066 5079 1289 435 275 1399
YarsRevenge 3089 23909 49298 2360 6591 2068 23687

17

	Introduction
	Related work
	Background
	Proto-value networks
	Extension to the random successor measure
	A practical implementation
	Generating indicator functions

	Empirical Analysis
	Scaling capacity with auxiliary tasks
	Evaluating the learned representation
	Ablations

	Discussion
	Proofs for sec:methodology
	Implementation Details
	Universal Hash Functions
	Quantile Regression
	Algorithm
	Hyperparemeters

	MDS Plots
	Per-Game Results

