
A Proofs471

A.1 Euclidean Projection onto S472

It amounts to the following problem.473

arg min
P2S

kP�Kk2
2

. (3)

With W 2 Rn⇥n, the Lagrangian takes the form:474

L(P,W) = kP�Kk2
2

+ hW,P�P
>i . (4)

Cancelling the gradient of L with respect to P gives 2(P
? �K) + W �W

>
= 0. Thus P

?
=475

K +
1

2

�
W

> �W
�
. Using the symmetry constraint on P

? yields P?
=

1

2

�
K + K

>
�
. Hence we476

have:477

arg min
P2S

kP�Kk2
2

=
1

2

�
K + K

>
�

. (5)

A.2 From Symmetric Entropy-Constrained OT to Sinkhorn Iterations478

In this section, we derive Sinkhorn iterations from the problem (EOT). Let C 2 D. We start by479

making the constraints explicit.480

min
P2Rn⇥n

+

hP,Ci (6)

s.t.
X

i2[[n]]

H(Pi:) � ⌘ (7)

P1 = 1, P = P
>

. (8)

For the above convex problem the Lagrangian writes, where ⌫ 2 R+, f 2 Rn and � 2 Rn⇥n:481

L(P, f , ⌫,�) = hP,Ci+
D
⌫, ⌘ �

X

i2[[n]]

H(Pi)

E
+ 2hf ,1�P1i+

⌦
�,P�P

>
↵

. (9)

Strong duality holds and the first order KKT condition gives for the optimal primal P? and dual482

(⌫
?
, f

?
,�

?
) variables:483

rPL(P
?
, f

?
, ⌫

?
,�

?
) = C + ⌫

?
logP

? � 2f
?
1

>
+ �

? � �
?>

= 0 . (10)

Since P
?
,C 2 S we have �

? � �
?>

= f
?
1

> � 1f
?>. Hence C + ⌫

?
logP

? � f
? � f

?
= 0.484

Suppose that ⌫
?

= 0 then the previous reasoning implies that 8(i, j), Cij = f
?
i + f

?
j . Using that485

C 2 D we have Cii = Cjj = 0 thus 8i, f?
i = 0 and thus this would imply that C = 0 which is not486

allowed by hypothesis. Therefore ⌫
? 6= 0 and the entropy constraint is saturated at the optimum by487

complementary slackness. Isolating P
? then yields:488

P
?

= exp ((f
? � f

? �C)/⌫
?
) . (11)

P
? must be primal feasible in particular P?

1 = 1. This constraint gives us the Sinkhorn fixed point489

relation for f?:490

8i 2 [[n]], [f
?
]i = �⌫

?
LSE

�
(f

? �C:i)/⌫
?
�
, (12)

where for a vector ↵, we use the notation LSE(↵) = log
P

k exp(↵k).491

A.3 Proof of Proposition 1492

We recall the result493

Proposition 1. Let C 2 Rn⇥n
without constant rows. Then P

e
solves the entropic affinity problem494

(EA) with cost C if and only if P
e

is the unique solution of the convex problem495

min
P2H⇠

hP,Ci. (EA as OT)
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Proof. We begin by rewriting the above problem to make the constraints more explicit.496

min
P2Rn⇥n

+

hP,Ci

s.t. 8i, H(Pi:) � log ⇠ + 1

P1 = 1 .

By concavity of entropy, one has that the entropy constraint is convex thus the above primal problem497

is a convex optimization problem. Moreover, the latter is strictly feasible for any ⇠ 2 [[n� 1]].498

Therefore Slater’s condition is satisfied and strong duality holds.499

Introducing the dual variables � 2 Rn and " 2 Rn
+

, the Lagrangian of the above problem writes:500

L(P,�, ") = hP,Ci+ h", (log ⇠ + 1)1�Hr(P)i+ h�,1�P1i , (13)

where we recall that Hr(P) = (H(Pi:))i. Note that we will deal with the constraint P 2 Rn⇥n
+

501

directly, hence there is no associated dual variable. Since strong duality holds, for any solution P
? to502

the primal problem and any solution ("?,�?
) to the dual problem, the pair P?

, ("?,�?
) must satisfy503

the Karush-Kuhn-Tucker (KKT) conditions. The first-order optimality condition gives:504

rPL(P
?
, "?,�?

) = C + diag("?) logP
? � �?

1
>

= 0 . (first-order)
Assume that there exists ` 2 [[n]] such that "?` = 0. Then (first-order) gives that the `

th row of C is505

constant which is not allowed by hypothesis. Therefore "? > 0 (i.e., "? has positive entries). Thus506

isolating P
? in the first order condition results in:507

P
?

= diag(u) exp (� diag("?)�1
C) (14)

where u = exp (�? ↵ "?). This matrix must satisfy the stochasticity constraint P1 = 1. Hence one508

has u = 1↵ (exp (diag("?)�1
C)1) and P

? has the form509

8(i, j) 2 [[n]]
2
, P

?
ij =

exp (�Cij/"
?
i )P

` exp (�Ci`/"
?
i )

. (15)

As a consequence of "? > 0, complementary slackness in the KKT conditions gives us that for all i,510

the entropy constraint is saturated i.e., H(P
?
i:) = log ⇠ + 1. Therefore P

? solves the problem (EA).511

Conversely any solution of (EA) P
?
ij =

exp (�Cij/"
?
i )P

` exp (�Ci`/"?i )
with ("

?
i ) such that H(P

?
i:) = log ⇠+1 gives512

an admissible matrix for minP2H⇠hP,Ci and the associated variables satisfy the KKT conditions513

which are sufficient conditions for optimality since the problem is convex.514

A.4 Proof of Proposition 4 and Proposition 5515

The goal of this section is to prove the following results:516

Proposition 4 (Saturation of the entropies). Let C 2 S with zero diagonal, then (SEA) with cost C517

has a unique solution that we denote by P
se

. If moreover C 2 D, then for at least n � 1 indices518

i 2 [[n]] the solution satisfies H(P
se

i: ) = log ⇠ + 1.519

Proposition 5 (Solving for SEA). Let C 2 D, L(P,�,�) = hP,Ci+ h�, (log ⇠ + 1)1�Hr(P)i+520

h�,1�P1i and q(�,�) = min
P2Rn⇥n

+ \S
L(P,�,�). Strong duality holds for (SEA). Moreover,521

let �?
,�? 2 argmax��0,� q(�,�) be the optimal dual variables respectively associated with the522

entropy and marginal constraints. Then, for at least n� 1 indices i 2 [[n]], �
?
i > 0. When 8i 2 [[n]],523

�
?
i > 0 then Hr(P

se
) = (log ⇠ + 1)1 and P

se
has the form524

P
se

= exp ((�? � �? � 2C)↵ (�? � �?
)) . (2)

The unicity of the solution in Proposition 4 is a consequence of the following lemma525

Lemma 7. Let C 6= 0 2 S with zero diagonal. Then the problem minP2H⇠\S hP,Ci has a unique526

solution.527

Proof. Making the constraints explicit, the primal problem of symmetric entropic affinity takes the528

following form529

min
P2Rn⇥n

+

hP,Ci

s.t. 8i, H(Pi:) � log ⇠ + 1

P1 = 1, P = P
>

.

(SEA)
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Suppose that the solution is not unique i.e., there exists a couple of optimal solutions (P1,P2) that530

satisfy the constraints of (SEA) and such that hP1,Ci = hP2,Ci. For i 2 [[n]], we denote the531

function fi : P ! (log ⇠ + 1) � H(Pi:). Then fi is continuous, strictly convex and the entropy532

conditions of (SEA) can be written as 8i 2 [[n]], fi(P)  0.533

Now consider Q =
1

2
(P1 + P2). Then clearly Q1 = 1,Q = Q

>. Since fi is strictly convex534

we have fi(Q) = fi(
1

2
P1 +

1

2
P2) <

1

2
fi(P1) +

1

2
f(P2)  0. Thus fi(Q) < 0 for any i 2 [[n]].535

Take any " > 0 and i 2 [[n]]. By continuity of fi there exists �i > 0 such that, for any H with536

kHkF  �i, we have fi(Q + H) < fi(Q) + ". Take " > 0 such that 8i 2 [[n]], 0 < " < � 1

2
fi(Q)537

(this is possible since for any i 2 [[n]], fi(Q) < 0) and H with kHkF  mini2[[n]] �i. Then for any538

i 2 [[n]], fi(Q + H) < 0. In other words, we have proven that there exists ⌘ > 0 such that for any H539

such that kHkF  ⌘, it holds: 8i 2 [[n]], fi(Q + H) < 0.540

Now let us take H as the Laplacian matrix associated to C i.e., for any (i, j) 2 [[n]]
2, Hij = �Cij541

if i 6= j and
P

l Cil otherwise. Then we have hH,Ci = �
P

i 6=j C
2

ij + 0 = �
P

i 6=j C
2

ij 6= 0 since542

C has zero diagonal (and is nonzero). Moreover, H = H
> since C is symmetric and H1 = 0543

by construction. Consider for 0 < �  ⌘
kHkF

, the matrix H�(C) := �� sign(hH,Ci)H. Then544

kH�(C)kF = �kHkF  ⌘. By the previous reasoning one has: 8i 2 [[n]], fi(Q + H�(C)) < 0.545

Moreover, (Q + H�(C))
>

= Q + H�(C) and (Q + H�(C))1 = 1. For � small enough we have546

Q + H�(C) 2 Rn⇥n
+

and thus there is a � (that depends on P1 and P2) such that Q + H�(C) is547

admissible i.e., satisfies the constraints of (SEA). Then, for such �,548

hC,Q + H�(C)i � hC,P1i =
1

2
hC,P1 + P2i+ hC,H�(C)i � hC,P1i

= hC,H�(C)i = �� sign(hH,Ci)hH,Ci < 0 .

(16)

Thus hC,Q + H�(C)i < hC,P1i which leads to a contradiction.549

We can now prove the rest of the claims of Proposition 4 and Proposition 5.550

Proof. Let C 2 D. We first prove Proposition 4. The unicity is a consequence of Lemma 7. For the
saturation of the entropies we consider the Lagrangian of the problem (SEA) that writes

L(P,�,�,�) = hP,Ci+ h�, (log ⇠ + 1)1�Hr(P)i+ h�,1�P1i+ h�,P�P
>i

for dual variables � 2 Rn
+

, � 2 Rn and � 2 Rn⇥n. Strong duality holds by Slater’s conditions551

because 1

n11
> is stricly feasible for ⇠  n� 1. Since strong duality holds, for any solution P

? to the552

primal problem and any solution (�?
,�?

,�
?
) to the dual problem, the pair P?

, (�?
,�?

,�
?
) must553

satisfy the KKT conditions. They can be stated as follows:554

C + diag(�?
) logP

? � �?
1

>
+ �

? � �
?>

= 0

P
?
1 = 1, Hr(P

?
) � (log ⇠ + 1)1, P

?
= P

?>

�? � 0

8i, �?
i (H(P

?
i:)� (log ⇠ + 1)) = 0 .

(KKT-SEA)

Let us denote I = {` 2 [[n]] s.t. �
?
` = 0}. For ` 2 I , using the first-order condition, one has for555

i 2 [[n]], C`i = �
?
` � �

?
`i + �

?
i`. Since C 2 D, we have C`` = 0 thus �

?
` = 0 and C`i = �

?
i` � �

?
`i.556

For (`, `
0
) 2 I

2, one has C``0 = �
?
`0` � �

?
``0 = �(�

?
``0 � �

?
`0`) = �C`0`. C is symmetric thus557

C``0 = 0. Since C only has null entries on the diagonal, this shows that ` = `
0 and therefore I has at558

most one element. By complementary slackness condition (last row of the KKT-SEA conditions)559

it holds that 8i 6= `, H(P
?
i:) = log ⇠ + 1. Since the solution of (SEA) is unique P

?
= P

se and thus560

8i 6= `, H(P
se

i: ) = log ⇠ +1 which proves Proposition 4 but also that for at least n�1 indices �
?
i > 0.561

Moreover, from the KKT conditions we have562

8(i, j) 2 [[n]]
2
, �

?
ji � �

?
ij = Cij + �

?
i log P

?
ij � �

?
i . (17)

Now take (i, j) 2 [[n]]
2 fixed. From the previous equality �

?
ji � �

?
ij = Cij + �

?
i log P

?
ij � �

?
i but563

also �
?
ij � �

?
ji = Cji + �

?
j log P

?
ji � �

?
j . Using that P?

= (P
?
)
> and C 2 S we get �

?
ij � �

?
ji =564

Cij + �
?
j log P

?
ij � �

?
j . But �

?
ij � �

?
ji = �(�

?
ji � �

?
ij) which gives565

Cij + �
?
j log P

?
ij � �

?
j = �(Cij + �

?
i log P

?
ij � �

?
i ) . (18)
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This implies566

8(i, j) 2 [[n]]
2
, 2Cij + (�

?
i + �

?
j ) log P

?
ij � (�

?
i + �

?
j ) = 0 . (19)

Consequently, if �?
> 0 we have the desired form from the above equation and by complementary567

slackness Hr(P
se

) = (log ⇠ + 1)1 which proves Proposition 5. Note that otherwise, it holds568

8(i, j) 6= (`, `), P
?
ij = exp

 
�
?
i + �

?
j � 2Cij

�
?
i + �

?
j

!
. (20)

569

A.5 EA and SEA as a KL projection570

We prove the characterization as a projection of (EA) in Lemma 8 and of (SEA) in Lemma 9.571

Lemma 8. Let C 2 D, � > 0 and K� = exp(�C/�). Then for any �  mini "
?
i , it holds572

P
se

= Proj
KL

H⇠
(K�) = arg min

P2H⇠
KL(P|K�).573

Proof. The KL projection of K onto H⇠ reads574

min
P2Rn⇥n

+

KL(P|K) (21)

s.t. 8i, H(Pi:) � log ⇠ + 1 (22)
P1 = 1 . (23)

Introducing the dual variables � 2 Rn and  2 Rn
+

, the Lagrangian of this problem reads:575

L(P,�,) = KL(P|K) + h, (log ⇠ + 1)1�H(P)i+ h�,1�P1i (24)

Strong duality holds hence for any solution P
? to the above primal problem and any solution (?

,�?
)576

to the dual problem, the pair P?
, (?

,�?
) must satisfy the KKT conditions. The first-order optimality577

condition gives:578

rPL(P
?
,?

,�?
) = log (P

? ↵K) + diag(?
) logP

? � �?
1

>
= 0 . (25)

Solving for �? given the stochasticity constraint and isolating P
? gives579

8(i, j) 2 [[n]]
2
, P

?
ij =

exp ((log Kij)/(1 + 
?
i ))P

` exp ((log Ki`)/(1 + 
?
i ))

. (26)

We now consider P? as a function of . Plugging this expression back in L yields the dual function580

 7! G(). The latter is concave as any dual function and its gradient reads:581

rG() = (log ⇠ + 1)1�H(P
?
()) . (27)

Denoting by ⇢ = 1 +  and taking the dual feasibility constraint  � 0 into account gives the582

solution: for any i, ⇢
?
i = max("

?
i , 1) where "? solves (EA) with cost C = � logK. Moreover we583

have that �  min("?) where "? 2 (R⇤

+
)
n solves (EA). Therefore for any i 2 [[n]], one has "

?
i /� � 1.584

Thus there exists 
?
i 2 R+ such that �(1 + 

?
i ) = "

?
i .585

This ? cancels the above gradient i.e., (log ⇠ + 1)1 = H(P
?
(?

)) thus solves the dual problem.586

Therefore given the expression of P? we have that Proj
KL

H⇠
(K) = P

e.587

Lemma 9. Let C 2 D, � > 0 and K� = exp(�C/�). Suppose that the optimal dual variable �
?588

associated with the entropy constraint of (SEA) is positive. Then for any �  mini �
?
i , it holds589

P
se

= Proj
KL

H⇠\S
(K�).590

Proof. Let � > 0. The KL projection of K onto H⇠ \ S boils down to the following optimization591

problem.592

min
P2Rn⇥n

+

KL(P|K�)

s.t. 8i, H(Pi:) � log ⇠ + 1

P1 = 1, P
>

= P .

(SEA-Proj)
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By strong convexity of P! KL(P|K�) and convexity of the constraints the problem (SEA-Proj)593

admits a unique solution. Moreover, the Lagrangian of this problem takes the following form, where594

! 2 Rn
+

, µ 2 Rn and � 2 Rn⇥n:595

L(P,µ,!,�) = KL(P|K�) + h!, (log ⇠ + 1)1�Hr(P)i+ hµ,1�P1i+ h�,P�P
>i .

Strong duality holds by Slater’s conditions thus the KKT conditions are necessary and sufficient. In596

particular if P? and (!?
,µ?

,�?
) satisfy597

rPL(P
?
,µ?

,!?
,�

?
) = log (P

? ↵K) + diag(!?
) logP

? � µ?
1

>
+ �? � �?>

= 0

P
?
1 = 1, Hr(P

?
) � (log ⇠ + 1)1, P

?
= P

?>

!? � 0

8i, !?
i (H(P

?
i:)� (log ⇠ + 1)) = 0 .

(KKT-Proj)

then P
? is a solution to (SEA-Proj) and (!?

,µ?
,�?

) are optimal dual variables. The first condition598

rewrites599

8(i, j), log(P
?
ij) +

1

�
Cij + !

?
i log(P

?
ij)� µ

?
i + �

?
ij � �

?
ji = 0 , (28)

which is equivalent to600

8(i, j), �(1 + !
?
i ) log(P

?
ij) + Cij � �µ

?
i + �(�

?
ij � �

?
ji) = 0 . (29)

Now take P
se the optimal solution of (SEA). As written in the proof Proposition 5 of Pse and the601

optimal dual variables (�?
,�?

,�
?
) satisfy the KKT conditions:602

8(i, j), Cij + �
?
i log P

se

ij � �
?
i + �

?
ij � �

?
ji = 0

P
se
1 = 1, Hr(P

se
) � (log ⇠ + 1)1, P

se
= (P

se
)
>

�? � 0

8i, �?
i (H(P

se

i: )� (log ⇠ + 1)) = 0 .

(KKT-SEA)

By hypothesis �?
> 0 which gives 8i, H(P

se

i: ) � (log ⇠ + 1) = 0. Now take 0 < �  mini �
?
i603

and define 8i, !?
i =

�?
i
� � 1. Using the hypothesis on � we have 8i, !?

i � 0 and !? satisfies604

8i, �(1 + !
?
i ) = �

?
i . Moreover for any i 2 [[n]]605

!
?
i (H(P

se

i: )� (log ⇠ + 1)) = 0 . (30)

Define also 8i, µ?
i = �

?
i /� and 8(i, j), �?

ij = �
?
ij/�. Since P

se
, (�?

,�?
,�

?
) satisfies the KKT606

conditions (KKT-SEA) then by the previous reasoning P
se

, (!?
,µ?

,�?
) satisfy the KKT conditions607

(KKT-Proj) and in particular Pse is an optimal solution of (SEA-Proj) since KKT conditions are608

sufficient. Thus we have proven that Pse 2 arg min
P2H⇠\S

KL(P|K�) and by the uniqueness of609

the solution this is in fact an equality.610

B Alternating Bregman Projections for Solving (SEA)611

For � > 0 and K� = exp(�C/�), we introduce P
se

� = Proj
KL

H⇠\S
(K�). Note that Lemma 9 gives612

us that when �  mini �
?
i (�? is defined as the solution in � of the Dual-SEA problem), we get613

P
se

� = P
se. In Section 3.2, we have seen a dual ascent algorithm to compute P

se. We now provide614

an alternative computational approach to compute P
se

� for any �. In particular, when �  mini �
?
i ,615

the presented approach provides an alternative to dual ascent for solving (SEA).616

To compute P
se

� , one can rely on the well-studied convergence of alternating Bregman projection617

methods [4]. The core idea is to alternate projection onto H⇠ with the projection onto S. As H⇠ is618

not affine, one needs to resort to the Dykstra procedure [13] described in Algorithm 1. Note that619

Dykstra’s algorithm can be applied to any Bregman divergence including KL [8] with guarantees [1].620
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Algorithm 1 Dykstra for computing P
se

�

1: Input: cost C, perplexity ⇠, scaling �

2: (Ps,⌅) 
�
exp(�C/�),11

>
�

3: while not converged do
4: Ph  Proj

KL

H⇠
(Ps �⌅)

5: ⌅ ⌅�Ps ↵Ph

6: Ps  Proj
KL

S
(Ph)

7: end while
8: Output: Ps

The projection-based strategy necessitates rescaling the data beforehand. This factor � shrinks the621

data such that row-wise entropies are controlled when projecting onto H⇠ . As such, choosing a � too622

high might result in some entropies being unsaturated while a � too small generally leads to slow623

convergence.624

We now describe how to perform the two KL projection steps.625

Projection onto S . The KL projection onto S of K 2 Rn⇥n
+

amounts to the following problem.626

arg min
P2S

KL(P|K) . (31)

For this problem the Lagrangian reads, where W 2 Rn⇥n is a dual variable:627

L(P,W) = KL(P|K) + hW,P�P
>i . (32)

Similarly as before, if we cancel the gradient of L with respect to P we obtain log(P
? ↵ K) +628

W �W
>

= 0. Thus P?
= exp(W �W

>
)�K. We must also have the primal feasibility that is629

P
?

= P
?>. Plugging the expression in this condition leads to W�W

>
=

1

2
log(K

> ↵K). Hence630

plugging it back we get P?
= exp(

1

2
log(K

> ↵K))�K =
�
K

> ↵K
�� 1

2 �K =
�
K�K

>
�� 1

2 .631

Overall the projection reads:632

arg min
P2S

KL(P|K) =
�
K�K

>
�� 1

2
. (33)

Projection onto H⇠. Concerning the entropic projection, on can compute Proj
KL

H⇠
: S ! H⇠ using a633

slight adaptation of Lemma 8. For any P 2 S , it holds634

8(i, j), Proj
KL

H⇠
(P)ij =

exp (� log Pij/⇢i)P
` exp (� log Pi`/⇢i)

(34)

where for any i, ⇢i = max("
?
i , 1) where "? solves (EA) with cost C = � logK. Note that this635

projection is more efficient to compute than P
e as one can stop the search when the upper bound on636

the root becomes smaller than one.637
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