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A Proofs

A.1 Euclidean Projection onto S

It amounts to the following problem.

argmin ||P — K|%. (3)
Pes

With W € R™"*", the Lagrangian takes the form:
L(P,W) =P —K|;+(W,P-PT). )

Cancelling the gradient of £ with respect to P gives 2(P* — K) + W — W' = 0. Thus P* =
K+ % (WT — W) Using the symmetry constraint on P* yields P* = % (K + KT). Hence we
have:

(K+K'). )

NN

argmin |P — K||2 =
PesS

A.2 From Symmetric Entropy-Constrained OT to Sinkhorn Iterations

In this section, we derive Sinkhorn iterations from the problem (EOT). Let C € D. We start by
making the constraints explicit.

min  (P,C) (6)
PeRiX"
st. Y H(Pi) =19 (7)
i€[n]
P1=1, P=P'". (8)

For the above convex problem the Lagrangian writes, where v € Ry, f € R™ and I' € R"*":
L(P.£,1,T) = (P,C) + (v,n— Y H(P)) +2(£,1-P1L)+(DP-PT). O
i€n]

Strong duality holds and the first order KKT condition gives for the optimal primal P* and dual
(v*, £*,T*) variables:

VpL(P* 5,05, T*) = C+v*logP* —2f*17T 4+ T* —-T*T = 0. (10)
Since P*,C € S we have I'* — I'*T = f*17 — 1f*T. Hence C + v*logP* — f* @ f* = 0.
Suppose that v* = 0 then the previous reasoning implies that V(i, j),Ci; = f* + f7. Using that
C € D we have Cy; = C;; = 0 thus Vi, f = 0 and thus this would imply that C = 0 which is not

allowed by hypothesis. Therefore v* # 0 and the entropy constraint is saturated at the optimum by
complementary slackness. Isolating P* then yields:

P* = exp ((f* @ £* — C)/v*). (11)

P* must be primal feasible in particular P*1 = 1. This constraint gives us the Sinkhorn fixed point
relation for £*:

Vie[n], [f*) =—v*LSE((f* —C.)/v"), (12)

where for a vector o, we use the notation LSE(a) = log ), exp(ax).

A.3  Proof of Proposition

We recall the result

Proposition 1. Let C € R™*"™ without constant rows. Then P¢ solves the entropic affinity problem
(EA) with cost C if and only if P® is the unique solution of the convex problem

in (P . EA T
1:{161%1£< ,C> ( as O )
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Proof. We begin by rewriting the above problem to make the constraints more explicit.

min  (P,C)
PERKX"
s.t. Vi, HP;.) > log&+1
P1=1.

By concavity of entropy, one has that the entropy constraint is convex thus the above primal problem
is a convex optimization problem. Moreover, the latter is strictly feasible for any £ € [n — 1].
Therefore Slater’s condition is satisfied and strong duality holds.

Introducing the dual variables A € R™ and € € R";, the Lagrangian of the above problem writes:
‘c(Pv Aa 6) = <P7 C> + <€7 (1Og€ + 1)1 - Hr(P)> + <Aa 1- P1> ) (13)

where we recall that H,(P) = (H(P;.)),. Note that we will deal with the constraint P € R}*"
directly, hence there is no associated dual variable. Since strong duality holds, for any solution P* to
the primal problem and any solution (¢*, A*) to the dual problem, the pair P*, (e*, A*) must satisfy
the Karush-Kuhn-Tucker (KKT) conditions. The first-order optimality condition gives:

VpL(P*, e*,A*) = C + diag(e*) logP* —A*1" =0. (first-order)

Assume that there exists £ € [n] such that €} = 0. Then (first-order) gives that the ¢/** row of C is
constant which is not allowed by hypothesis. Therefore e* > 0 (i.e., €* has positive entries). Thus
isolating P in the first order condition results in:

P* = diag(u) exp (— diag(e*) "' C) (14)

where u = exp (A* @ €*). This matrix must satisfy the stochasticity constraint P1 = 1. Hence one
has u = 1 © (exp (diag(e*)~1C)1) and P* has the form

.. exXp (—CZJ/E*)
V(i,j) € [n 2, P = L,
A A SR e
As a consequence of e* > 0, complementary slackness in the KKT conditions gives us that for all ¢,
the entropy constraint is saturated i.e., H(P},) = log € + 1. Therefore P* solves the problem (EA).

Conversely any solution of (EA) P} = % with (&7) such that H(P?,) = log £+ 1 gives

an admissible matrix for minpey, (P, C) and the associated variables satisfy the KKT conditions
which are sufficient conditions for optimality since the problem is convex. O

15)

A4 Proof of Proposition d and Proposition

The goal of this section is to prove the following results:

Proposition 4 (Saturation of the entropies). Let C € S with zero diagonal, then (SEA)) with cost C
has a unique solution that we denote by P*°. If moreover C € D, then for at least n — 1 indices
i € [n] the solution satisfies H(P5®) = log & + 1.

Proposition 5 (Solving for[SEA). Ler C € D, L(P,~,A) = (P,C) + (v, (logé + 1)1 — H,(P)) +
(A1 —=P1) and q(v,\) = minp gnxng L(P,7, A). Strong duality holds for (SEA). Moreover,

+

let v*, X* € argmax,>g q(y, ) be the optimal dual variables respectively associated with the
entropy and marginal constraints. Then, for at least n — 1 indices i € [n], v} > 0. When Vi € [n],
~vF > 0 then H,(P*°) = (log & + 1)1 and P*° has the form

P =exp(N*@X* -2C)0 (v ®~")). (2)

The unicity of the solution in Proposition[dis a consequence of the following lemma

Lemma 7. Let C # 0 € S with zero diagonal. Then the problem minpcy;.ns (P, C) has a unique
solution.

Proof. Making the constraints explicit, the primal problem of symmetric entropic affinity takes the
following form

min  (P,C)
PeRan
st. Vi, HP;.) >logé +1 (SEA)

P1=1, P=P'".
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Suppose that the solution is not unique i.e., there exists a couple of optimal solutions (P, P2) that
satisfy the constraints of and such that (P1,C) = (P2, C). For i € [n], we denote the
function f; : P — (log& + 1) — H(P;.). Then f; is continuous, strictly convex and the entropy
conditions of can be written as Vi € [n], f;(P) < 0.

Now consider Q = %(P1 + P5). Then clearly Q1 = 1,Q = Q. Since f; is strictly convex

we have f;(Q) = fz(lPl +1P,) < 2fz(Pl) 1f(P2) < 0. Thus f;(Q) < 0 forany i € [n].
Take any € > 0 and ¢ € [n]. By continuity of f; there exists §; > 0 such that, for any H with
|H| r < &;, we have f;(Q + H) < fi(Q) + . Take ¢ > 0 such that Vi € [n],0 < ¢ < —3fi(Q)
(this is possible since for any i € [n], f;(Q) < 0) and H with ||H||r < min,cp,j ;. Then for any
i € [n], f:(Q + H) < 0. In other words, we have proven that there exists 1 > 0 such that for any H
such that ||H||p <, itholds: Vi € [n], f;(Q + H) < 0.

Now let us take H as the Laplacian matrix associated to C i.e., for any (i, j) € [n]]2 H;j = —Cj;
if i # j and ), Oy otherwise. Then we have (H,C) = — >, ,. CF, + 0= — 3, . CF # 0 since
C has zero diagonal (and is nonzero). Moreover, H = HT since C is symmetric and H1 = 0
by construction. Consider for 0 < 8 < HHH , the matrix Hg(C) := —fsign((H, C))H. Then
IHz(O)||lr = B|H||r < 77. By the previous reasoning one has: Vi € [n], f;(Q + Hg(C)) < 0.
Moreover, (Q + Hz(C))" = Q + Hp(C) and (Q + Hz(C))1 = 1. For 3 small enough we have

Q-+ HB(C) € R*™ and thus there is a 3 (that depends on P and P3) such that Q + Hg(C) is
admissible i.e., satisfies the constraints of (SEA] m Then, for such £,

<C7Q + Hﬁ(c)> - <C7P1> = §<CaP1 + P2> + <C,H5(C)> - <CaP1>

= (C,Hp(C)) = —Bsign((H, C))(H,C) <0
Thus (C,Q + Hg(C)) < (C,P;) which leads to a contradiction. O

(16)

We can now prove the rest of the claims of Proposition ] and Proposition 5]

Proof. Let C € D. We first prove Proposition[d] The unicity is a consequence of Lemma([7} For the
saturation of the entropies we consider the Lagrangian of the problem (SEA)) that writes

LP,X,~,T)=(P,C)+ (v,(logé +1)1 —H.(P)) + (\,1-P1) + (P -P")

for dual variables v € R"t, A € R” and I' € R™*™. Strong duality holds by Slater’s conditions

because %11T is stricly feasible for £ < n — 1. Since strong duality holds, for any solution P* to the
primal problem and any solution (y*, A*, T'*) to the dual problem, the pair P*, (v*, A*, T'*) must
satisfy the KKT conditions. They can be stated as follows:

C + diag(y*)logP* = A*1T +T* —T*T =0

P*1 =1, H.(P*) > (log¢ + 1)1, P* = P*T

720

Vi, v (H(P7) — (log € +1)) = 0.
Let us denote I = {¢ € [n] s.t. 7; = 0}. For £ € I, using the first-order condition, one has for
i € [n],Ce = X\; — T, + T'},. Since C € D, we have Cyp = 0 thus A} = 0 and Cy; =T}, — T'7,.
For (¢,0') € I?, one has Cypr = T}, — T3y = —(T}y — T5y) = —Cup. C is symmetric thus
Cyer = 0. Since C only has null entries on the diagonal, this shows that £ = ¢’ and therefore I has at
most one element. By complementary slackness condition (last row of the KKT-SEA|conditions)
it holds that Vi # ¢, H(P}) = log & + 1. Since the solution of (SEA) is unique P* = P*¢ and thus

Vi # £, H(PSS) = log & + 1 which proves Proposrtlonl_]but also that for at least n — 1 indices v} > 0.
Moreover, from the KKT conditions we have

V(i,j) € [n]*, T% — T = Cyj + 77 log P — Af . (17)

(KKT-SEA)

Now take (i, j) € [n]” fixed. From the previous equality '}, — = Cyj + v log Pj; — A but
also I'; — I'5; = Cy; + 7 log Pj; — A} Using that P* = (P*)T and C € S we get F* -T% =
Ci; + ’yJ log P* —Aj. ButI'j; — I‘* = —(I';; — I';;) which gives

Cij + 75 log P — Aj = —(Cyj + 7 log Py — A]) . (18)
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This implies

W(i.5) € [n]’, 2C;; + (7 +77) log P — (AT + A7) = 0. (19)
Consequently, if v* > 0 we have the desired form from the above equation and by complementary
slackness H, (P*°) = (log & + 1)1 which proves Proposition[5] Note that otherwise, it holds

AHA;—QC,»J»)

20
i+ e

V(Za]) 7£ (676)7 P;; = €xp (

O

A.5 EA and SEA as a KL projection

We prove the characterization as a projection of (EA) in Lemma|8|and of (SEA) in Lemma 9]
Lemma 8. Ler C € D,0 > 0 and K, = exp(—C/o). Then for any o < min, e}, it holds
P = Projy(K,) = arg minp ¢, KL(PK,).

Proof. The KL projection of K onto H,¢ reads

min  KL(P|K) (21)
PeR} ™
s.t. Vi, HP;.) > logé +1 (22)
P1=1. (23)
Introducing the dual variables A € R™ and k € R}, the Lagrangian of this problem reads:
L(P, A k) =KL(P|K) + (k, (log¢ + 1)1 — H(P)) + (A, 1 — P1) (24)

Strong duality holds hence for any solution P* to the above primal problem and any solution (k*, A*)
to the dual problem, the pair P*, (*, A*) must satisfy the KKT conditions. The first-order optimality
condition gives:
VpL(P*, k*,A*) = log (P* @ K) + diag(k*) log P* — A*1T = 0. (25)
Solving for A* given the stochasticity constraint and isolating P* gives
exp ((log Ky5) /(1 + K7))
> exp ((log Kig) /(1 + k7))

We now consider P* as a function of . Plugging this expression back in £ yields the dual function
K — G(k). The latter is concave as any dual function and its gradient reads:

V(i j) € [n]°, Pf= (26)

V,G(r) = (log€ + 1)1 — H(P* (k) . @7
Denoting by p = 1 + k and taking the dual feasibility constraint £ > 0 into account gives the
solution: for any ¢, p; = max(e}, 1) where * solves (EA) with cost C = —log K. Moreover we

have that 0 < min(e*) where e* € (R* )" solves (EA). Therefore for any i € [n], one has 5 /o > 1.
Thus there exists k7 € Ry such that (1 + k}) =€].

This k* cancels the above gradient i.e., (log& + 1)1 = H(P*(x*)) thus solves the dual problem.
Therefore given the expression of P* we have that Pro J%&(K) = P°. O

Lemma9. Let C € D,o > 0 and K, = exp(—C/0o). Suppose that the optimal dual variable v*
associated with the entropy constraint of (SEA) is positive. Then for any o < min; ~}, it holds

Pse = Proj%lgms(K(,).
Proof. Let o > 0. The KL projection of K onto H¢ N S boils down to the following optimization

problem.

min  KL(P|K,)
PeR}*™

st Vi, H(P;,) > log€ + 1 (SEA-Proj)
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By strong convexity of P — KL(P|K,) and convexity of the constraints the problem (SEA-Proj)
admits a unique solution. Moreover, the Lagrangian of this problem takes the following form, where
welRY, peR"and ' € R™*™:

L(P,p,w,T) =KLP|K,) + (w,(logé + 1)1 — H.(P)) + (1,1 —P1) + (3, P —PT) .

Strong duality holds by Slater’s conditions thus the KKT conditions are necessary and sufficient. In
particular if P* and (w*, pu*, 3*) satisfy

VpL(P*, p*,w*, T*) = log (P* @ K) + diag(w*)logP* —pu*1" +B8* - 3*" =0
P*1 =1, H.(P*) > (logé + 1)1, P* = P*T
w*>0

Vi, wr(H(P:) — (log€ +1)) =0.

(KKT-Proj)

then P* is a solution to (SEA-Proj) and (w*, u*, 3*) are optimal dual variables. The first condition
rewrites

.. * ]- * * * * *
V(l,j), log(Pu) + ;OZJ + Wi log(P’Lj) — My + BU - 6]" = 0; (28)
which is equivalent to

(i, j), o(1+ wi)log(P5) + Cij — opi + o (85 — Bj;) = 0. (29)

i
Now take P*° the optimal solution of (SEA). As written in the proof Proposition[5 of P*® and the
optimal dual variables (y*, A*, I'*) satisfy the KKT conditions:
V(i,j), Cij + ’YZ( log Pivje — )\: + F:j — F;z =0
P*°1 =1, H,(P*) > (logé& + 1)1, P% = (P=) T
720
Vi, v (H(PF) — (log £ +1)) = 0.

(KKT-SEA)

By hypothesis v* > 0 which gives Vi, HP5®) — (log€ + 1) = 0. Now take 0 < o < min; 7y}
and define Vi,w} = 771 — 1. Using the hypothesis on o we have Vi,w} > 0 and w* satisfies

Vi, o(1 + w}) = ~f. Moreover for any i € [n]
w;i (H(PF) — (log€ +1)) = 0. (30)

Define also Vi, uy = Af/o and V(i, j), B;; = I'};/o. Since P*¢, (v*, A*,I'*) satisfies the KKT

conditions (KKT-SEA) then by the previous reasoning P*¢, (w*, u*, 3*) satisfy the KKT conditions
(KKT-Proj) and in particular P*° is an optimal solution of (SEA-Proj) since KKT conditions are

sufficient. Thus we have proven that P*° € arg minp ¢4, ns KL(P|K,) and by the uniqueness of
the solution this is in fact an equality. O

B Alternating Bregman Projections for Solving (SEA)

For o > 0 and K, = exp(—C/0), we introduce P5° = Projﬁi];ms(Kg). Note that LemmaEgives
us that when o < min; 7} (v* is defined as the solution in - of the [Dual-SEA|problem), we get
P35 = P*°. In Section [3.2] we have seen a dual ascent algorithm to compute P>°. We now provide
an alternative computational approach to compute P$° for any o. In particular, when ¢ < min; v,
the presented approach provides an alternative to dual ascent for solving (SEA).

To compute P#°, one can rely on the well-studied convergence of alternating Bregman projection
methods [4]. The core idea is to alternate projection onto H, with the projection onto S. As H is
not affine, one needs to resort to the Dykstra procedure [13] described in Algorithm I. Note that
Dykstra’s algorithm can be applied to any Bregman divergence including KL [8] with guarantees [/1].
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Algorithm 1 Dykstra for computing P3°

Input: cost C, perplexity &, scaling o
(P, B) « (exp(—C/o),llT)
while not converged do
Py + PrOJ%I;(PS OE)
E—Eo0P, 0P,
Ps — PrOjEL(Ph)
end while
Output: P,

A A i S

The projection-based strategy necessitates rescaling the data beforehand. This factor o shrinks the
data such that row-wise entropies are controlled when projecting onto H¢. As such, choosing a o too
high might result in some entropies being unsaturated while a o too small generally leads to slow
convergence.

We now describe how to perform the two KL projection steps.

Projection onto S. The KL projection onto S of K € R’7*™ amounts to the following problem.

argmin KL(P|K). (31)
PcS

For this problem the Lagrangian reads, where W € R"*" is a dual variable:
L(P,W)=KL(P|K)+ (W,P-P'). (32)

Similarly as before, if we cancel the gradient of £ with respect to P we obtain log(P* © K) +
W — WT = 0. Thus P* = exp(W — W) ® K. We must also have the primal feasibility that is
P* = P*". Plugging the expression in this condition leads to W — W = llog(K™ @ K). Hence

1 1
plugging it back we get P* = exp(3 log(K' 0 K)) oK = (K" © K)@2 OK=(Ko KT)®2.
Overall the projection reads:

[N

argmin KL(P|K) = (K® KT)Q (33)

Pes

Projection onto #¢. Concerning the entropic projection, on can compute Projzlg : S — Heusing a
slight adaptation of Lemmal8] For any P € S, it holds

exp (—log P;;/ps)
>_cexp (—log Pie/pi)
where for any 4, p; = max(e}, 1) where e* solves @ with cost C = —log K. Note that this

projection is more efficient to compute than P as one can stop the search when the upper bound on
the root becomes smaller than one.

V(i,5), Proju;(P)i; = (34)
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