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Abstract

Generative models have revolutionized applica-
tions from text synthesis to image creation, yet
their safety and trustworthiness are undermined
by unintended memorization and data contamina-
tion. Existing detection methods—relying on out-
put similarity or final-layer embeddings—either
lack instance-level precision or fail to provide
actionable attributions. To address these limi-
tations, we propose FPGuard, a Data-Centric
Safety Framework that performs Adversarial Fin-
gerprint Detection and Attribution. FPGuard ex-
tracts token-level fingerprints from intermediate
hidden states, constructs a scalable fingerprint
bank from training data, and employs contrastive
learning to enhance discriminability. At test
time, FPGuard computes a contamination score
by aggregating top-k cosine similarities between
test and banked fingerprints, and generates fine-
grained attribution maps that identify the exact
training instances responsible. Moreover, FP-
Guard enables post-hoc detoxification through
targeted data removal, significantly reducing con-
tamination effects. Experiments on LLaMA-2-7B
and GPT-J under synthetic (SQuAD—Pile) and
natural (RedPajama—TriviaQA) contamination
settings show that FPGuard improves detection
Precision@10 by up to 25%, enhances attribution
precision by over 30—45%, and lowers contam-
ination scores by up to 43% compared to prior
baselines—all without retraining.

1. Introduction

Generative models—ranging from large language mod-
els (LLMs) to diffusion and vision-language architec-
tures—have achieved remarkable success in tasks such as
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text synthesis, image generation, and multimodal reason-
ing (Brown et al., 2020; Rombach et al., 2022). However,
as these models grow in scale and are trained on ever-larger
corpora, data contamination and unintended memorization
have emerged as critical safety and trustworthiness con-
cerns (Carlini et al., 2021; Vice et al., 2024). When a down-
stream test instance inadvertently appears in the pretraining
data, evaluation results become misleading, privacy may be
violated, and models can regenerate sensitive or proprietary
content.

Existing contamination detection techniques fall into two
broad categories. Output-based methods measure genera-
tion or log-likelihood shifts under adversarial prompts (Car-
lini et al., 2021; Biderman et al., 2023), while embedding-
based approaches compare final-layer representations of
test versus training instances (Yusuf, 2010; Yu et al., 2022).
Unfortunately, output-based cues often lack fine-grained
instance precision, and final-layer embeddings fail to reveal
which portions of a test sequence were memorized or to
provide intuitive attribution. Moreover, neither family of
methods supports targeted “detoxification” of the training
corpus to mitigate contamination effects.

In this paper, we introduce FPGuard, a Data-Centric Safety
Framework for generative models that unifies Adversarial
Fingerprint Detection with Instance-Level Attribution. FP-
Guard leverages foken-level fingerprints extracted from in-
termediate hidden states, constructs a scalable fingerprint
bank from (proxy) training data, and employs a contrastive
projection head to sharpen similarity signals. At inference
time, FPGuard computes a contamination score by aggre-
gating the top-k cosine similarities between test and banked
fingerprints, and produces a token-wise attribution map indi-
cating exactly which training tokens influenced the genera-
tion. Furthermore, FPGuard enables post-hoc detoxification
by identifying and removing the most attributed training
samples, empirically reducing contamination effects.

We evaluate FPGuard on both synthetic (SQuAD—Pile)
and natural (RedPajama—TriviaQA) contamination scenar-
ios using LLaMA-2-7B and GPT-J models. Our experiments
show that FPGuard improves detection Precision@10 by
up to 25% over prior output- and embedding-based base-
lines, produces fine-grained attribution maps that enhance
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Figure 1. Architecture of FPGuard

localization and fingerprint precision by over 30-45%, and
supports targeted data removal, achieving 30-43% contami-
nation score reduction without retraining.

In summary, our contributions are:

* We formulate a novel token-level fingerprint contrastive
paradigm for instance-level contamination detection in
generative models.

* We design a scalable fingerprint bank and contrastive
projection head to enhance discriminability of hidden-
state fingerprints.

* We introduce an attribution mechanism and a post-hoc
detoxification procedure, enabling actionable data clean-
ing.

* We empirically validate FPGuard on multiple models and
datasets, achieving significant improvements in detection
accuracy and attribution interpretability.

2. Related Work

2.1. Contamination Detection in Generative Models

As large-scale generative models become increasingly cen-
tral to real-world applications, identifying whether a model
has seen or memorized specific test data is vital for safety
and evaluation integrity. Output-based methods typically
rely on generation consistency or likelihood anomalies to
infer contamination. Notable techniques include likelihood
attacks (Carlini et al., 2021), true/false prompting (Bider-
man et al., 2023), and kurtosis-based output distribution met-
rics (Vice et al., 2024; Shi et al., 2023). These approaches
offer task-agnostic black-box applicability, but often fail
to pinpoint specific training instances or corrupted subse-
quences within test inputs. Other probing-based methods
use adversarial prompt reformulations (Youssef et al., 2025;
Kazoom et al., 2025), prompt leak tests (Deng et al., 2023),
or exposure metrics (Tsukimoto, 2000), yet are limited in
interpretability and scalability.

2.2. Representation-Based Retrieval and Fingerprints

Another family of work leverages internal model repre-
sentations for contamination detection and memorization
analysis. Final-layer embedding retrieval (Yusuf, 2010; Yu
et al., 2022) compares hidden states from test queries to
training points using cosine or kNN distances, revealing
potential overlaps in high-dimensional space. However,
these representations tend to collapse across samples, espe-
cially in overparameterized models (Shi et al., 2022; Wang
et al., 2023). To improve fidelity, fingerprinting methods
extract residual noise (Li et al., 2024), activation-based sig-
natures (Ladhak et al., 2022a), or learn contrastive projec-
tions (Ladhak et al., 2022b; Fang et al., 2024) that better
preserve sample identity. Still, most operate on a single
model layer, limiting token-level granularity and attribution
precision.

2.3. Attribution, Provenance, and Data Unlearning

Attribution methods aim to trace which training examples
influenced a given model output. Influence functions (Koh
& Liang, 2017) and data provenance tools (Hannun et al.,
2021; Longpre et al., 2023) explore how model behavior
shifts under sample-level perturbations, but often require
retraining or approximations. In parallel, data unlearning
methods (Golatkar et al., 2020; Nguyen et al., 2022; Ginart
et al., 2019) seek to remove contamination effects after train-
ing, via fine-tuning, projection, or rewinding strategies. Yet,
most unlearning frameworks are either costly or infeasible
for massive generative models.

2.4. FPGuard in Context

FPGuard synthesizes ideas from prior lines of work but ad-
vances beyond existing limitations. It extracts token-level
fingerprints from multiple intermediate layers, enhancing
representational diversity compared to final-layer embed-
dings. By storing a contrastive fingerprint bank and com-
puting fop-k cosine similarities at inference time, FPGuard
enables precise instance-level contamination scoring and
interpretable token-wise attributions. Moreover, FPGuard
supports post-hoc detoxification by tracing contaminating
examples and filtering them from the training corpus, achiev-
ing practical mitigation without retraining—extending ideas
from data attribution (Longpre et al., 2023; Hannun et al.,
2021) to large-scale generative settings.

3. Methodology

In this section, we present the full design of FPGuard,
a data-centric framework for fingerprint-based contamina-
tion detection and attribution. As illustrated in Figure 2,
FPGuard consists of four core components: fingerprint ex-
traction, fingerprint bank construction, similarity-based at-
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Figure 2. Overview of FPGuard

tribution, and post-hoc detoxification.

3.1. Extracting Fingerprints from Intermediate Layers

Let M denote a generative model composed of L trans-
former layers. For any token z; in sequence = =
(z1,...,27), we denote its hidden state at layer ¢ as
he(x:) € RY. We define a projection head fy : RY — RP to
map the hidden representation to a compact fingerprint:

fe = fo(he(zt)) €]
The set of token-level fingerprints for sequence x is given

byf(ir):{flame}

3.2. Contrastive Learning for Fingerprint
Discrimination

To improve the discriminability of fingerprints across dif-
ferent training samples, we apply contrastive learning to
train the projection head fy. Specifically, we sample two
augmented views of a sequence—via dropout or token mask-
ing—and treat corresponding tokens as positive pairs. Given
a fingerprint f; and its positive counterpart f;r , the con-
trastive loss is:

exp (cos(fi7 ff)/r)
Zle exp (cos(f;, fj_)/T)

where cos(+, -) denotes cosine similarity, 7 is a temperature
hyperparamet.er., and f;” are qegatlve ﬁngerpr.mts sampled
from other training sequences in the batch of size B. We set
7 = 0.07 in all experiments, and train using Adam optimizer
with learning rate le .

‘Ccomra = - IOg (2)

We implement fy as a two-layer MLP with ReLLU activation
and 128-dimensional output. This head is trained on top
of frozen hidden states from M and later reused during
inference.

3.3. Fingerprint Bank Construction

Given training data Dy, = {z(W}X |, we compute fin-
gerprints F(x()) for each sequence and store them in a
searchable bank:

N

B=JF@W)={f=myL, 3)

i=1

Each fingerprint is tagged with metadata (token position,
sequence ID, and layer ID) for later attribution.

To support scalability to large-scale datasets, we option-
ally reduce fingerprint dimensionality using PCA (to 64 or
32 dimensions) and store them using a FAISS index for
fast retrieval. Empirically, we observe j10% degradation
in attribution accuracy after compression, while reducing
memory cost by 4x. All experiments in this paper use a
128-d fingerprint unless otherwise noted.

3.4. Contamination Score and Token-Level Attribution

Given a test sequence x*, we compute fingerprints { f;} and
for each, retrieve top-k neighbors:

Ni(ff) = arg maxc > _ cos(ff, f;) @

|S|=k fi €S
The contamination score per token is:

max

cos(f, fi 5
£ NS e 15) ®)

"=

The overall sequence-level contamination score is:

T

Contam(z*) = — Z Ve (6)

t=1

The attribution matrix & € RT*M is defined as:

apj = cos(f;, fi™V) I € Mu(£5)] (D)

3.5. Post-hoc Detoxification via Attribution Aggregation

For each training sample ("), we compute an attribution
score:

T
A= >0 o ®)

jex® t=1
Given a threshold 7, we define the cleaned corpus:

Dclean = {‘T(l) € Dtrain : A1 S T} (9)

We empirically validate this mechanism in Section 4, show-
ing that removing training sequences with high attribution
scores reduces memorization and contamination scores for
downstream test inputs, even without retraining the model.
This supports the feasibility of post-hoc detoxification as a
lightweight mitigation tool in production systems.
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Figure 3. Model Design of FPGuard

3.6. Algorithm: Fingerprint Attribution and Detection

Algorithm 1 Contamination Scoring with Fingerprint Attri-
bution
: Input: test sample x*, fingerprint bank 53
: Extract fingerprints F(z*) = {f7, ..., f5}
:fort=1toT do

Retrieve N (f;") from bank B

2
3
4
5. Compute v = maxy, en, () Cos(f7 f5)
6
7
8
9

—_

for each f; € N (f;) do
Update attribution score oy ; < cos(f;, f;)
end for
: end for
10: Output: Contam(z*) = £ >, 7;, matrix o

4. Post-hoc Detoxification

Post-hoc detoxification in FPGuard refers to the removal of
highly attributed training instances identified via fingerprint
similarity, without requiring retraining of the underlying
model. This is critical for real-world scenarios where re-
training large generative models (e.g., LLaMA-2, GPT-J) is
prohibitively expensive.

4.1. Detoxification Pipeline

Given a test set Dy, With suspected contamination, we
compute the attribution matrix o using the procedure in
Algorithm 1, and then aggregate token-level attributions to
sequence-level scores for each training instance z(?):

T
A= >0 o (10)

jex@ t=1

We define a threshold 7, and construct the cleaned training
dataset: _
Detean = {2V € Dygain + A; < 7} (11)

The cleaned fingerprint bank Bje,, is then constructed us-
ing Dqjean and replaces B in inference-time contamination

detection.

4.2. Experimental Setup

We evaluate the effectiveness of detoxification on both syn-
thetic and natural contamination settings:

* Synthetic Contamination: We explicitly insert test
examples into the training set to simulate high-overlap
contamination.

* Natural Contamination: We inject semantically sim-
ilar paraphrases of the test set into training using
retrieval-augmented pretraining data.

We use LLaMA-2-7B and GPT-J as the backbone mod-
els, and evaluate on two test sets drawn from PG-19 and
WikiText-103.

Metrics include:

¢ Contamination Score Reduction AContam: decrease
in average Contam(z*) after detoxification.

* Attribution Drop AAttr: average decrease in attribu-
tion mass to removed samples.

» Test Perplexity: used to verify that removing high-
attribution training samples does not degrade model
performance.

4.3. Results and Observations

We present the detoxification performance in Table 1.

Table 1. Detoxification Results on Contaminated Test Sets
Model

AContam | AAttr |  APerplexity

GPT-J (Synthetic) 0.28 0.31 +0.2
GPT-J (Natural) 0.14 0.20 +0.1
LLaMA-2 (Synthetic) 0.32 0.36 +0.3
LLaMA-2 (Natural) 0.15 0.23 +0.1

‘We observe that:

1. Contamination scores of test inputs decrease signifi-
cantly after removing top-attributed training examples.

2. Attribution mass shifts away from removed examples,
confirming successful isolation of contaminative sig-
nals.

3. Test perplexity remains nearly unchanged, indicating
that detoxification does not harm general model utility.
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4.4. Discussion

These results highlight that FPGuard’s fingerprint-based at-
tribution can reliably identify and remove contaminative
training samples in a fully post-hoc manner. The approach
is particularly useful in large-scale deployments where re-
training is impractical, offering a lightweight alternative for
privacy compliance, data debugging, or safety refinement of
generative models.

5. Experiments

We conduct comprehensive experiments to evaluate FP-
Guard across synthetic and real-world contamination sce-
narios. We aim to answer the following research questions:

* Q1: Does FPGuard improve contamination detection
compared to existing output-based and embedding-
based methods?

* Q2: How accurate and interpretable is FPGuard’s
instance-level attribution?

¢ Q3: Can FPGuard support data removal for post-hoc
detoxification?

* Q4: How well does FPGuard generalize across models
and contamination types?
5.1. Experimental Setup

Models. We evaluate FPGuard on two popular open-source
LLMs: LLaMA-2-7B and GPT-J-6B. Fingerprints are ex-
tracted from hidden states at multiple transformer decoder
layers during generation.

Datasets. We design diverse contamination settings:

* Synthetic QA Contamination: SQuAD QA pairs in-
jected into Pile (Carlini et al., 2021).

Natural QA Contamination: TriviaQA leakage in
RedPajama corpus.

* Code Contamination: HumanEval injected into Pile-
Code.

* Math Contamination: Symbolic MathQA leakage.

¢ Multimodal:
(image-text).

COCO—LAION caption leakage

Fingerprint Bank. We store token-level multi-layer finger-
prints with 8-bit PQ compression and perform approximate
nearest neighbor search with Faiss (k = 32).

Evaluation Metrics. We adopt three main metrics: (1)
Precision@10, (2) ROC-AUC, and (3) Contamination
Score (lower is better).

5.2. Comparison with Existing Methods (Q1)

Q1 Result: FPGuard consistently outperforms all baseline
detection methods across synthetic and natural QA con-
tamination settings, establishing new state-of-the-art perfor-
mance.

Table 2. Contamination detection results. FPGuard achieves the
best performance in all metrics.

Method Precision@10 AUC Score|
CDD (Vice et al., 2024) 542 72.1 0.42
PromptAttack (Carlini et al., 2021) 59.8 75.3 0.36
LatentKNN (Yu et al., 2022) 62.1 715 0.33
MemPrompt (Yang et al., 2024) 65.4 79.2 0.31
RN-F (Li et al., 2018) 67.8 81.0 0.29
FPGuard (Ours) 84.6 89.8 0.21

These results demonstrate that FPGuard significantly im-
proves contamination detection (Q1), especially in low-
precision regions where existing methods degrade.

5.3. Attribution and Interpretability (Q2)

To assess the interpretability of FPGuard, we evaluate its
effectiveness in two aspects: (i) token-level localization of
the contaminated spans, and (ii) instance-level retrieval of
relevant training fingerprints.

Q2 Result. As shown in Table 3 and Table 4, FPGuard
substantially outperforms baseline methods in both attribu-
tion tasks. For token-level localization, FPGuard achieves a
token-level F1 score of 71.5 and a span-level IOU of 0.49,
surpassing LatentKNN by over 30%. In instance retrieval,
FPGuard reaches a top-5 retrieval precision of 76.3 and
an average cosine similarity of 0.81 with the top retrieved
fingerprints.

These results affirm Q2: FPGuard enables fine-grained iden-
tification of memorized tokens and accurately traces their
likely provenance from training data. This provides a strong
foundation for post-hoc auditing and forensic attribution of
generative outputs.

Table 3. Token-level attribution accuracy. FPGuard yields
stronger token-wise precision and span localization.

Method | Token F11  Span IOU
LatentKNN (Yu et al., 2022) 41.2 0.29
RN-F (Li et al., 2018) 53.0 0.33
FPGuard (Ours) 71.5 0.49

5.4. Post-hoc Detoxification via Fingerprint Removal

(Q3)

We assess whether FPGuard enables post-hoc mitigation by
removing fingerprints with high attribution scores. For each
test query, we remove the top-k nearest fingerprints from
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Table 4. Instance-level fingerprint retrieval. FPGuard retrieves
more accurate and semantically aligned training neighbors.

quantization (PQ) with 16 subspaces using FAISS. This
reduces 128-d fingerprints to 16B vectors with minimal
loss in detection accuracy (<1.2%).

Method | Precision@5 1  Cosine Similarity 1
LatentKNN (Yu et al., 2022) 524 0.62
RN-F (Li et al., 2018) 56.1 0.65
FPGuard (Ours) 76.3 0.81

¢ Retrieval Latency: On an A100 GPU, retrieval over a
1M fingerprint bank takes ~73ms per 512-token query
using Faiss with IVF-Flat index (k=32).

the bank and measure the reduction in contamination score.

Q3 Result. As shown in Table 5, FPGuard achieves consis-
tent and significant score reduction across multiple contami-
nation scenarios. For example, in SQuAD—Pile, the score
drops from 0.21 to 0.12 (—42.9%), while in HumanEval
code contamination, the drop reaches —43.5%. These ef-
fects are achieved without any model retraining.

These findings affirm Q3: FPGuard not only detects and
attributes contamination but also enables effective data re-
moval via fingerprint deletion for practical detoxification.

Table 5. Contamination score before and after fingerprint re-
moval. Removing top-attributed fingerprints reduces test-time
contamination score, indicating FPGuard’s support for post-hoc
mitigation.

Scenario | Before Removal | After Removal | Reduction (%)

SQuAD — Pile 0.21 0.12 42.9%

TriviaQA — RedPajama 0.24 0.15 37.5%

MathQA — Pile 0.19 0.11 42.1%

Code (HumanEval) 0.23 0.13 43.5%

COCO — LAION 0.25 0.17 32.0%
5.5. Ablation Studies

We ablate key design choices in FPGuard to assess their
individual contribution. As shown in Table 6, removing
either the multi-layer design or contrastive head leads to
substantial degradation, confirming their necessity. Using
final-layer only (without projection or contrastive learning)
drops detection accuracy to baseline levels.

Table 6. Component-wise ablation. Multi-layer fusion and con-
trastive learning are critical.

Variant Precision@10  Score|
Full FPGuard 84.6 0.21
w/o Multi-layer fingerprints 76.2 0.26
w/o Contrastive learning 71.9 0.28
Final-layer only 62.1 0.33

5.6. Runtime and Scalability Analysis

We evaluate FPGuard’s scalability on a corpus of 1M train-
ing sequences, totaling ~600M tokens.

* Fingerprint Compression: We apply 8-bit product

* Memory Usage: The full fingerprint bank (com-
pressed) occupies ~4.7GB for 1M sequences. Index
construction time is ~10 minutes (one-time).

Interpretation. These results show that FPGuard is practi-
cally efficient, enabling real-time inference and on-the-fly
attribution even on large-scale corpora.

5.7. Cross-domain, Cross-model, and Multimodal
Generalization (Q4)

We evaluate FPGuard’s generalization under distribution
shifts along three axes: (i) domain shift, (ii) model shift,
and (iii) modality shift. Additionally, we assess its perfor-
mance in zero-shot detection where no contamination is
seen during fingerprint collection.

¢ Cross-domain: FPGuard is trained on SQuAD—Pile
and evaluated on TriviaQA—RedPajama. Despite QA
domain and phrasing changes, FPGuard retains a high
Precision@10 of 78.6 and AUC of 87.4.

* Cross-model: We extract fingerprints using GPT-J and
apply attribution to queries from LLaMA-2. FPGuard
achieves 74.8 Precision@ 10 and a low score of 0.26,
demonstrating that fingerprint representations general-
ize across model architectures.

* Zero-shot detection: Without seeing any contami-
nated samples during training, FPGuard is applied
to contaminated queries. It still achieves 73.9 Pre-
cision@10 and 83.0 AUC, showing strong resilience
under unseen leakage patterns.

¢ Multimodal transfer: We extend FPGuard to image-
caption contamination. Fingerprints are collected
from COCO captions and evaluated on contaminated
LAION samples. FPGuard achieves 76.4 Preci-
sion@10 and a contamination score of 0.25, validating
its applicability beyond text-only generation.

Q4 Result. As shown in Table 7, FPGuard maintains high
attribution performance across diverse generalization sce-
narios. In all settings, the contamination score remains low
and detection precision remains above 73%, even under
zero-shot and cross-modal conditions.

These findings affirm Q4: FPGuard’s fingerprints are model-
agnostic, domain-robust, and modality-transferable, making
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Table 7. Generalization evaluation across domains, models, and modalities. FPGuard maintains high performance without retraining.

Setting | Precision@10 1 | AUC 1 | Score |
Cross-domain (SQuAD—Pile = TriviaQA—RedPajama) 78.6 87.4 0.24
Cross-model (Train on GPT-J = Test on LLaMA-2) 74.8 85.6 0.26
Zero-shot (Clean = Contaminated) 73.9 83.0 0.27
Multimodal (COCO—LAION captions) 76.4 84.2 0.25

it well-suited for real-world deployment in open-world and
heterogeneous settings. These extended experiments ad-
dress prior concerns on the clarity of contrastive learning
(§Ablation), cost of fingerprinting (§Scalability), and depth
of detoxification analysis (§Post-hoc Detox). Together, they
reinforce FPGuard’s applicability to real-world, large-scale
generative model auditing.

6. Conclusion

We present FPGuard, an efficient and interpretable
fingerprint-based contamination detection and attribution
framework for generative language models. FPGuard ex-
tracts compact token-level fingerprints from multi-layer hid-
den states and performs attribution via approximate nearest
neighbor search over a compressed fingerprint bank. It
identifies memorized generations with high precision, while
supporting span-level attribution and provenance tracing.

FPGuard enables post-hoc detoxification by removing high-
score fingerprints, achieving up to 43.5% reduction in con-
tamination score without model retraining. Extensive ex-
periments show that FPGuard improves detection precision
by up to +25.4% and attribution accuracy by +30% over
prior methods. FPGuard generalizes across domains, model
architectures, and modalities, making it a practical solution
for contamination auditing in real-world LLM deployment.
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