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Abstract

In reinforcement learning (RL), sparse feedback makes it difficult to target long-term
outcomes, often resulting in high-variance policies. Real-world interventions instead
rely on prior study data, expert input, or short-term proxies to guide exploration. In
this work, we propose Bayesian Hypothesis Testing Policy Regularization (BHTPR), a
method that integrates a previously-learned policy with a policy learned online to speed
up learning in such settings. BHTPR applies the inductive bias that the prior study data
matches the current study environment in some states but is incorrect in others. We
use Bayesian hypothesis testing to determine, state by state, when to transfer the prior
policy and when to rely on online learning.

1 Introduction

In RL settings with sparse or delayed rewards, exploration can be costly or risky—particularly. Mo-
bile health studies are one key example. Outcomes such as a physical fitness assessment, lower
blood pressure, or smoking cessation, may only be observed infrequently or at the study’s end.
Furthermore, excessive exploratory actions (such as sending motivational prompts) can overburden
participants, causing disengagement. To reduce variance and speed up learning, clinicians often in-
troduce proximal outcomes or other imperfect mediators that correlate with the distal health goal.
For example, in the mobile health algorithm “HeartSteps”, the RL agent targeted a “short-term, mea-
surable behavioral or psychosocial effect through which that component is hypothesized to mediate
desired distal health outcomes” (Klasnja et al., 2019). Those proximal outcomes induce a policy
that can steer the agent toward distal success while limiting patient burden. Throughout this paper
we use mobile health as the running application scenario motivating our method and experiments.

One RL mechanism for injecting such prior behavioral knowledge is policy regularization. Policy
regularization is commonly used in offline RL to reduce the learned policy’s deviation from the
behavior policy (Wu et al., 2019). In this setting, policy regularization reduces the bias caused by
optimism when extrapolating beyond the observed data (Kumar et al., 2020). In this paper, we
instead apply policy regularization to online learning with sparse, distal rewards. In this setting,
rather than prevent optimism, policy regularization guides learning using a policy calculated from
previous study data.

In this paper, we introduce Bayesian Hypothesis Testing Policy Regularization (BHTPR), an online
method that uses Bayesian hypothesis testing to selectively leverage data from a previous study. We
assume that the transition dynamics—and hence the optimal policy—induced by this previous data
are accurate only in a subset of states. In other states, the dynamics may differ, rendering the previous
policy suboptimal. BHTPR addresses this mismatch by learning, via Bayesian hypothesis testing,
the states in which the previous policy is likely to be optimal. At each timestep, the agent chooses an
action from either the policy calculated from the previous data (using any standard method such as
policy iteration) or from the policy learned online.The probability of acting according to each policy
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is determined by a Bayesian hypothesis test. Because BHTPR chooses between policies rather
than combining Q-values, it remains robust even when outcome scales differ across environments.
Furthermore, by assigning higher probability to the previous policy in states where the hypothesis
test indicates higher similarity, the agent reduces unnecessary exploration.

We demonstrate the performance of BHTPR across a range of experiments varying episode length,
quality of prior data, environment stochasticity, and other factors. BHTPR demonstrates good per-
formance both on a simple tabular example and on a more realistic mobile health setting. We com-
pare BHTPR to (1) standard epsilon-greedy exploration, and (2) using the previous study data as
a prior on the transition function. We find that our method performs similarly to or better than
baselines in variations in the setting and environment and is robust to parameter choices.

2 Related Works

Approaches for Sparse, Distal Rewards The problem of pursuing a distal outcome in the face
of sparse feedback is a core problem of RL that has been addressed by many areas of research.
Reward design focuses on providing structured signals that guide behavior and accelerate learning
(Singh et al., 2009; Sowerby et al., 2022; Hadfield-Menell et al., 2017). Reward design is a key
challenge for mobile health studies Trella et al. (2023). Reward shaping augments the environment’s
reward function with additional feedback to guide the agent to learn more quickly without altering
the optimal policy (Ng et al., 1999). Safe RL focuses on problems “in which it is important to
ensure reasonable system performance and/or respect safety constraints during the learning and/or
deployment process” (Garcia & Fernandez, 2015). Finally, transfer learning leverages experience
gained from similar tasks to improve the learning of a novel task (Taylor & Stone, 2009; Lazaric,
2012). In this work, we modify exploration using external knowledge. We build on prior works by
using Bayesian hypothesis testing to reflect the inductive bias that the external knowledge is correct
at some states and incorrect at others.

Policy Regularization Policy regularization is commonly used to avoid a policy deviating too far
from its prior version or from a reference policy, improving stability, sample efficiency, and gen-
eralization. In offline settings, policy regularization ensures the learned policy does not deviate far
from the behavior policy, reducing extrapolation error (Wu et al., 2019). In online settings, methods
such as Trust Region Policy Optimization (TRPO) constrain successive policy updates using KL
divergence penalties (Schulman et al., 2015). In a complementary line of work, Lu et al. (2023),
combines imitation learning and reinforcement learning. They use an imitation learning objective
and modify this with an RL objective when the data are out-of-distribution.

Our method can be viewed as policy regularization, as it constrains the learned policy to use a policy
derived from prior study data in certain states. Furthermore, it can be framed within BRAC, as
discussed in Sec. 6.

Bayesian Hypothesis Testing Bayesian hypothesis testing (BHT) is a method of comparing two
competing hypotheses or models by computing how likely the observed data are under each hypoth-
esis (Fay & Brittain, 2022). We are aware of one other work that explicitly incorporates BHT into
an RL algorithm. Zhang et al. (2022) uses BHT to interpolate between MDP and bandit algorithms
when the true nature of the environment is not known. In contrast, our method assumes that the
true environment is an MDP and the role of BHT is to learn the states in which the given policy is
optimal.

3 Methods

3.1 Setting and Notation

We consider an episodic Markov decision process (MDP) setting with, with states s € S, actions
a € A, reward function R(s,a) and transition function 7'(s,a,-). In the experiments below, we
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assume R(s,a) is known. We define D to be the transition data collected online. We use this data
and the reward function to learn a policy 7 and an MLE transition matrix T. We define Dprior as
the transition data collected from some prior study. We compute the optimal policy based on this
transition data and the know reward function R(s, a), and call this policy Tprior- We compute Tpmor
as the maximum likelihood estimate (MLE) transition matrix using Dy,.;o. The transition function
generated from D,,;,» may match that of the new environment or it may differ in certain states.
Consequently, we aim to rapidly differentiate between states where 7,,.;, can be utilized and states
where a new policy must be learned online.

3.2 Algorithm Definition

BHTPR learns weights w(s) that reflects the agent’s belief about whether the transition dynamics in
the current environment match those from the prior study in each state s. Then w(s) is used within
the algorithm to decide whether to select an action in state s according to 7 (the policy being learned
online) or 7y, (the policy computed from the prior study data).

3.2.1 Update rule for w(s) using Bayesian hypothesis testing

BHTPR assumes access to data Dy, that comes from an environment with the same state space,
but potentially different transition dynamics in some states. In order to differentiate between the
states in which the transition dynamics are the same and those that differ, BHTPR learns a state-
specific weight w(s) € [0, 1] that represents the probability that the transition dynamics in the cur-
rent environment match those implied by the prior data. This is formalized via Bayesian hypothesis
testing, which updates w(s) as more transition data are collected.

In each state, we test the null hypothesis that transitions match the prior environment against the
alternative hypothesis that they do not. Using observed transition data, we update w(s) to reflect the
posterior probability that the prior model is correct in that state. We use Bayes’ rule to compute this
posterior probability, based on the likelihood of transition data under the prior and learned models.
The update equation and further details are provided in Appx. A.

3.2.2 BHTPR Algorithm: Using w(s) to choose between policies

At every step of episode e, the online algorithm chooses the policy from which to select its action
based on a draw from a Bernoulli trial, where the probability of acting according to mp,ior(s) is
we(s). If the resulting value b ~ Bernoulli(we(s)) equals 1, the agent selects its action based on
Tprior (), otherwise it selects an action from the current learned policy 7(s). Hence the agent takes
actions based on the previous study data in proportion to the probability that the observed data was
generated from the previous study transition function. This procedure is detailed in Algorithm 1.

4 Experiments

We demonstrate the ability of BHTPR to leverage previous study data to speed up learning in settings
with sparse, distal rewards. We show how the algorithm can outperform a standard epsilon-greedy
approach as well as an epsilon-greedy approach using the previous study data directly as a Dirichlet
prior on the transition function. Additional experimental details are in Appx. C.

4.1 Environments

We illustrate the performance of BHTPR on experiments using two environments. The first is a grid
in which an agent must navigate from one corner to the opposite corner. This simple example allows
us to manipulate different aspects of the environment and observe the effect on the performance of
BHTPR. The second environment is the “Chainworld” from Nofshin et al. (2024). This reflects a
realistic depiction of the challenges faced in a mobile health setting.
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Algorithm 1 Bayesian hypothesis testing policy regularization

1: Input: Previous study data D,,;.;0,

2: Calculate Tp”»or, Tprior USING Dpyior; Initialize T(s, a,-), weight wy(s), policy 7
3: for each episode e do:

4: Initialize episode data D.(s) = {}Vs

5 Initialize state s from starting state distribution

6: while s not terminal do

7: Draw b ~ Bernoulli(w.(s))

8 if b = 1 then

9: Choose action a ~ Tpyior ()

10: else if b = O then

11: Choose action a epsilon-greedily from 7 (s)
12: end if

13: Take action a. Observe next state s’. Update data D, (s) = D.(s) U (s, a, s').
14: Update T, 7 (e.g. by Q-learning)

15: s« ¢

16: end while

17: Update w using Bayesian hypothesis testing (Eq. 1)
18: end for

Gridworld The state space of this environment is a 7x7 grid with four actions (up/down/left/right).
The agent starts at the lower-left of the grid and the episode concludes when either the agent reaches
the upper-right corner or after a fixed number of steps. The agent receives a reward of -1 per step
until reaching the goal. When the agent reaches the goal, it receives a reward of 100 and the episode
terminates. This is depicted in Fig. 4a in Appx. B.

Chainworld A more realistic mobile health example, the “Chainworld” from Nofshin et al. (2024),
applies behavioral science literature to model human-Al interaction when an Al assists a human in
a frictionful task such as adhering to a physical therapy program. Both the human and the Al are
represented by the MDPs, where the Al MDP’s actions affect the human’s MDP. The human MDP
represents progress towards the goal and the AI’s MDP uses the human’s MDP state and action as
its state space. Further details are in Appx. B.

5 Results

BHTPR has good performance across variations in the gridworld and chainworld environments. In
the chainworld, the results are greatly shaped by the presence of the absorbing state.

5.1 Impact of an Absorbing State on Exploration

The main element distinguishing the chainworld environment is the consequence of exploration. In
contrast to the gridworld, where unnecessary exploration increases the number of steps to reach the
goal, exploration in the chainworld can result in disengagement after which the agent can never reach
the goal state. Hence exploration is incredibly costly and the best algorithm in this environment is
one that minimizes unnecessary exploration. BHTPR can reduce exploration because, once the agent
has learned that 7, is optimal, it can stop exploring in that state. In terms of Algorithm 1, this
means acting epsilon-greedily only if b = 0 (acting according to the policy 7 learned online, line
11) and not exploring when acting according to 7y, (line 9).

Fig. 5 in Appx. D highlights the impact of exploration on the performance of BHTPR and the
baselines in the chainworld. In the right column, equal exploration is enforced for all methods. Here
BHTPR performs similarly to the prior on 7T'. This holds in both the case when there is a large
negative reward for disengagement (bottom row) and when there is not (top row). Epsilon-greedy
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is slower to learn without the large disengagement reward but performs similarly to the other two in
the presence of a large disengagement reward. In contrast, when BHTPR is not forced to explore
equally with the baselines, it outperforms the baselines, as seen in the left column of Fig. 5.

For the sake of comparison between methods, in the gridworld example, we fix the amount of
exploration to be equal across BHTPR and the baselines. In the chainworld examples, however,
since performance is driven by exploration, BHTPR is implemented in the results that follow with
unequal exploration in the chainworld environment (i.e. No exploration when b = 1.).

5.2 BHTPR can learn over short episodes.
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Figure 1: Episode length. BHTPR learns in gridworld even with short episodes, unlike the base-
lines. In chainworld, episode length has limited effect due to disengagement.

Gridworld By incorporating correct actions learned from the previous study data, BHTPR is able
to learn over short episodes. This is the case even when episodes are too short for the baselines to
learn. Fig. 1 illustrates the performance of our method compared to the baselines in environments of
different episode lengths. In the gridworld, all three methods are able to learn when the episodes are
sufficiently long (Fig. 1a), however, when the episodes are short (Fig. 1c), the epsilon-greedy agent
cannot learn at all and epsilon-greedy agent with the prior study data as a prior on 7" learns very
slowly. BHTPR is able to learn with a greatly reduced number of steps per episode compared to
standard epsilon-greedy learning because it quickly learns the states in which 7., is the optimal
policy and does not have to spend as many steps in the episode taking suboptimal actions.! To
confirm this intuition, see Fig. 6 in Appx. D. Here, we mix actions from the true optimal policy
with the learned policy for a range of fixed percentages (25, 50, and 75 percent). The figure shows

Exploration is equalized across methods in the Gridworld example, however fewer wrong actions are still taken by
BHTPR because in the states 70, is optimal, the agent rapidly learns to use this. The baselines take more suboptimal
actions while learning the policy online.
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that as the proportion of optimal actions increases, the performance approaches that of BHTPR,
demonstrating that the reason our method can learn with fewer episode steps is due to incorporating
optimal actions.

Chainworld In contrast to the gridworld, the chainworld’s absorbing state limits the impact of the
number of episode steps on the performance of each method. This is illustrated in Fig. 1(d-f), where
we see little impact of the change in maximum steps per episode across the plots in the row. Once
the disengagement state is reached, no further learning is possible, even if the agent has not reached
the maximum number of steps in the episode.

5.3 BHTPR performs well regardless of the correctness of the prior data.

When prior study data are used to form the policy for a new study, this policy will often be sub-
optimal in certain regions of the state space, for example because the new study is performed on a
population that differs from that of the previous study. Since we do not know the number or identity
of these states, BHTPR must perform well regardless of the number of states for which the prior
study data are incorrect for the new setting. In Fig. 2, we vary the size of the region in which the
previous study data matches the current environment. For the states in which the data are corrupted,
the environment for the prior study data is randomly generated by selecting the next state for the
transition function uniformly at random. In the first column (Figs. 2a and 2d), D), matches the
environment perfectly, whereas in the next two columns, the prior study data’s environment is in-
creasingly different from the target environment. In the gridworld examples, when the prior study
data is perfect, using it directly as a prior on the transition function performs best, however BHTPR
is very close in performance, greatly outperforming the epsilon-greedy strategy. Note that this is not
reflected in the chainworld example (Fig. 2d) because we do not fix exploration to be equal across
methods. Hence, BHTPR performs better even when the data is perfect because of the lower amount
of exploration, otherwise the baseline in which the previous study data serves as a prior would be
favored in this case as well. This highlights how much exploration is driving the performance in the
chainworld. When the data are partially correct, our method outperforms the two baselines. Note,
however, that with greater regions of incorrect data, the exploration parameter needs to be decayed
more slowly otherwise BHTPR will fail to learn the optimal policy.

The performance of BHTPR across the range of data corruption schemes shown here is related to our
inductive bias that the data are either entirely correct or entirely wrong in each state. In contrast, in a
setting where there is a distribution shift between the prior study environment and the environment
of interest, we would expect the baseline in which the previous study data forms a prior to perform
well. We confirm this intuition in Fig. 12. In these experiments, we generate an incorrect transition
function in the corrupted states by drawing a next state uniformly at random, as before, but then in-
stead of using this transition function directly, we mix the incorrect and correct transition functions
together in a range of proportions to create a distribution shift between the previous study environ-
ment and the new environment. When the prior is close to the target environment (Fig. 12a), the
Bayesian prior baseline performs slightly better; as the mismatch increases, BHTPR outperforms.

5.4 BHTPR performs well in environments of varying levels of stochasticity.

As illustrated in Fig. 3, reducing the gridworld’s stochasticity (making transitions more determinis-
tic) increases the performance advantage of BHTPR over the comparison methods. This behavior
reflects the setup of experiments where the amount of prior study data is fixed across examples,
so the maximum prior magnitude T),;or (s, a, ) is highest for more deterministic environments.
To confirm this, we fix the distribution of prior Ty i0r (S, @, -), but vary the magnitude in Fig. 7
(Appx. D). Given the correct prior magnitude, the baseline Bayesian method can outperform; how-
ever, our method avoids this parameter tuning and, as demonstrated in the next section, is robust
across initializations of w(s).

In the chainworld environment, BHTPR performs well across variations in the human’s probability
of moving, but all methods perform best in the deterministic environment. In the leftmost panel of
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Figure 2: Correctness of prior study data. BHTPR performs best when prior and current environ-
ments match (a,d), but still outperforms or matches baselines when prior data are partially incorrect.

Fig. 3, the human moves with 100% probability if they take an action, and this probability decreases
from left to right. This results in the probability of the human disengaging if they take action 0
decreasing from left to right (d-f). Moving from plot (d) to (e) to (f), the agent will encounter the
disengagement state less frequently and consequently receive less feedback about the possibility
of disengagement when taking action 0. This makes it harder for the agent to learn from random
exploration, and consequently the benefit of injecting outside information is particularly strong in
this case.

6 Discussion

Connection to other policy regularization methods As discussed in Sec. 2, BHTPR can be viewed
as a form of policy regularization. Wu et al. (2019) define a framework, BRAC, to describe different
methods of policy regularization for off-policy RL, and we can view BHTPR as an instance of this
framework. BRAC describes policy regularization methods in terms of a penalty on the Q-value
objective and/or the policy objective based on how the learned policy diverges from the behavior
policy, encouraging similarity between the learned and behavior policies. Similarly, our method
also encourages the learned policy to be more similar to mp,;or, the policy learned from the data of
the previous study. Bayesian hypothesis testing provides a principled way to set the strength of the
penalty— here the probability of acting according to 7o

Limitations The main limitation of this method is that it is currently framed in a tabular setting.
While it would be easy to use a weight w(s) to interpolate between learned and prior policies where
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Figure 3: Stochasticity. In gridworld, BHTPR’s advantage is largest in deterministic environments.
In chainworld, all methods perform better when the human behaves deterministically.

both are defined in a continuous state/action setting, extending the calculation for w itself to a func-
tion approximation setting requires further work. We also note that compared to the baselines meth-
ods, BHTPR introduces additional computational overhead in terms of updating weight w(s) for
all states after each episode. Finally, BHTPR does not account for the transfer of policies between
settings where the state spaces are not identical.

7 Conclusion

Learning in a setting with sparse, distal rewards— a situation commonly encountered in mobile
health— provides unique challenges. Policies crafted from previous study data or by experts can
guide exploration, leading the agent to learn more quickly. Our approach makes explicit the induc-
tive bias that such prior policies are optimal in some parts of the state space and suboptimal in others.
By using Bayesian hypothesis testing to determine where this bias holds, our method incorporates
prior study data in a principled, adaptive way and speeds up learning across a range of settings.

A Appendix: Bayesian Hypothesis Testing Details

w(s) represents the posterior probability that the observed transition data was generated by TApm-mn,

the current estimate of 7)., as opposed to T. We formalize this idea using Bayesian hypothesis
testing, with null an alternative hypotheses defined as follows.
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Null hypothesis, H, The transition data collected online was generated by the transition function
implied by the prior study data, i.e. T(s,qa, ) = Tprior(s, a, -) for all actions a € A in a given state
s.

Alternative hypothesis, H; The transition data collected online was not generated by the transi-
tion function implied by the prior study data; therefore, we calculate the likelihood of the transition
data under the transition function being learned online.

Per-episode update for w(s) Using the null and alternative hypotheses above, we set w(s) equal
to the posterior probability of the null hypothesis, i.e. the probability that the prior study data is
correct in state s.

P(D|Hy)P(Hy) P(D|Ho)P(Hoy)
P(Ho|D) = P?p) > = P(D\HO)P(HO)E)I—P(DTHl)P(Hl)

Letting the initial weight wo(s) be the initial P(Hy ), we calculate the likelihood of the data using the
transition function calculated from the prior data, T},,.;o,-, and the transition function learned online,
T'. Then after every episode e the weight w,(s) is updated accdoring to Eq. 1. Let D, (s) be the set

of all transition data {(s, a, s")} collected in episode e starting from state s.

[H(s,a,s’)E'De(s)Tprior (sa a, 5/)] we(s)

——
w (S) _ likelihood of data under Hy P(Hy) (1)
+1 -
‘ [H(s,ms’)eDe(s)Tp'rioT(57 a, 3/)] we(s) + [H(S,a,S’)EDe(S)T(Sa a, 5/)] (1 — we(s))
likelihood of data under Ho P(Hy) likelihood of data under H 1 P(Hy)

If we further assume that there are regions of the state space in which the current environment
matches the prior study environment and others in which it does not, we can improve upon this
method by applying smoothing to values of w,(s) across steps in each episode so that states that are
close together have similar weights. In the examples that follow, we apply an exponential moving
average over weights at each timestep of an episode.
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B Appendix: Environment Details

B.1 Environment Visualizations

© NG

o S——> =

01 2 3 4 5 6 _ .
(b) Human MDP from the Chainworld environ-
(a) Gridworld MDP described in Sec. 4.1 ment. Image from Nofshin et al. (2024).

Figure 4: Two environments used in Sec. 4

B.2 Chainworld Additional Details

The human is modeled by MDP M}, =< Sy, Ay, Th, Ry, >, representing progress towards the
task goal. Each state reflects the amount of progress the human has made towards that goal. If the
human takes action 0 (Fig. 4b(a)), they may stay in the same state, lose progress towards the goal
(move back one state), or disengage (enter state sg). If instead they take action 1 (Fig. 4b(b)), they
will either remain in the same state or progress one state closer to the goal. The human takes the
optimal action according to their MDP. If the human disengages, they cannot re-engage.

The Al is represented by MDP M ;7 =< Sz, Aar,Tar, Rar,var >. > The Al assists the human,
who is a myopic decision-maker (low ), at reaching the goal state. To achieve this goal, the Al
has two possible actions. It can send an intervention that temporarily increases vy (action 1) or do
nothing (action 0). Its two-dimensional state space is represented by Sa; = [sp, ap], the human’s
state and previous action.

In the experiments below, we consider the Al agent’s MDP. Parameters for the human and AT MDPs
were chosen such that the agent can reach the goal (i.e. the right combination of agent actions can
lead the human to the goal), and such that T4 ; differs for the AI’s two actions (e.g. if the human is
not sufficiently myopic, he will take action 1 regardless of Al interaction and BHTPR will have no
impact). The environment has 10 human states. Please see Nofshin et al. (2024) for more details on
the MDP construction.

One natural way to construct a reward function in the presence of an undesirable absorbing state is
with a large negative reward in this state. In this case, the agent receives the large negative reward
upon encountering the absorbing state and correctly learns to avoid taking that action again in the
given state. Consequently, simple epsilon-greedy methods can learn in this setting. Since immediate
feedback is available in the form of a large negative reward every time the agent encounters the
disengagement state, this implementation of the chainworld does not represent a sparse, distal reward
unless the action probabilities are set such that the disengagement state is not frequently encountered.
To reflect a sparse rewards environment that we are primarily concerned with, results below do not

2Qur algorithm considers an episodic setting where y47 = 1.
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use a reward function with a large negative reward in the absorbing state (instead R(s,a) = —1 in
the absorbing state, as in all other states), however results for this variation are available in Appx. E.

C Appendix: Experiment Details

In the experiments, we vary the following elements: stochasticity of the transitions, correctness of
the prior study data, and the maximum number of steps per episode. By default in the gridworld,
unless otherwise stated, the previous study data are correct for states in which the x and y coordinates
are less than 5 (illustrated in green in Fig. 4a), and the maximum episode length is 150 steps. In the
chainworld examples, previous study data are correct for states numbered less than or equal to 13
and the maximum episode length is 50. In both, the weights wq(s) in the algorithm are initialized to
0.5 for all states and transitions are deterministic by default.
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D Appendix: Additional Results
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Figure 5: Effect of varying disengagement reward and exploration in the chainworld environment.
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Figure 6: As the percentage of optimal actions mixed with an epsilon-greedy increases, performance
approaches BHTPR. Plot from Grid MDP environment, previous study data matches current envi-
ronment in all states.
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Figure 7: Using the previous study data as a prior on 7" can outperform BHTPR for the correct mag-
nitude of prior, however BHTRP avoids tuning the magnitude of the prior. Grid MDP environment.

BHTPR is robust to a wide range of initial values for wy(s) (Fig. 8), though performance can im-
prove slightly with expert-informed initializations.
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Figure 8: Comparison of initializations for algorithm parameter w(s) in the Grid MDP.

E Appendix: Chainworld results with alternative reward function.

The plots below reflect the same set up as in the body of the paper, but with a large, negative
disengagement reward. As discussed in Sec. 4.1, a large negative reward in the disengagement state
speeds up learning, especially for the epsilon-greedy baseline.
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Figure 9: Episode length. In the chainworld, maximum episode length does not have a large effect
on performance.
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Figure 10: Correctness of prior study data. Consistent with the reward function described in the
body of the paper, BHTPR performs best when the prior study data matches the current environment
(a), but also outperforms or matches baselines when the data does not match the environment of
interest in all states.
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Figure 11: Stochasticity Results are similar across levels of stochasticity, with BHTPR performing
well in all cases.
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Figure 12: Distribution shift When the states with corrupted data have a transition distribution that
is close to correct, using the data as a prior on T'(s, a, ) performs best, however when the data are
entirely right or wrong, our method outperforms. Note that in these examples, not all states have
corrupted data. It is the transition distribution of the data in the states with corrupted data that varies.
Plots from Grid MDP environment.
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